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Abstract: - This paper presents the design and performance analysis of an arbiter with a hybrid arbitration 
algorithm. The hybrid arbitration algorithm contains static fixed priority algorithm in conjunction with dynamic 
algorithm to gain better system performance is described. The performance analysis for the various 
combinations of the arbitration algorithms under different traffic loads is simulated. The results indicate a better 
performance can be achieved as compared with the traditional arbitration assignment scheme. Based on the 
performance analysis, the hybrid arbitration can be custom-tuned to meet the design requirements. The 
implementation of the arbiter with hybrid arbitration scheme for system on chip applications is also explained. 
The reconfigurable arbiter was implemented by FPGA and synthesized by Synopsys Design Complier with a 
TSMC 0.18 mµ cell library. In addition, the power analysis of the reconfigurable arbiter at various arbitration 
states is reported. The reconfigurable arbiter can be custom-tuned to obtain high bandwidth utilization, low 
latency, and power effective for on-chip bus communication. 
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1.   Introduction 

A typical System-on-Chip (SOC) design contains 
many heterogeneous cores linked together with 
sophisticated on-chip bus communication 
architectures. The on-chip bus communication 
architecture determines the way these heterogeneous 
functional units are exchanging and synchronizing 
data and has a great impact on the system’s 
performance [1]. The SOC design paradigm relies on 
well-defined interfaces and reuse of intellectual 
property (IP). Because more and more IPs are 
integrated into the design platform, the amount of 
communication between the IPs is on the increase 
and becomes the source of the performance 
bottlenecks. The arbiter plays a very important role 
to manage the resource sharing on the SOC platform.  
On-chip bus communication is one of the critical 
components in a SOC platform. An efficient on-chip 
communication system has to satisfy the interface 
behavior of each IP block integrated within the 
complex SOC. With the increasing number of system 
components in SOC design, it becomes that an 
efficient arbiter is one of the most critical factors for 
high system performance. The conventional bus 
arbitration algorithms, the static fixed priority and 

the round robin, show several drawbacks on bus 
communication such as bus starvation [2].  

Most existing buses have their own particular 
bus protocol. However, currently there exists no 
system bus standardization and communication 
architectures defined by commercial standards are 
widespread and available in the market. For example, 
the PI-Bus [3] of OMI, the AMBA bus [4] of ARM, 
the FISPbus [5] of Mentor Graphics, the 
CoreConnect of IBM [6], the SiliconBackplane of 
Sonics [7], the Wishbone of Silicore [8] and others. 
The CoreConnect and AMBA make use of a fixed 
priority arbiter. Lotterybus defines an arbitration 
method that does not presume any fixed 
communication topology [9]. Silicon Backplane uses 
an arbitration method by means of TDMA-based 
arbitration. Based on the AMBA AHB protocol and a 
more complex interconnection matrix, the Multi-
layer AHB is a different realization of the bus 
architecture, which enables data transfers between 
several masters and slaves in a system [10]. 
Although the arbitration protocol is fixed, the choice 
of an arbitration scheme is usually depending on the 
application requirements.  
Arbiter performances are extremely important in a 
platform-based design. System Level analysis of 
arbiter performances gives important information for 
the analysis and choice between different 
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architectures driven by functional, timing and power 
constraints of the System-on-Chip. Lahiri et al. use 
the performance analysis technique presented in [11] 
which can be efficiently analyzed to determine 
system critical paths, average processing time, 
number of missed deadlines, etc. Massimo Conti et al. 
[12] present the effect of different arbitration 
algorithms and bus usage methodologies on the bus 
AMBA AHB performances in terms of effective 
throughput and power dissipation. The arbitration 
algorithms used in their analysis are first priority and 
short job first algorithms. Their results indicate the 
arbitration algorithm have a strong influence on the 
switching activity of the control signals. Francesco 
Poletti et al. [13] analyze the impact on 
multiprocessor SOC performance of different bus 
arbitration policies under different communication 
patterns, showing the distinctive features of each 
policy and the strong correlation of their 
effectiveness with the communication requirements 
of an application. 

