
Design and Performance Analysis of A Reconfigurable Arbiter

Yu-Jung Huang, Ching-Mai Ko, and Hsien-Chiao Teng

Department of Electronic Engineering
I-Shou University,

Kaohsiung, Taiwan, ROC
 email: yjhuang@isu.edu.tw

Abstract: - This paper presents the design and performance analysis of an arbiter with a hybrid arbitration
algorithm. The hybrid arbitration algorithm contains static fixed priority algorithm in conjunction with dynamic
algorithm to gain better system performance is described. The performance analysis for the various
combinations of the arbitration algorithms under different traffic loads is simulated. The results indicate a better
performance can be achieved as compared with the traditional arbitration assignment scheme. Based on the
performance analysis, the hybrid arbitration can be custom-tuned to meet the design requirements. The
implementation of the arbiter with hybrid arbitration scheme for system on chip applications is also explained.
The reconfigurable arbiter was implemented by FPGA and synthesized by Synopsys Design Complier with a
TSMC 0.18 mµ cell library. In addition, the power analysis of the reconfigurable arbiter at various arbitration
states is reported. The reconfigurable arbiter can be custom-tuned to obtain high bandwidth utilization, low
latency, and power effective for on-chip bus communication.

Key Words:-Arbiter, Reconfigurable, System-on-chip, Arbitration Algorithm, FPGA, AMBA

1. Introduction

A typical System-on-Chip (SOC) design contains
many heterogeneous cores linked together with
sophisticated on-chip bus communication
architectures. The on-chip bus communication
architecture determines the way these heterogeneous
functional units are exchanging and synchronizing
data and has a great impact on the system’s
performance [1]. The SOC design paradigm relies on
well-defined interfaces and reuse of intellectual
property (IP). Because more and more IPs are
integrated into the design platform, the amount of
communication between the IPs is on the increase
and becomes the source of the performance
bottlenecks. The arbiter plays a very important role
to manage the resource sharing on the SOC platform.
On-chip bus communication is one of the critical
components in a SOC platform. An efficient on-chip
communication system has to satisfy the interface
behavior of each IP block integrated within the
complex SOC. With the increasing number of system
components in SOC design, it becomes that an
efficient arbiter is one of the most critical factors for
high system performance. The conventional bus
arbitration algorithms, the static fixed priority and

the round robin, show several drawbacks on bus
communication such as bus starvation [2].

Most existing buses have their own particular
bus protocol. However, currently there exists no
system bus standardization and communication
architectures defined by commercial standards are
widespread and available in the market. For example,
the PI-Bus [3] of OMI, the AMBA bus [4] of ARM,
the FISPbus [5] of Mentor Graphics, the
CoreConnect of IBM [6], the SiliconBackplane of
Sonics [7], the Wishbone of Silicore [8] and others.
The CoreConnect and AMBA make use of a fixed
priority arbiter. Lotterybus defines an arbitration
method that does not presume any fixed
communication topology [9]. Silicon Backplane uses
an arbitration method by means of TDMA-based
arbitration. Based on the AMBA AHB protocol and a
more complex interconnection matrix, the Multi-
layer AHB is a different realization of the bus
architecture, which enables data transfers between
several masters and slaves in a system [10].
Although the arbitration protocol is fixed, the choice
of an arbitration scheme is usually depending on the
application requirements.
Arbiter performances are extremely important in a
platform-based design. System Level analysis of
arbiter performances gives important information for
the analysis and choice between different

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 132 Issue 4, Volume 5, April 2008

architectures driven by functional, timing and power
constraints of the System-on-Chip. Lahiri et al. use
the performance analysis technique presented in [11]
which can be efficiently analyzed to determine
system critical paths, average processing time,
number of missed deadlines, etc. Massimo Conti et al.
[12] present the effect of different arbitration
algorithms and bus usage methodologies on the bus
AMBA AHB performances in terms of effective
throughput and power dissipation. The arbitration
algorithms used in their analysis are first priority and
short job first algorithms. Their results indicate the
arbitration algorithm have a strong influence on the
switching activity of the control signals. Francesco
Poletti et al. [13] analyze the impact on
multiprocessor SOC performance of different bus
arbitration policies under different communication
patterns, showing the distinctive features of each
policy and the strong correlation of their
effectiveness with the communication requirements
of an application.

