
Synthesis of Multi-Level Dual Reed-Muller Forms

KHALID FARAJ
Computer Science

Wajdi Institute of Technology

Jerusalem, Mount of Olives. P.O. Box 19014

Palestine

kfaraj@wit.edu.ps http://www.wit.edu.ps

Abstract: - This paper introduces the fundamental theory, algorithms, and terminology regarding synthesis of multi-

level Dual Reed-Muller expressions. The increasing interest in using Dual Reed-Muller expressions as a way of

representing and manipulating switching functions, and as a mean of designing circuits based on OR/XNOR gates has

led to this research. Up to present there are only two-level Dual Reed-Muller minimization algorithms in use, although

the need for multi-level minimization algorithms has been recognized. A new theory and algorithms for multi-level

Dual Reed-Muller minimization have been developed. It introduces a Dual Reed-Muller factored form and uses

algebraic algorithms for factorization decomposition, re-substitution, and extraction of common cubes and sub-

expressions.

Key-Words: - Multi-level Dual Reed-Muller forms, factorization, decomposition.

1 Introduction
The increasing complexity of chip designs and the

continuous development of smaller size fabrication

processes present new challenges to the existing tools.

Future synthesis tools are required to handle millions of

gates in a realistic time. Computer-Aided Design (CAD)

tools became critical for design and verification of Very

Large Scale Integrated (VLSI) digital circuits. Since

most of the research has focused on developing

algorithms for AND/OR or NAND/NOR circuits. An

alternative description of a Boolean function is Reed-

Muller expansion [1, 2]. It employs modulo-2 arithmetic

and is also unique and canonical for a given Boolean

function. The application of XOR/AND and XNOR/OR

gates has some advantages over other implementations.

In practice, it is well known that many useful circuits

such as arithmetic units and parity checkers are heavily

XOR oriented and it is more economical to implement

their modulo-2 expressions [3-6]. Some authors [7, 8]

even conjecture that it is generally more economical to

base logic design on modulo-2 expressions rather than

conventional OR expressions. Recent progress in circuit

technology makes the use of OR/XNOR gates feasible,

especially with the development of the new technologies

and the arrival of various programmable gate array

(FPGA) devices. A major other characteristic of the

XNOR logic is the numerous possible canonical

representations of switching functions it provides.

There are several kinds of OR/XNOR circuits. The

FPDRM is one of the canonical OR/ XNOR expressions.

FPDRMs are a generalization of Positive Polarity Reed-

Muller expressions (PPDRM). A PPDRM is unique for a

completely specified function, is an OR/XNOR

expressions with only un-complemented (positive)

literals. Each variable in the FPDRM can appear either

in un-complemented or complemented form but not

both. For an n-variable completely specified Boolean

function there are 2
n
 distinct FPDRMs. There are

techniques for converting from POSs to PPDRM or

FPDRM [9-13].

In the domain of combinational logic synthesis, logic

minimization plays a vital role in determining the area

and performance of the synthesized circuit. Logic

minimization based on product of sum (POS) using OR-

AND gates is a well studied area. However,

minimization based on fixed polarity Dual Reed-Muller

(FPDRM) using OR-XNOR gates has received relatively

lesser attention. The problem of finding a FPDRM of the

given Boolean function with the minimum number of

cubes has both theoretical and practical value. From the

theoretical point of view OR-XNOR is the most general

Dual Reed-Muller form. From the practical point of

view, XNOR gates and OR-XNOR have numerous

applications in logic synthesis. In particular, it has been

shown that the OR-XNOR representation of Boolean

functions is typically more compact than the POS

representation. Multilevel realizations are the preferred

means of implementing combinational circuits in very

large scale integrated (VLSI) systems today. Because of

the increased potential for reusing subcircuits, there are

more degrees of freedom in implementing boolean

function than in two level programmable logic array

(PLA) case. The goal of mutlilevel logic optimization is

to obtain a representation of the Boolean function that is

optimal with respect to area, speed, testability, and

power dissipation. There has been recent interest in

using Dual Reed-Muller expressions as a way of

WSEAS TRANSACTIONS on ELECTRONICS Khalid Faraj

ISSN: 1109-9445 345 Issue 8, Volume 5, August 2008

representing and manipulating switching functions, and

as a means of designing circuits based on XNOR gates.