 In this paper, the implementation of a 
reconfigurable arbiter with hybrid arbitration 
algorithm is proposed. By implementing an efficient 
arbitration algorithm the system performance can be 
tuned to better suite the applications. This paper 
presents the design and implementation of an arbiter 
with a reconfigurable hybrid arbitration algorithm. 
The rest of this paper is organized as follows. An 
overview of AMBA on-chip bus is presented in the 
next section. The architecture design of the 
reconfigurable arbiter is presented Section 3. The 
performance analysis methodology is described in 
Section 4. The simulation and implementation results 
are provided in Section 5 and Section 6, respectively.  

2.  Overview of AMBA On-Chip Bus 

The most frequently used on-chip interconnect 
architecture is the shared medium arbitrated bus, 
where all communication devices share the same 
transmission medium. The bus used in the SOC 
platform requires an arbitration process since 
multiple components connected to it can act as 
masters and hence initiate a transaction. The 
Advanced Microcontroller Bus Architecture (AMBA) 
is an open System-on-Chip bus protocol for high-
performance buses on low-power devices. Three 
distinct buses are defined within the AMBA 
specification, including the Advanced High-
performance Bus (AHB), the Advanced System Bus 
(ASB), and the Advanced Peripheral Bus (APB) [4]. 
Fig.1 shows the AMBA AHB Bus Arbiter/Decoder 
system. The APB is meant for connecting off-chip 

peripherals, whereas ASB and AHB are basically 
designed for on-chip interconnection between 
microprocessors, memory and peripheral modules. 
The standard AHB implementation provides fast 
communication between several master and slave 
modules; it is capable of pipelined operations, burst 
transfers and split transactions. There is a central 
arbiter for granting the masters access to the bus and 
a decoder which selects the active slave. 
 

 
 

Fig. 1 A typical AMBA architecture 
 
The AMBA AHB Bus Arbiter/Decoder contains 
sixteen programmable address registers- one address 
register per slave. These registers hold the base 
address and size of each slave’s address space. The 
sixteen AMBA bus masters are master 0 through 
master 15. The connection between master and slave 
is realized by multiplexors instead of e.g. tri-state 
busses. The interconnections of multiplexor, decoder 
and arbiter are illustrated in Fig. 2. 
 

 
Fig. 2 Interconnection network for the AMBA AHB 
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The arbiter monitors the AMBA bus for requests and 
chooses the master with highest priority request as 
the next AMBA bus transaction master. A bus master 
asserts a LOCK signal to the bus arbiter to make 
multiple transactions indivisible. The arbiter must 
observe the state of the LOCK signal from the 
currently active bus master before granting access to 
another bus master. If there are no requests, the 
default master is chosen as the master to drive the 
next AMBA Bus transaction. The decoder block 
monitors the transaction address and decodes it by 
matching it to the slave base addresses stored in the 
registers. If the decoder encounters an address that 
does not match any of the slave address ranges, the 
default slave is chosen as the transaction target. 
The transfer can be a burst transfer in AMBA. Bus 
burst operation may be of arbitrary length and may 
be broken down into smaller packets. The arbiter 
may constrain burst lengths to meet critical interrupt. 
Two major categories of AHB burst operation are 
incrementing burst and wrapping burst. For 
incrementing burst, the address for each transfer is 
incremented by the transfer size. For A four-beat 
wrapping burst, it indicates that this is a burst 
transfer of length 4 with address wrapping. The 
transfer size can be 8, 16 … to 1024 bits. 
For RETRY, the arbiter uses the normal priority 
scheme. For SPLIT, the arbiter adjusts the priority 
scheme so that any other master requesting the bus 
will get access even if it is a lower priority. The 
SPLIT response causes the arbiter to grant other 
masters the use of the bus. For SPLIT, the arbiter 
adjusts the priority scheme so that any other master 
requesting the bus will get access even if it is a lower 
priority. The arbiter must be informed when the slave 
can have the data available. The arbiter re-grants 
these masters. A higher priority master will be 
granted for retry. A master may be granted the bus 
several times before it finally completes the transfer. 
Request and acknowledge handshake signals support 
the arbitration signaling for each bus master. 