 In this paper, the implementation of a
reconfigurable arbiter with hybrid arbitration
algorithm is proposed. By implementing an efficient
arbitration algorithm the system performance can be
tuned to better suite the applications. This paper
presents the design and implementation of an arbiter
with a reconfigurable hybrid arbitration algorithm.
The rest of this paper is organized as follows. An
overview of AMBA on-chip bus is presented in the
next section. The architecture design of the
reconfigurable arbiter is presented Section 3. The
performance analysis methodology is described in
Section 4. The simulation and implementation results
are provided in Section 5 and Section 6, respectively.

2. Overview of AMBA On-Chip Bus

The most frequently used on-chip interconnect
architecture is the shared medium arbitrated bus,
where all communication devices share the same
transmission medium. The bus used in the SOC
platform requires an arbitration process since
multiple components connected to it can act as
masters and hence initiate a transaction. The
Advanced Microcontroller Bus Architecture (AMBA)
is an open System-on-Chip bus protocol for high-
performance buses on low-power devices. Three
distinct buses are defined within the AMBA
specification, including the Advanced High-
performance Bus (AHB), the Advanced System Bus
(ASB), and the Advanced Peripheral Bus (APB) [4].
Fig.1 shows the AMBA AHB Bus Arbiter/Decoder
system. The APB is meant for connecting off-chip

peripherals, whereas ASB and AHB are basically
designed for on-chip interconnection between
microprocessors, memory and peripheral modules.
The standard AHB implementation provides fast
communication between several master and slave
modules; it is capable of pipelined operations, burst
transfers and split transactions. There is a central
arbiter for granting the masters access to the bus and
a decoder which selects the active slave.

Fig. 1 A typical AMBA architecture

The AMBA AHB Bus Arbiter/Decoder contains
sixteen programmable address registers- one address
register per slave. These registers hold the base
address and size of each slave’s address space. The
sixteen AMBA bus masters are master 0 through
master 15. The connection between master and slave
is realized by multiplexors instead of e.g. tri-state
busses. The interconnections of multiplexor, decoder
and arbiter are illustrated in Fig. 2.

Fig. 2 Interconnection network for the AMBA AHB

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 133 Issue 4, Volume 5, April 2008

The arbiter monitors the AMBA bus for requests and
chooses the master with highest priority request as
the next AMBA bus transaction master. A bus master
asserts a LOCK signal to the bus arbiter to make
multiple transactions indivisible. The arbiter must
observe the state of the LOCK signal from the
currently active bus master before granting access to
another bus master. If there are no requests, the
default master is chosen as the master to drive the
next AMBA Bus transaction. The decoder block
monitors the transaction address and decodes it by
matching it to the slave base addresses stored in the
registers. If the decoder encounters an address that
does not match any of the slave address ranges, the
default slave is chosen as the transaction target.
The transfer can be a burst transfer in AMBA. Bus
burst operation may be of arbitrary length and may
be broken down into smaller packets. The arbiter
may constrain burst lengths to meet critical interrupt.
Two major categories of AHB burst operation are
incrementing burst and wrapping burst. For
incrementing burst, the address for each transfer is
incremented by the transfer size. For A four-beat
wrapping burst, it indicates that this is a burst
transfer of length 4 with address wrapping. The
transfer size can be 8, 16 … to 1024 bits.
For RETRY, the arbiter uses the normal priority
scheme. For SPLIT, the arbiter adjusts the priority
scheme so that any other master requesting the bus
will get access even if it is a lower priority. The
SPLIT response causes the arbiter to grant other
masters the use of the bus. For SPLIT, the arbiter
adjusts the priority scheme so that any other master
requesting the bus will get access even if it is a lower
priority. The arbiter must be informed when the slave
can have the data available. The arbiter re-grants
these masters. A higher priority master will be
granted for retry. A master may be granted the bus
several times before it finally completes the transfer.
Request and acknowledge handshake signals support
the arbitration signaling for each bus master.