Analysis of existing algorithms suggests the need for

work in two areas: improving two-level minimization

algorithms; and developing algorithms for multi-level

minimization. A new algorithm for the two-level

minimization of Dual Reed-Muller representations of

switching functions has been developed [14].

A procedure for multi-level Dual Reed-Muller

minimization has been developed which introduces a

Dual Reed-Muller factored form, and uses algebraic

algorithms for factorization, decomposition, re-

substitution, and extraction of common cubes and sub-

expressions.

2 Preliminaries

In this section, essential definitions and notations are

presented. These are important for the understanding of

the paper.

Definitions: A rectangle (R,C) of a matrix B, Bij ∈

{0,1,*} is a subset of rows R and subset of columns C

such that Bij ∈ {1,*} for all I ∈ R and I ∈ C. A rectangle

(R, C) of B is said to be a prime rectangle if it is not

strictly contained in any other rectangle of B. The co-

rectangle of a rectangle (R,C) is the pair (R,C′) where C′
is the set of columns not in C.

For example:

f = (a + b + e) ⊗ (a + c + d) ⊗ (b + c + d)

({2,3},{3,4}) is a prime rectangle, because it is not

contained in any other rectangle.

 A literal is a Boolean variable in positive or negative

polarity.

A cube C is a sum term composed of literals using

Boolean OR operation.

A Dual Reed-Muller is minimum if it contains the

minimum number of cubes among all the OR- XNOR of

the given Boolean function.

A variable in the cube can have three forms: (1) positive

polarity; (2) negative polarity; (3) don’t-care.

The fundamental properties of the XNOR operation are

given as follows:

 0=⊗ xx (1)

 1=⊗ xx (2)

 xx =⊗ 0 (3)

 x ⊗ 1= x (4)

The Distributive Law: This law shows that

combinations of OR and XNOR can be written in an

expanded form [14].

)()()((CABACBA +⊗+=⊗+ (5)

Definition 2.1 An n-variable Boolean function can be

expressed as

() ()ii

i

nn Mxxxf

n

+=
=

−− d΅Η
1-2

0

021 ...,,, (6)

Where ‘∏’ represents logical products (AND), the ‘+’ is

an OR operation and I is a binary n-tuple I = [i0, i 1,…, in-

1]2, [d0,d1,…, d2
n
-1] is the truth vector of the function f ,

di ∈{0,1} [12], Mi is a sum term

021

021

0

1-

‡”
ii

n

i

n

nk

i

ki xxxxM
nnk •

−

•

−

•

=

•

+++==
−−

...

and





=

=
=

•

1

0

kk

kk
i

k

ix

ix
x

k

Alternatively, any Boolean function can be represented

by a FPDRM expression as:

 f(xn-1,xn-2,…,x0) = ()ii
i

S

n

+⊗
−

=
c

12

0
 (7)

Where ‘⊗’ is XNOR operator, [c2
n
-1, c2

n
-2,…,c0] is the

truth vector of the function f , ci ∈{0,1}, i = [i0, i 1,…, in-

1]2, Si represents a Sum term as

021

021

0

1-

‡”S

ii

n

i

n

nk

i

ki xxxx
nnk ~~~~

...+++==
−−

−−

=

, (8)

and





=

=
=

1

00

kk

k
i

k

ix

i
x

k~

Definition 2.2 A polarity vector (pn-1,pn-2,…,p0) for a

FPDRM of an n-variable Boolean function is a binary

vector with n elements, where pi = 0 indicates the

variable xi in an un-complemented form (xi), while pi = 1

indicates the variable xi in the complemented form.

Property 1 For an n-variable Boolean function, there are

2
n
 FPDRM expansions corresponding to 2

n
 different

polarity numbers. Each of such expansions is a canonical

representation of a completely specified Boolean

function.