In summary, the AHB is a pipelined system 
backbone bus, designed for high-performance 
operation. The bus supports multiple bus masters, all 
of which communicate in a unified manner with 
slave devices.  It can support up to 16 bus masters 
and slaves that can delay or retry on transfers. It 
consists of masters, slaves, an arbiter and an address 
decoder. It supports burst and split transfers. The 
address bus can be up to 32 bits wide, and the data 
buses can be up to 128 bits wide. The arbitration 
scheme is centralized. Masters must request the bus 
using a centralized arbiter; the arbitration protocol 
for each master is strictly defined, but the arbitration 
priority is left to the designer. By specifying the 

arbitration protocol rather than the arbitration scheme 
itself, all decisions about priorities becomes a system 
design issue to suit the application constraints. 

3. Reconfigurable Arbiter Architecture 

The AMBA uses conventional fixed priority arbiter. 
Fig. 3 shows the architecture of the reconfigurable 
arbiter presented in this work. As shown in Fig. 3, 
this reconfigurable arbiter can serve up to a 
maximum 16 masters and all of them are divided into 
four groups F1-F4 for the first level competition. 
According to different arbitration algorithms 
assigned in F1 ~ F4 blocks, each block will select 
one master from four input masters for the second 
level competition. The final granted master will then 
be determined by the arbitration algorithm chosen in 
block 5. In Fig. 3, each group (F1 ~ F5) can be 
reconfigurable to adapt a specific dynamic algorithm. 
For example, either one of the round-robin algorithm, 
random access algorithm or first-come-first-serve 
algorithm can be combined together to decide the 
functionality of the reconfigurable arbiter.  
With the reconfigurable functionality, it can assign 
different arbitration algorithms for specific groups of 
masters. In the following, each block (F1 ~ F5) will 
be assigned a number to denote the status of the 
reconfigurable arbiter. The notation 1, 2, 3, and 4 are 
used to represents fixed priority, round robin, first 
come first serve and random access algorithm, 
respectively. For example, the arbitration state 
(12141) denotes the fixed priority algorithm is 
assigned to functional blocks F1, F3 and F5, round 
robin algorithm is assigned to functional block F2, 
 

 
Fig. 3  Architecture of the reconfigurable arbiter 
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and random access algorithm is assigned to 
functional block F4, respectively. 
The function of reconfiguration controller is shown 
in Fig. 4 and briefly described as follows. Each block 
F1 to F5 shown in Fig. 3 can be assigned different 
algorithms by the arbitration selection signal. The 
arbitration selection signal is user defined and can be 
used to change the algorithmic states of each block 
F1 to F5. Table 1 listed the reconfiguration input to 
blocks F1 to F5. Various arbitration algorithms can 
be assigned based on the choice of the 
reconfiguration input set by the reconfiguration 
controller. When the choice is "00", a fixed priority 
algorithm is assigned at the designated blocks.   "01" 
is round robin algorithm, "10" is first come first 
serve algorithm, and "11" is random access algorithm, 
assigned to the designated blocks. 
 
  
Table 1 The controller signals of the reconfigurable 

arbiter 
 
Input Arbitration Selection Algorithm 

00 Enable Fix-Prtority Arbitration 

01 Enable Round Robin Arbitration  

10 Enable FCFS Arbitration 

11 Enable Random Access Arbitration 

 
 

4.   System Performance Analysis  

Since the arbitration efficiency is specific to the input 
stimuli used, it is important to characterize the traffic 
pattern in terms of parameters that are not tied to any 

specific sequence of input stimuli. The efficiency of 
the hybrid arbitration algorithm is examined by a 
proposed system performance analytical module.  
 The simulation strategy for performance analysis of 
the arbiter with hybrid arbitration schemes is divided 
into two parts: Traffic Pattern Generation (TPG) and 
Arbitration Simulator Generation (ASG) as shown in 
Fig. 5. The traffic patterns are generated based on the 
statistic distribution such as Bernoulli, Binomial, 
equilikely, Geometric, Pascal, Possion, Uniform, 
Exponential, Erlang, Normal, lognormal, 
Chisquare … etc. The simulations in this paper are 
based on the TPG which assign various distributions 
to indicate the data amount and bus request time for 
each master. For ASG, a behavior bus arbiter model 
based on Fig. 3 is used to take into account the effect 
of the shared bus communication architecture on 
system performance. The hybrid arbitration behavior 
including the fixed priority, round robin, first come 
first serve, and random access are implemented using 
C language and can be reconfigurable to obtain 
various arbitration states. 
 