In summary, the AHB is a pipelined system
backbone bus, designed for high-performance
operation. The bus supports multiple bus masters, all
of which communicate in a unified manner with
slave devices. It can support up to 16 bus masters
and slaves that can delay or retry on transfers. It
consists of masters, slaves, an arbiter and an address
decoder. It supports burst and split transfers. The
address bus can be up to 32 bits wide, and the data
buses can be up to 128 bits wide. The arbitration
scheme is centralized. Masters must request the bus
using a centralized arbiter; the arbitration protocol
for each master is strictly defined, but the arbitration
priority is left to the designer. By specifying the

arbitration protocol rather than the arbitration scheme
itself, all decisions about priorities becomes a system
design issue to suit the application constraints.

3. Reconfigurable Arbiter Architecture

The AMBA uses conventional fixed priority arbiter.
Fig. 3 shows the architecture of the reconfigurable
arbiter presented in this work. As shown in Fig. 3,
this reconfigurable arbiter can serve up to a
maximum 16 masters and all of them are divided into
four groups F1-F4 for the first level competition.
According to different arbitration algorithms
assigned in F1 ~ F4 blocks, each block will select
one master from four input masters for the second
level competition. The final granted master will then
be determined by the arbitration algorithm chosen in
block 5. In Fig. 3, each group (F1 ~ F5) can be
reconfigurable to adapt a specific dynamic algorithm.
For example, either one of the round-robin algorithm,
random access algorithm or first-come-first-serve
algorithm can be combined together to decide the
functionality of the reconfigurable arbiter.
With the reconfigurable functionality, it can assign
different arbitration algorithms for specific groups of
masters. In the following, each block (F1 ~ F5) will
be assigned a number to denote the status of the
reconfigurable arbiter. The notation 1, 2, 3, and 4 are
used to represents fixed priority, round robin, first
come first serve and random access algorithm,
respectively. For example, the arbitration state
(12141) denotes the fixed priority algorithm is
assigned to functional blocks F1, F3 and F5, round
robin algorithm is assigned to functional block F2,

Fig. 3 Architecture of the reconfigurable arbiter

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 134 Issue 4, Volume 5, April 2008

and random access algorithm is assigned to
functional block F4, respectively.
The function of reconfiguration controller is shown
in Fig. 4 and briefly described as follows. Each block
F1 to F5 shown in Fig. 3 can be assigned different
algorithms by the arbitration selection signal. The
arbitration selection signal is user defined and can be
used to change the algorithmic states of each block
F1 to F5. Table 1 listed the reconfiguration input to
blocks F1 to F5. Various arbitration algorithms can
be assigned based on the choice of the
reconfiguration input set by the reconfiguration
controller. When the choice is "00", a fixed priority
algorithm is assigned at the designated blocks. "01"
is round robin algorithm, "10" is first come first
serve algorithm, and "11" is random access algorithm,
assigned to the designated blocks.

Table 1 The controller signals of the reconfigurable

arbiter

Input Arbitration Selection Algorithm

00 Enable Fix-Prtority Arbitration

01 Enable Round Robin Arbitration

10 Enable FCFS Arbitration

11 Enable Random Access Arbitration

4. System Performance Analysis

Since the arbitration efficiency is specific to the input
stimuli used, it is important to characterize the traffic
pattern in terms of parameters that are not tied to any

specific sequence of input stimuli. The efficiency of
the hybrid arbitration algorithm is examined by a
proposed system performance analytical module.
 The simulation strategy for performance analysis of
the arbiter with hybrid arbitration schemes is divided
into two parts: Traffic Pattern Generation (TPG) and
Arbitration Simulator Generation (ASG) as shown in
Fig. 5. The traffic patterns are generated based on the
statistic distribution such as Bernoulli, Binomial,
equilikely, Geometric, Pascal, Possion, Uniform,
Exponential, Erlang, Normal, lognormal,
Chisquare … etc. The simulations in this paper are
based on the TPG which assign various distributions
to indicate the data amount and bus request time for
each master. For ASG, a behavior bus arbiter model
based on Fig. 3 is used to take into account the effect
of the shared bus communication architecture on
system performance. The hybrid arbitration behavior
including the fixed priority, round robin, first come
first serve, and random access are implemented using
C language and can be reconfigurable to obtain
various arbitration states.