Maxterms can be identified by expanding a Kronecker

sum of n basis vectors of the form [0 xi] for ‘0’ polarity

 A

1

B

2

C

3

D

4

E

5

a + b + e 1 1 1 0 0 1

a + c + d 2 1 0 1 1 0

b + c + d 3 0 1 1 1 0

WSEAS TRANSACTIONS on ELECTRONICS Khalid Faraj

ISSN: 1109-9445 346 Issue 8, Volume 5, August 2008

and [0 xi] for ‘1’ polarity .

The FPDRM can be deduced by substituting the

coefficient vector c as shown in equation (9).

f(xn-1,xn-2,.,x0)={[0 xn-1]*[0 xn-2]*…*[0 x0]}c (9)

Where ‘’ represents matrix multiplication based on OR

and XNOR [9-13].

For example for a zero polarity (p = 0), with n = 2 the

basis vector is generated as follows:

[0 x1]*[0 x0] = [0+0 0+ x0 x1+0 x1+ x0]

In order to restructure the Dual Reed Muller expressions

we introduce the following operations and algorithms to

minimize the multi level Dual reed Muller expressions

3 Multi-level minimization operations
The objective of multi-level optimization is to find a

good multi-level representation of a switching function

that minimize a cost function with respect to area, speed,

testability, and power dissipation. In order to reorganize

a switching function the operations described in the

sequel are used.

3.1 Decomposition
Decomposition of a switching function is the process of

re-expressing a single function as a collection of new

functions [15]. For example,

F = (a + b + c) ⊗ (a + b +d) ⊗ (a′ + c′ + d′) ⊗ (b′ + c′ +

d′)
To the following set of expressions:

F = (c ⊗ d) + X ⊗ (a′ ⊗ b′) + Y
X = (a + b)
Y = (c′ + d′)

3.2 Extraction
Extraction operation is similar to decomposition. It is the

process of identifying, creating some intermediate

functions and variables, and re-expressing the original

switching functions in terms of the original as well as the

intermediate variables. This creates new multiple fan-out

nodes. The extraction process thus identifies common

sub-functions among different switching functions

forming a network. For example,

F = (a + c + d) ⊗ (b + c + d) ⊗ e

G = (a + e′) ⊗ (b + e′)
H = (c + d +e)

yields

F = (X + Y) ⊗ e

G = X + e′
H = Y + e

X = (a ⊗ b)

Y = (c + d)

3.3 Factorization
Factorization is the process of deriving the Dual Reed-

Muller factored form the two level form of the

expression. For example,

F = (a + c) ⊗ (a + d) ⊗ (b + c) ⊗ (b + d) ⊗ e

F = [(a ⊗ b) + c] ⊗ [(a ⊗ b) + d] ⊗ e

F = (a ⊗ b) + (c ⊗ d) ⊗ e

4 Algebraic division
A key idea behind multilevel minimization process is the

concept of division. This is the process that, given Dual

Reed Muller expressions of functions f and p, finds

quotient q and reminder r so that f = (p+q) ⊗ r. If p and

q are disjoint then the operation is algebraic.

A division operation for sum of products representation

was described in [16]. Because this algorithm is

algebraic it can be applied to Dual reed Muller

expressions. The following is a sketch of the algorithm

for carrying out algebraic division: given f and p it

returns the quotient q and remainder r:

Algebraic Division (f,p)

U = restriction of f to the literals in p

V = restriction of f to the literals not in p

/* not that ujvj is the jth term of f */

Vi = { vj ∈ V | uj = pi}

q = ∩Vi

r = f – (p+q)

Return (q,r)

Figure 1: Algebraic division algorithm

For example:

F = (a +d) ⊗ (b + c) ⊗ (b + d) ⊗ e

P = (a ⊗ b)

Then

U = a ⊗ b ⊗ b ⊗ 0

V = d ⊗ c ⊗ d ⊗ e

V1 = d

V2 = c ⊗ d

q = ∩Vi = d

p + q = [(a ⊗ b)] + d = (a + d) ⊗ (b + d)

r = f – (p + q)

r = (a +d) ⊗ (b + c) ⊗ (b + d) ⊗ e –[(a + d) ⊗ (b + d)]

r = (b + c) ⊗ e

WSEAS TRANSACTIONS on ELECTRONICS Khalid Faraj

ISSN: 1109-9445 347 Issue 8, Volume 5, August 2008

Therefore,

F = (p + q) ⊗ r

4.1 Kernels and algebraic divisors
Given an efficient method for algebraic division,

optimization can be carried out if good algebraic divisors

can be found.