 
 
Fig. 5 System performance analytical module 

 
 
The status parameters and the output of the system 
performance analysis are described in details as 
follows: 
a. Waiting time: Wait time measures the time that a 

transaction has waited since it made a bus 
request. A long wait time implies a higher 
likelihood due to the need to prevent a master 
from being starved. Conversely, a short wait time 
implies a lower likelihood. The wait time is 
incremented at the end of an arbitration cycle if 

 
Fig 4. Functional block of reconfigurable arbitration 

algorithms 
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the request is not acknowledged. The wait time is 
reset when a request is granted. 

b.  Grant rate: A bus request signal needs to be 
generated by the master, and the bus can be 
accessed upon reception of the bus grant signal 
from the arbiter. A proper algorithm for 
arbitrating a bus grant among a plurality of 
master devices for access to a shared bus is very 
important for system performance. The master 
grant rate is obtained by calculating the ratios of 
the number of granting bus utilization to the 
number of requesting a data transfer by one of 
the master devices. 

c. Throughput: Throughput is the number of bits 
transmitted per second through a communication 
system. Throughput varies over time with traffic 
and congestion. Throughput is based on many 
factors, such as the total number of masters, the 
data transfer size, …etc. A point that is often 
overlooked when testing for throughput 
performance is the actual arbitration algorithm 
being used. For present study, the reconfigurable 
arbiter is very flexible, it can define different 
arbitration algorithm and able to deal with 
variations in performance. 

d. Power analysis: In a System on Chip, the bus 
lines capacitance has an order of magnitude 
bigger than transistor gate capacitances. Many 
techniques, especially of bus encoding have been 
studied to reduce bus switching activity [141. 
Power dissipation analysis should be performed 
in the first phases of the design when some good 
ideas on power dissipation can drive the choice 
between different arbitration algorithms, together 
with the requested functional and timing 
specifications of different implementation 
technologies.  

 
The reconfigurable hybrid arbitration algorithms can 
be achieved by assigning different arbitration 
algorithms into functional blocks F1 – F5. To study 
the effects of the various reconfigurable arbitration 
schemes, the performance analysis are further 
simulated based on various permutations of 
arbitration algorithms for blocks F1 ~ F5 under the 
same traffic distribution pattern. For the evaluation of 
relative performances of different configuration states, 
the average waiting time, bus granted rate, throughput, 
bus utilization can then be calculated. An example of 
the system initial condition and the results of the data 
transfer for the arbitration state (23235) is listed at 
Table 2. 
 
 

Table 2 Evaluation of System Performance 
Analytical Module 

 
Bus request time distribution: Bernoulli probability: 0.5 
Data transfer distribution: Equilikely mean:12 variance:6.67
Arbitration algorithm :F1:1,F2:1,F3:1,F4:1,F5:1  
Data transfer width:32bits 
Transfer cycle:16 
M0_data:1.75KB、M1_data:1KB、M2_data:1.875KB、
M3_data:1KB、M4_data:1.375KB、M5_data:1.125KB、
M6_data:1.5KB、M7_data:1KB、M8_data:1.125KB、
M9_data:1.125KB、M10_data:1.875KB、
M11_data:1.875KB M12_data:1.125KB、
M13_data:1.25KB、M14_data:1.125KB、
M15_data:1.25KB 

 Average waiting 
time

Time of completing 
data transfer

Master0 1211.857178 2187 
Master1 3819.625000 4014 
Master2 2065.800049 2893 
Master3 1754.500000 1897 
Master4 226.500000 1035 
Master5 3795.611084 4320 
Master6 5942.750000 6226 
Master7 3370.562500 4179 
Master8 3600.166748 5359 
Master9 519.500000 664 