Fig. 5 System performance analytical module

The status parameters and the output of the system
performance analysis are described in details as
follows:
a. Waiting time: Wait time measures the time that a

transaction has waited since it made a bus
request. A long wait time implies a higher
likelihood due to the need to prevent a master
from being starved. Conversely, a short wait time
implies a lower likelihood. The wait time is
incremented at the end of an arbitration cycle if

Fig 4. Functional block of reconfigurable arbitration

algorithms

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 135 Issue 4, Volume 5, April 2008

the request is not acknowledged. The wait time is
reset when a request is granted.

b. Grant rate: A bus request signal needs to be
generated by the master, and the bus can be
accessed upon reception of the bus grant signal
from the arbiter. A proper algorithm for
arbitrating a bus grant among a plurality of
master devices for access to a shared bus is very
important for system performance. The master
grant rate is obtained by calculating the ratios of
the number of granting bus utilization to the
number of requesting a data transfer by one of
the master devices.

c. Throughput: Throughput is the number of bits
transmitted per second through a communication
system. Throughput varies over time with traffic
and congestion. Throughput is based on many
factors, such as the total number of masters, the
data transfer size, …etc. A point that is often
overlooked when testing for throughput
performance is the actual arbitration algorithm
being used. For present study, the reconfigurable
arbiter is very flexible, it can define different
arbitration algorithm and able to deal with
variations in performance.

d. Power analysis: In a System on Chip, the bus
lines capacitance has an order of magnitude
bigger than transistor gate capacitances. Many
techniques, especially of bus encoding have been
studied to reduce bus switching activity [141.
Power dissipation analysis should be performed
in the first phases of the design when some good
ideas on power dissipation can drive the choice
between different arbitration algorithms, together
with the requested functional and timing
specifications of different implementation
technologies.

The reconfigurable hybrid arbitration algorithms can
be achieved by assigning different arbitration
algorithms into functional blocks F1 – F5. To study
the effects of the various reconfigurable arbitration
schemes, the performance analysis are further
simulated based on various permutations of
arbitration algorithms for blocks F1 ~ F5 under the
same traffic distribution pattern. For the evaluation of
relative performances of different configuration states,
the average waiting time, bus granted rate, throughput,
bus utilization can then be calculated. An example of
the system initial condition and the results of the data
transfer for the arbitration state (23235) is listed at
Table 2.

Table 2 Evaluation of System Performance
Analytical Module

Bus request time distribution: Bernoulli probability: 0.5
Data transfer distribution: Equilikely mean:12 variance:6.67
Arbitration algorithm :F1:1,F2:1,F3:1,F4:1,F5:1
Data transfer width:32bits
Transfer cycle:16
M0_data:1.75KB、M1_data:1KB、M2_data:1.875KB、
M3_data:1KB、M4_data:1.375KB、M5_data:1.125KB、
M6_data:1.5KB、M7_data:1KB、M8_data:1.125KB、
M9_data:1.125KB、M10_data:1.875KB、
M11_data:1.875KB M12_data:1.125KB、
M13_data:1.25KB、M14_data:1.125KB、
M15_data:1.25KB

 Average waiting
time

Time of completing
data transfer

Master0 1211.857178 2187
Master1 3819.625000 4014
Master2 2065.800049 2893
Master3 1754.500000 1897
Master4 226.500000 1035
Master5 3795.611084 4320
Master6 5942.750000 6226
Master7 3370.562500 4179
Master8 3600.166748 5359
Master9 519.500000 664