Kernels

The idea of the kernel of an algebraic expression is used

to find good divisors and sub-expressions common to

two or more expressions [16, 17]. An expression t is a

common sub-expression of f and g if f and can be

written as:

F = (q1 + t) ⊗ r1

And

G = (q2 + t) ⊗ r2

where q1 and q2 are nonzero.

The notation of a kernel of a logic expression was

introduced to provide an efficient means for finding

common sub-expressions. We see that kernels are a

bridge between algebraic expressions and factored form.

A kernel of an expression f is defined by the following

two rules:

1) A kernel k of an expression f is the quotient of f

and a cube c; k= f/c.

2) A kernel k is "cube-free" (k cannot be written as

k = dg, where d is a nontrivial cube and g is an

expression.)

For example, suppose that

F = (a + b + c + d + e) ⊗ (a + b + c + d + f) ⊗ (a + b + c

+ g).

Then F/a = (b + c + d + e) ⊗ (b + c + d + f) ⊗ (b + c + g)

is a primary divisor, but not a kernel, because b divides

each term. The kernels are the quotient of f and the cube

a, but it is not cube-free since the cube b is a factor of

f/a,

F/a = [(b + c + d + e) ⊗ (b + c + d + f) ⊗ (b + c + g).

However, F/(a+b) = [(c + d + e) ⊗ (c + d + f) ⊗ (c + g)

is cube free and hence a kernel.

4.2 Computing the kernels
It is possible to find kernels of an expression by looking

at the intersection of the cubes of a function. If a subset

of the cubes intersect then the cube corresponding to this

intersection is a co-kernel, therefore, the kernel can be

found by dividing the co-kernel into F. this intersection

can be found by finding the prime rectangles of a matrix

formed from the cubes and the literals of an expression

[17]. This algorithm can be applied directly to dual

Reed-Muller expressions.

 a

1

b

2

c

3

d

4

e

5

f

6

g

7

a + b + c + d + e 1 1 1 1 1 1 . .

a + b + c + d + f 2 1 1 1 1 . 1 .

a + b + c + g 3 1 1 1 . . . 1

Each row corresponds to a cube of the function, while

each column corresponds to a literal in the set of cubes.

A position (i,j) is set to 1 if cube ci contains literal j. For

instance the prime rectangle {{1,2,3},{1,2,3}} which

gives co-kernel (a + b + c).

4.3 Common kernel extraction

Common kernel extraction is the process of finding sub-

expressions that appear in two or more expressions, then

extracting the sub-expression to simplify those

expressions. To optimize the switching functions it is

necessary to find the particular kernel-cube, which is

common to two or more functions.

4.4 Common cube extraction Kernels
Common cube extraction is the process of finding cubes

common to two or more expressions and extracting the

common cube to simplify each of the expressions. The

process of extracting a cube adds a new node the

network with a logic function which is the common cube

divisor.

For example,

F = (a + b + c) ⊗ (a + b + d) ⊗ (e + g)

G = a + b + f + g

H = (b + d) ⊗ (e + f)

Thus the cube literal matrix is

The rectangle ({1,2,4},{1,2}) corresponds to a common

cube (a + b). If this common cube is extracted a new

node is added with a function representing the common

cube.

a

1

b

2

c

3

d

4

e

5

f

6

g

7

a + b + c 1 1 1 1

a + b + d 2 1 1 . 1 . . .

e + g 3 1 1

a + b + f + g 4 1 1 . . . 1 1

b + d 5 . 1 . 1 . . .

e + f 6 1 1 .