Master10 2703.766602 3723 
Master11 5042.700195 5646 
Master12 3241.000000 3394 
Master13 5663.000000 6251 
Master14 1188.500000 1333 
Master15 4522.500000 4704 

 
 

5.   Simulation Results 

. 
In our work, we use performance analytical module 
described in previous section as a basis for 
evaluating communication events at different 
arbitration states. The simulation results can be 
analyzed to examine the impact of individual (or 
groups of) communication events on the system’s 
performance and identify the effects of arbitration 
algorithm on the system performance. Since bus 
loading limits the system performance, the traffic 
pattern will generate different statistic distribution to 
represent the data amount and bus request time 
issued from the individual master. Therefore, in 
addition to identifying the correlation between the 
communication events and states of arbitration 
algorithm, we can also apply different traffic pattern 
to correlate the system performance to arbitration 
state and data it is processing. If an analysis of the 

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 136 Issue 4, Volume 5, April 2008



simulation result reveals that the occurrence of a 
critical data-transfer is highly correlated to a specific 
arbitration algorithm in the behavior of the 
component executing the data transfer, the 
assignment of the specific algorithm might be used 
as a predictor for the criticality of the data transfers 
generated by the component. The following example 
examines some tradeoffs in designing these 
predictors. 

The grant rate and average waiting time are  
simulated based on 1024 permutations of arbitration 
algorithms for blocks F1 ~ F5 under the same traffic 
distribution pattern. The request time adopts 
Bernoulli distribution and the probability is 0.5. The 
amount of traffic data adopts Equilikely distribution, 
the mean is 12 and the variance is 6.67. The data 
transmission rate is 32 bit/s, and the period is 16 
clock cycles. Results of the software modeling for 
average waiting time at various combinations of the 
arbitration algorithm in function block F1 to F5 are 
reported in Fig. 6. The x-axis depicts all the possible 
arbitration combinations where 1, 2, 3, and 4 
represent fixed priority, round robin, first come first 
serve and random access algorithm, respectively. 
From Fig. 6, it shows that the hybrid arbitration 
algorithm has a predictable average waiting time. So, 
user can assign the optimal combination for the 
application specific tasks. It also shows that the 
hybrid arbitration scheme with a proper assignment 
of the arbitration algorithm to F’s functional blocks 
can achieve better performance as compared to 
traditional arbitration schemes such as fixed priority 
and round robin. 

 
 
Fig. 6 Average waiting time under hybrid arbitration 
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Fig. 7 Grant rates of Master 1 to 15 at different 

arbiter configuration states 
 

The grant rates of Master 1 to 15 at different 
arbiter configuration states are shown in Figs. 7. 
From the average grant rate shown in Fig. 5, the 
starvation occurs for low priority master (master 15) 
under fixed priority arbitration scheme. A lower 
priority master wanting to use a shared resource gets 
blocked when a higher priority master holds the 
resource. However, this starvation issue can be 
resolved by reconfiguring the arbitration state.  As 
indicated in Fig. 7, master 15 can obtain 53 % grant 
rate with arbitration state 44444, 51% grant rate with 
arbitration state 21133, and 49% grant rate with 
arbitration state 33333, which is much better than the 
arbitration state 11111.  
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 Fig. 8 Average waiting time of Master 1 to 15 
at different arbiter configuration states  

 
Average waiting time of Master 1 to 15 at 

different arbiter configuration states is shown in Fig. 
8. As shown in Fig. 8, the average waiting time of 
arbiter configuration state 21241 is much shorter as 
compared with conventional round robin arbitration 
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scheme. The longest waiting time is obtained when 
the arbiter configuration is 22222. The arbitration 
state 21241 can gain the shortest average waiting 
time, which is better than the conventional fixed 
priority arbitration scheme. 
Shared buses are very commonly used to facilitate 
communication between the various system 
components. In order to speed efficient transmission 
of larger bursts of data, bus protocols may also 
provide a direct memory access (DMA) or block 
transfer mode. A master is granted the right to use 
the bus for multiple bus cycles.  Fig. 9 shows the 
system performance of the effect of block size on 
different arbitration configuration. The block size 
c16b32 denotes in the x-axis of Fig. 9 indicating the 
data transmission rate is 32 bit/s, and the period is 16 
clock cycles. The worst case occurs when the 
arbitration configuration is set to be 43332 for F1~F5 
block and the block size is chosen to be 16x32 bits/s. 
The best performance is obtained by 32314 
assignment state and the block size is 32x64 bits/s.  
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Fig. 9  Block size effect for various arbitration 