Master10 2703.766602 3723
Master11 5042.700195 5646
Master12 3241.000000 3394
Master13 5663.000000 6251
Master14 1188.500000 1333
Master15 4522.500000 4704

5. Simulation Results

.
In our work, we use performance analytical module
described in previous section as a basis for
evaluating communication events at different
arbitration states. The simulation results can be
analyzed to examine the impact of individual (or
groups of) communication events on the system’s
performance and identify the effects of arbitration
algorithm on the system performance. Since bus
loading limits the system performance, the traffic
pattern will generate different statistic distribution to
represent the data amount and bus request time
issued from the individual master. Therefore, in
addition to identifying the correlation between the
communication events and states of arbitration
algorithm, we can also apply different traffic pattern
to correlate the system performance to arbitration
state and data it is processing. If an analysis of the

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 136 Issue 4, Volume 5, April 2008

simulation result reveals that the occurrence of a
critical data-transfer is highly correlated to a specific
arbitration algorithm in the behavior of the
component executing the data transfer, the
assignment of the specific algorithm might be used
as a predictor for the criticality of the data transfers
generated by the component. The following example
examines some tradeoffs in designing these
predictors.

The grant rate and average waiting time are
simulated based on 1024 permutations of arbitration
algorithms for blocks F1 ~ F5 under the same traffic
distribution pattern. The request time adopts
Bernoulli distribution and the probability is 0.5. The
amount of traffic data adopts Equilikely distribution,
the mean is 12 and the variance is 6.67. The data
transmission rate is 32 bit/s, and the period is 16
clock cycles. Results of the software modeling for
average waiting time at various combinations of the
arbitration algorithm in function block F1 to F5 are
reported in Fig. 6. The x-axis depicts all the possible
arbitration combinations where 1, 2, 3, and 4
represent fixed priority, round robin, first come first
serve and random access algorithm, respectively.
From Fig. 6, it shows that the hybrid arbitration
algorithm has a predictable average waiting time. So,
user can assign the optimal combination for the
application specific tasks. It also shows that the
hybrid arbitration scheme with a proper assignment
of the arbitration algorithm to F’s functional blocks
can achieve better performance as compared to
traditional arbitration schemes such as fixed priority
and round robin.

Fig. 6 Average waiting time under hybrid arbitration

0

10

20

30

40

50

60

70

80

90

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

A
ve

ra
ge

 G
ra

nt
-R

at
e

(%
)

11111

22222

33333

44444

21133

Fig. 7 Grant rates of Master 1 to 15 at different

arbiter configuration states

The grant rates of Master 1 to 15 at different
arbiter configuration states are shown in Figs. 7.
From the average grant rate shown in Fig. 5, the
starvation occurs for low priority master (master 15)
under fixed priority arbitration scheme. A lower
priority master wanting to use a shared resource gets
blocked when a higher priority master holds the
resource. However, this starvation issue can be
resolved by reconfiguring the arbitration state. As
indicated in Fig. 7, master 15 can obtain 53 % grant
rate with arbitration state 44444, 51% grant rate with
arbitration state 21133, and 49% grant rate with
arbitration state 33333, which is much better than the
arbitration state 11111.

0

2000

4000

6000

8000

10000

12000

14000

16000

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

A
v
g
.
W
ai
ti
n
g
 T
im
e
(s
)

21241

11111

22222

33333

44444

 Fig. 8 Average waiting time of Master 1 to 15
at different arbiter configuration states

Average waiting time of Master 1 to 15 at

different arbiter configuration states is shown in Fig.
8. As shown in Fig. 8, the average waiting time of
arbiter configuration state 21241 is much shorter as
compared with conventional round robin arbitration

0

1000

2000

3000

4000

5000

6000

33421
33422
33423
33424
33431
33432
33433
33434
33441
33442

33443
33444
43321
43322
43323
43324
43331
43332
43333
43334
43341
43342
43343
43344