WSEAS TRANSACTIONS on ELECTRONICS Khalid Faraj

ISSN: 1109-9445 348 Issue 8, Volume 5, August 2008

 F = X + (c ⊗ d) ⊗ (e + g)

 G = X + f + g

 H = (b + d) V⊗ (e + f)

5 Conclusion
We introduced the fundamental foundations, and theory

for minimization of the multi-level Dual Reed-Muller

expressions. The process uses algebraic algorithms for

factorization, decomposition, re-substitution, and

extraction of common cubes and sub-expressions.

This algorithms have been tested on some random

functions.

References:

[1] Reed, I.S., A claa of multiple-error-correction

codes and their decoding schem. IRE trans. Inform.

Theory, IT-4, 1954, pp. 38-49.

[2] Muller, D.E. Sept., Application of Boolean

algebra to switching circuit design for error detection.

IEEE trans. Comput, EC-3, 1954, pp. 6-12.

[3] Jeong, B.k., Sung, J.H., and Jong, K., New

circuit for XOR and XNOR functions. International

Journal of Electronics, 82, 1997, pp. 131-143.

[4] McCluskey, E., Logic Design Principles with

Emphasis on Testable Semicustom Circuits. (Prentice

Hall). 1986.

[5] Wang, J.M., Fang, S. C., and Feng, W.S., New

efficient design for XOR and XNOR functions on the

transistor level. IEEE Journal of solid-state Circuits, 29,

1994, pp. 780-786.

[6] Sasao, T.,Easily Testable Realizations for

Generalized Reed-Muller Expressions. IEEE Transaction

on computers, 46, 1997, pp. 709-716.

[7] Robinson, J.P. and Yeh, C.L. Aug., A method

for modulo-2 minimization. IEEE Trans. Comput, C-31,

1982, pp. 800-801.

[8] Sassao, T and Besslich, P. Feb., On the

complexity of Mod-2 sum PLA’s. IEEE Trans. Comput.

C-39, 1990, pp. 262-266.

[9] Cheng, J., Chen, X., Faraj, K.M., and Almaini,

A.E.A., Expansion of logical functions in the OR-

coincidence system and the transform between it and

maxterm. IEE Proc.-comput. Digit. Tech, 150, 2003, pp.

397-402.

[10] Green, D.H., Dual forms of Reed-Muller

expansions. IEE Proc.-Comput. Digit. Tech, 141, 1994,

pp. 184-192.

[11] Faraj, K., MacCallum, M., and Almaini, A.E.A.,

Fast computation of Conjunctive Canonical Reed-Muller

functions. PREP Proceeding, University of

Hertfordshire, 2004, 144.

[12] Faraj, K., Almaini, A.E.A.,Minimization of Dual

Reed-Muller Forms using Dual Property. WSEAS

TRANSACTIONS on CIRCUITS and SYSTEMS, Issue

1, Vol. 6, January 2007, pp. 9-15.

[13] Faraj, K., Almaini, A.E.A., Optimal Expression

for Fixed Polarity Dual Reed-Muller Forms. WSEAS

TRANSACTIONS on CIRCUITS and SYSTEMS, Issue

3, Vol. 6, March 2007.

[14] Faraj, K., Minimization of OR-XNOR

Expressions Using Four New Linking Rules. Advances

on artificial intelligence, knowledge Engineering and

data bases.rack, February 2008, pp. 489-494

[15] S. Devadas, A. Ghosh, and K. Keutzer, Logic

Synthesis,McGraw-Hill, Inc.1994.

[16] Brayton, R. K., Factoring logic functions., IBM

J. RES. DEVELOP. VOL. 31 NO. 2, March 1987, pp

187-198.

[17] Jonathan Saul, An algorithm for the Multi-level

minimization of Reed-Muller representations, IEEE,

1991, pp. 634-637.

WSEAS TRANSACTIONS on ELECTRONICS Khalid Faraj

ISSN: 1109-9445 349 Issue 8, Volume 5, August 2008