scheme  
 
Simulation tests using normal distribution for data 

amount and exponential distribution for master request 
are conducted for 1000 times and results are average 
out. Based on 1024 permutations of arbitration 
algorithms for blocks F1 ~ F5 under the same traffic 
distribution pattern, Table 3 shows the simulation 
results of the grant rate and through put at various 
configurations. For the present case study, it 
indicates that the reconfigurable arbiter with 22221 
configuration has the best bus utilization rate, 13431 
configuration has the best average grant rate, 22221 
configuration has the best throughput performance. 
 
 

Table 3 Simulation results of the performance     
analysis at various configuration schemes 

 

6.   Implementation Results  

To describe clearly the architecture of the proposed 
reconfigurable arbiter, we present the hardware 
architectures for fixed priority, round-robin, first 
come first serve, and random access, respectively. 
The functional block of the fixed priority is depicted 
in Fig. 10. The request signals of Master 0 (M0), 
Master 1 (M1), Master 2 (M2), and Master 3 (M3) 
are assigned to BUSREQ0, BUSREQ0, BUSREQ0 
and BUSREQ0, respectively. Then, the priority order 
is assigned to M0 > M1 > M2 > M3, where M0 owns 
the highest priority. The granted signals Grant0, 
Grant1, Grant2, and Grant3 are for M0, M1, M2, and 
M3, respectively. 
 

 
Fig. 10 Circuit Functional block of fixed priority 

algorithm 
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Fig 11. Circuit Functional block of  round robin 
algorithm 

 
The implementation of a round robin is shown in Fig. 
11. A round-robin arbiter consists of a point 
controller, a timer, a demultiplexer, and a grant 
register to memorize the granted master. The point 
controller will point to each master to check the bus 
request signal. If the master requests the use of the 
bus, the address of the master will be demultiplexed 
and store at the grant register. The hardware of the 
FCFS algorithm is shown in Fig. 12. It contains a 
FIFO stack counter, a priority sorting controller, a 
FIFO buffer, and a grant register. The FIFO is full 
when the FIFO stack counter reaches a 
predetermined full value and the FIFO is empty 
when the FIFO stack counter is zero. When 
FIFO_write_enable signal is 0 ， the data_out_f 
signal will retrieve the granted master from the FIFO 
buffer and  stored it in the grant register. 
 

 
Fig 12. Circuit Functional block of FCFS algorithm 
 
The random access algorithm is implemented using a 
random number generator and a comparator as 
illustrated in Fig. 13. The random number generator 
is implemented by linear feedback shift register 
approach. Each master will be assigned a random  
 

Fig 13. Circuit Functional block of ramdom access 
algorithm 
 
number. The master with the maximum random 
number is granted from the comparator output.  
The hardware description language verilog is then 
used for digital circuit design including fixed priority, 
round robin, first come first serve and random access 
algorithms. The reconfigurable arbiter was 
synthesized using Altera’s Quartus II 4.2, which is an 
integrated environment for logic design and synthesis. 
After finishing the verilog simulation, we download 
the program into EPF10K100ARC240-1chip. An 
8051 microcontroller was used to drive the test signal 
into the chip. The arbiter can be reconfigured many 
times by modifying the program code for the 8051 
microcontroller, and, thus, can be changed and 
updated real-time. The Tektronix logic analyzer is 
connected to the FPGA pins to check the 
functionality of the reconfigurable arbiter. Fig. 14 
shows the reconfigurable arbitration state (12341) 
measured by the logic analyzer. 
 