A
vg

 w
ai

tt
in

g
 t

im
e

 o
n

 c
lo

ck
 c

y
cl

e

‧ ‧ ‧

Arbitration Assignment to F1~F5

‧ ‧ ‧

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 137 Issue 4, Volume 5, April 2008

scheme. The longest waiting time is obtained when
the arbiter configuration is 22222. The arbitration
state 21241 can gain the shortest average waiting
time, which is better than the conventional fixed
priority arbitration scheme.
Shared buses are very commonly used to facilitate
communication between the various system
components. In order to speed efficient transmission
of larger bursts of data, bus protocols may also
provide a direct memory access (DMA) or block
transfer mode. A master is granted the right to use
the bus for multiple bus cycles. Fig. 9 shows the
system performance of the effect of block size on
different arbitration configuration. The block size
c16b32 denotes in the x-axis of Fig. 9 indicating the
data transmission rate is 32 bit/s, and the period is 16
clock cycles. The worst case occurs when the
arbitration configuration is set to be 43332 for F1~F5
block and the block size is chosen to be 16x32 bits/s.
The best performance is obtained by 32314
assignment state and the block size is 32x64 bits/s.

31344 33424 34344

31434 32314

13332 43332 23332

23332 13332

0

1000

2000

3000

4000

5000

6000

c8b32
c16b32
c32b32
c8b64
c32b64

c8b32
c16b32
c32b32
c8b64
c32b64

Block Size

A
vg

 w
ai

tt
in

g
 ti

m
e

Best Case Worst Case

Fig. 9 Block size effect for various arbitration

scheme

Simulation tests using normal distribution for data

amount and exponential distribution for master request
are conducted for 1000 times and results are average
out. Based on 1024 permutations of arbitration
algorithms for blocks F1 ~ F5 under the same traffic
distribution pattern, Table 3 shows the simulation
results of the grant rate and through put at various
configurations. For the present case study, it
indicates that the reconfigurable arbiter with 22221
configuration has the best bus utilization rate, 13431
configuration has the best average grant rate, 22221
configuration has the best throughput performance.

Table 3 Simulation results of the performance
analysis at various configuration schemes

6. Implementation Results

To describe clearly the architecture of the proposed
reconfigurable arbiter, we present the hardware
architectures for fixed priority, round-robin, first
come first serve, and random access, respectively.
The functional block of the fixed priority is depicted
in Fig. 10. The request signals of Master 0 (M0),
Master 1 (M1), Master 2 (M2), and Master 3 (M3)
are assigned to BUSREQ0, BUSREQ0, BUSREQ0
and BUSREQ0, respectively. Then, the priority order
is assigned to M0 > M1 > M2 > M3, where M0 owns
the highest priority. The granted signals Grant0,
Grant1, Grant2, and Grant3 are for M0, M1, M2, and
M3, respectively.

Fig. 10 Circuit Functional block of fixed priority

algorithm

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 138 Issue 4, Volume 5, April 2008

Fig 11. Circuit Functional block of round robin
algorithm

The implementation of a round robin is shown in Fig.
11. A round-robin arbiter consists of a point
controller, a timer, a demultiplexer, and a grant
register to memorize the granted master. The point
controller will point to each master to check the bus
request signal. If the master requests the use of the
bus, the address of the master will be demultiplexed
and store at the grant register. The hardware of the
FCFS algorithm is shown in Fig. 12. It contains a
FIFO stack counter, a priority sorting controller, a
FIFO buffer, and a grant register. The FIFO is full
when the FIFO stack counter reaches a
predetermined full value and the FIFO is empty
when the FIFO stack counter is zero. When
FIFO_write_enable signal is 0 ， the data_out_f
signal will retrieve the granted master from the FIFO
buffer and stored it in the grant register.

Fig 12. Circuit Functional block of FCFS algorithm

The random access algorithm is implemented using a
random number generator and a comparator as
illustrated in Fig. 13. The random number generator
is implemented by linear feedback shift register
approach. Each master will be assigned a random

Fig 13. Circuit Functional block of ramdom access
algorithm

number. The master with the maximum random
number is granted from the comparator output.
The hardware description language verilog is then
used for digital circuit design including fixed priority,
round robin, first come first serve and random access
algorithms. The reconfigurable arbiter was
synthesized using Altera’s Quartus II 4.2, which is an
integrated environment for logic design and synthesis.
After finishing the verilog simulation, we download
the program into EPF10K100ARC240-1chip. An
8051 microcontroller was used to drive the test signal
into the chip. The arbiter can be reconfigured many
times by modifying the program code for the 8051
microcontroller, and, thus, can be changed and
updated real-time. The Tektronix logic analyzer is
connected to the FPGA pins to check the
functionality of the reconfigurable arbiter. Fig. 14
shows the reconfigurable arbitration state (12341)
measured by the logic analyzer.

Fig. 14 Verification of 12341 configuration by logic
analyzer

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 139 Issue 4, Volume 5, April 2008

The synthesized verilog files are simulated in
ModelSim. A Logic Synthesis System converts a
description of the reconfigurable arbiter circuit into
an interconnection of logic gates (a gate-level net-
list). In this study, the RTL model of the
reconfigurable arbiter is synthesized to gate-level
using Synopsys Design Vision with TSMC 0.18

mµ technology file. In order to provide a fast
evaluation of the energy impact of various arbitration
states, the switching activities are then used by
Synopsys PrimePower for power calculation. The
same RTL model is also used and mapped into
Xilinx Vitrex and Altera Straitx GX development
tools. Fig. 15 shows the synthesis and power
calculation flow.

Fig. 15 Synthesis and power calculation flow

 Table 4 shows the FPGA implementation
results of the reconfigurable arbiter for single layer
share bus system. Table 5 lists the area and power
performance summary of the design complier report
based on TSMC 0.18 mµ technology file. The
Synopsys Synthesis tool, Design Vision, is used to
generate a synthesized net-list of the reconfigurable
arbiter as shown in Fig. 16.

Table 4 FPGA Implementation Results

Xilinx VirtexE XCV2000e-
BG560

Atera StratixGX
EP1SGX25CF672C5

Delay
(ns)

Slice
Flip

Flops

4 input
LUTs

Delay
(ns)

Logic
elements

16.758 657 1153 9.286 1108

Table 5 Design Complier Report

Combinational area (µ㎡) 28956.04883
Noncombinational area (µ㎡) 36467.35547
Net Interconnect area (µ㎡) 882564.1875

Total cell area (µ㎡) 65423.63672
Total area (µ㎡) 947987.8125

Cell Internal Power (mW) 3.9
Net Switching Power (mW) 2.9415
Total Dynamic Power (mW) 6.8415
Cell Leakage Power (µW) 2.0263

NAND2X1 : 5.04 µm (height) x 1.98 µm (width)

Fig. 16 Synthesized net-list of the reconfigurable
arbiter

The power performance of the reconfigurable arbiter
under various configuration schemes for TSMC
0.18 mµ technology is shown in Fig. 17.

0

10

20

30

40

50

60

70

11
11
1

42
12
1

22
22
2

31
41
1

12
21
3

43
24
1

42
23
2

33
33
3

44
44
4

14
13
4

43
24
4

33
43
2

21
32
3

12
33
4

32
33
2

Reconfigurable Arbitration State

P
ow
er
 (
uW
)

Fig. 17 Power performance at various reconfigurable
arbitration states

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 140 Issue 4, Volume 5, April 2008

Table 6 listed the power analysis of the
reconfigurable arbiter obtained by PrimePower
simulation at various arbitration states. It can be seen
the maximum total power is 59.92 Wµ for
arbitration state (32332) in the shared bus system.
The minimum power is 47.73 Wµ for arbitration
state (11111) configuration.