 
Fig. 14 Verification of 12341 configuration by logic 
analyzer 
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The synthesized verilog files are simulated in 
ModelSim. A Logic Synthesis System converts a 
description of the reconfigurable arbiter circuit into 
an interconnection of logic gates (a gate-level net-
list). In this study, the RTL model of the 
reconfigurable arbiter is synthesized to gate-level 
using Synopsys Design Vision with TSMC 0.18 

mµ technology file. In order to provide a fast 
evaluation of the energy impact of various arbitration 
states, the switching activities are then used by 
Synopsys PrimePower for power calculation. The 
same RTL model is also used and mapped into 
Xilinx Vitrex and Altera Straitx GX development 
tools. Fig. 15 shows the synthesis and power 
calculation flow. 
 

 
 
Fig. 15  Synthesis and power calculation flow 
 
  Table 4 shows the FPGA implementation 
results of the reconfigurable arbiter for single layer 
share bus system.  Table 5 lists the area and power 
performance summary of the design complier report 
based on TSMC 0.18 mµ  technology file. The 
Synopsys Synthesis tool, Design Vision, is used to 
generate a synthesized net-list of the reconfigurable 
arbiter as shown in Fig. 16. 
 
Table 4 FPGA Implementation Results 
 

Xilinx VirtexE XCV2000e-
BG560 

Atera StratixGX 
EP1SGX25CF672C5 

Delay 
(ns) 

Slice 
Flip 

Flops 

4 input 
LUTs 

Delay 
(ns) 

Logic 
elements 

16.758 657 1153 9.286 1108 

Table 5 Design Complier Report 
 

Combinational area (µ㎡) 28956.04883 
Noncombinational area (µ㎡) 36467.35547 
Net Interconnect area (µ㎡) 882564.1875 

Total cell area (µ㎡) 65423.63672 
Total area (µ㎡) 947987.8125 

Cell Internal Power (mW) 3.9 
Net Switching Power  (mW) 2.9415 
Total Dynamic Power (mW) 6.8415 
Cell Leakage Power  (µW) 2.0263 

NAND2X1 : 5.04 µm (height) x 1.98 µm (width) 
 

 
 
Fig. 16 Synthesized net-list of the reconfigurable 
arbiter  
 
The power performance of the reconfigurable arbiter 
under various configuration schemes for TSMC 
0.18 mµ  technology is shown in Fig. 17. 
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Fig. 17 Power performance at various reconfigurable 
arbitration states 
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Table 6 listed the power analysis of the 
reconfigurable arbiter obtained by PrimePower 
simulation at various arbitration states. It can be seen 
the maximum total power is 59.92 Wµ  for 
arbitration state (32332) in the shared bus system. 
The minimum power is 47.73 Wµ  for arbitration 
state (11111) configuration.  
 
Table 6 Power Analysis Report 
 

Arbitration State Total Power 

33432 57.66 
32332 59.92 
42232 54.69 
21323 57.7 
12213 53.72 
43244 57.14 
43241 54.41 
12334 59.67 
14134 56.13 
31411 51.39 
42121 49.73 
11111 47.73 
22222 50.24 
33333 55.67 
44444 55.67 

Power (uW) 1: Priority   2: Round-Robin  3: FCFS  4. Random Access 

 

7.   Conclusion  

The arbiter with hybrid arbitration algorithm for 
single layer shared bus system is presented in this 
study. The simulation results not only provide 
performance analysis for the various combinations of 
the arbitration algorithms. The gate-level power 
analysis is also applied to explore power dissipation 
in various reconfigurable arbiter architectures. These 
results can be feed into the reconfigurable arbiter to 
obtain the optimal condition under different system 
workloads. The reconfigurable arbiter can be 
custom-tuned to obtain high bandwidth utilization, 
low latency, and power effective for on-chip bus 
communication. The results obtained show that the 
framework of the reconfigurable arbiter can be used 
to explore the space of possible configurations to 
evaluate the performance/power trade-off. In 
addition, the present study indicates the designers 
may implement a fixed-priority scheme or a more 
complex round-robin or adaptive arbitration 
mechanism, depending on the real time requirements. 
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