Table 6 Power Analysis Report

Arbitration State Total Power

33432 57.66
32332 59.92
42232 54.69
21323 57.7
12213 53.72
43244 57.14
43241 54.41
12334 59.67
14134 56.13
31411 51.39
42121 49.73
11111 47.73
22222 50.24
33333 55.67
44444 55.67

Power (uW) 1: Priority 2: Round-Robin 3: FCFS 4. Random Access

7. Conclusion

The arbiter with hybrid arbitration algorithm for
single layer shared bus system is presented in this
study. The simulation results not only provide
performance analysis for the various combinations of
the arbitration algorithms. The gate-level power
analysis is also applied to explore power dissipation
in various reconfigurable arbiter architectures. These
results can be feed into the reconfigurable arbiter to
obtain the optimal condition under different system
workloads. The reconfigurable arbiter can be
custom-tuned to obtain high bandwidth utilization,
low latency, and power effective for on-chip bus
communication. The results obtained show that the
framework of the reconfigurable arbiter can be used
to explore the space of possible configurations to
evaluate the performance/power trade-off. In
addition, the present study indicates the designers
may implement a fixed-priority scheme or a more
complex round-robin or adaptive arbitration
mechanism, depending on the real time requirements.

Acknowledgments
This research was partially supported by National

Science Council, R. O. C., under Grant NSC96-
2221-E-214-068.

References
[1] K. Lahiri, A. Raghunathan, and G.

Lakshminarayana, “LOTTERYBUS: a new
high-performance communication architecture
for system-on-chip designs”, Proceedings of the
38th conference on Design automation, p.15-20,
June 2001, Las Vegas, Nevada, United State

[2] YJ Huang, YH Chen, CK Yang, and SJ Lin,
"Design and Implementation of A
Reconfigurable Arbiter," 7th WSEAS Int. Conf.
on SIGNAL, SPEECH AND IMAGE
PROCESSING (SSIP '07), Beijing, China,
2007

[3] Open Microprocessor systems Initiative,
DRAFT STANDARD OMI 324: PI-Bus Rev.
0.3d, 1994.

[4] Advanced RISC Machines Ltd (ARM). AMBA
Specification (Rev.2.0), ARM IHI 0011A.
http://www.arm.com/products/solutions/AMBA
Spec.html.

[5] http://www.mentor.com
[6] http://www01.ibm.com/chips/techlib/techlib.nsf/p

roductfamilies/CoreConnect_Bus_Architecture
[7] “Sonics Integration Architecture, Sonics Inc.”

Available: http://www.sonicsinc.com.
[8] W. Peterson. Design Philosophy of the

Wishbone SoC Architecture. In Silicore
Corporation, 1999. Available:
http://www.silicore.net/wishbone.htm.

[9] K. Lahiri , A. Raghunathan , and G.
Lakshminarayana, “ The Lotterybus on-chip
communication architecture”, IEEE Trans. on
Very Large Scale Integration (VLSI) Systems,
Vol. 14, No. 6, 2006, pp. 596 – 608.

[10] www.arm.com/pdfs/DVI0045B_multilayer_ahb
_overview.pdf

[11] K. Lahiri , A. Raghunathan and S. Dey,
“System-level performance analysis for
designing on-chip communication
architectures,” IEEE Trans. Computer-Aided
Design, vol. 20, June 2001, pp. 768–783

[12] M. Conti, M. Caldari, G. B. Vece, and S.
Orcioni, C. Turchetti, “Performance analysis of
different arbitration algorithms of the AMBA
AHB bus”, Design Automation Conference,
2004. Proceedings. 41st ,2004, pp. 618 – 621

[13] F. Poletti, D. Bertozzi, L. Benini and A.
Bogliolo, “Performance Analysis of Arbitration
Policies for SoC Communication
Architectures”, Design Automation for
Embedded Systems, Vol. 8, Numbers 2-3, 2003

[14] G. Ascia, V. Catania, M. Palesi, A. Parlato,
“ Switching activity reduction in embedded
systems: a genetic bus encoding approach”,
Computers and Digital Techniques, IEE
Proceedings - Volume 152, Issue 6, 4 Nov.
2005, pp. 756 – 764

WSEAS TRANSACTIONS on ELECTRONICS Yu-Jung Huang, Ching-Mai Ko
 and Hsien-Chiao Teng

ISSN: 1109-9445 141 Issue 4, Volume 5, April 2008

