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Abstract: - This paper introduces the fundamental theory, algorithms, and terminology regarding synthesis of multi-

level Dual Reed-Muller expressions. The increasing interest in using Dual Reed-Muller expressions as a way of 

representing and manipulating switching functions, and as a mean of designing circuits based on OR/XNOR gates has 

led to this research. Up to present there are only two-level Dual Reed-Muller minimization algorithms in use, although 

the need for multi-level minimization algorithms has been recognized. A new theory and algorithms for multi-level 

Dual Reed-Muller minimization have been developed. It introduces a Dual Reed-Muller factored form and uses 

algebraic algorithms for factorization decomposition, re-substitution, and extraction of common cubes and sub-

expressions. 
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1   Introduction 
The increasing complexity of chip designs and the 

continuous development of smaller size fabrication 

processes present new challenges to the existing tools. 

Future synthesis tools are required to handle millions of 

gates in a realistic time. Computer-Aided Design (CAD) 

tools became critical for design and verification of Very 

Large Scale Integrated (VLSI) digital circuits. Since 

most of the research has focused on developing 

algorithms for AND/OR or NAND/NOR circuits. An 

alternative description of a Boolean function is Reed-

Muller expansion [1, 2]. It employs modulo-2 arithmetic 

and is also unique and canonical for a given Boolean 

function. The application of XOR/AND and XNOR/OR 

gates has some advantages over other implementations. 

In practice, it is well known that many useful circuits 

such as arithmetic units and parity checkers are heavily 

XOR oriented and it is more economical to implement 

their modulo-2 expressions [3-6]. Some authors [7, 8] 

even conjecture that it is generally more economical to 

base logic design on modulo-2 expressions rather than 

conventional OR expressions. Recent progress in circuit 

technology makes the use of OR/XNOR gates feasible, 

especially with the development of the new technologies 

and the arrival of various programmable gate array 

(FPGA) devices. A major other characteristic of the 

XNOR logic is the numerous possible canonical 

representations of switching functions it provides. 

There are several kinds of OR/XNOR circuits. The 

FPDRM is one of the canonical OR/ XNOR expressions. 

FPDRMs are a generalization of Positive Polarity Reed-

Muller expressions (PPDRM). A PPDRM is unique for a 

completely specified function, is an OR/XNOR 

expressions with only un-complemented (positive) 

literals. Each variable in the FPDRM can appear either 

in un-complemented or complemented form but not 

both. For an n-variable completely specified Boolean 

function there are 2
n
 distinct FPDRMs. There are 

techniques for converting from POSs to PPDRM or 

FPDRM [9-13].  

In the domain of combinational logic synthesis, logic 

minimization plays a vital role in determining the area 

and performance of the synthesized circuit. Logic 

minimization based on product of sum (POS) using OR-

AND gates   is a well studied area. However, 

minimization based on fixed polarity Dual Reed-Muller 

(FPDRM) using OR-XNOR gates has received relatively 

lesser attention. The problem of finding a FPDRM of the 

given Boolean function with the minimum number of 

cubes has both theoretical and practical value. From the 

theoretical point of view OR-XNOR is the most general 

Dual Reed-Muller form. From the practical point of 

view, XNOR gates and OR-XNOR have numerous 

applications in logic synthesis. In particular, it has been 

shown that the OR-XNOR representation of Boolean 

functions is typically more compact than the POS 

representation. Multilevel realizations are the preferred 

means of implementing combinational circuits in very 

large scale integrated (VLSI) systems today. Because of 

the increased potential for reusing subcircuits, there are 

more degrees of freedom in implementing boolean 

function than in two level programmable logic array 

(PLA) case. The goal of mutlilevel logic optimization is 

to obtain a representation of the Boolean function that is 

optimal with respect to area, speed, testability, and 

power dissipation. There has been recent interest in 

using Dual Reed-Muller expressions as a way of 
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representing and manipulating switching functions, and 

as a means of designing circuits based on XNOR gates. 

Analysis of existing algorithms suggests the need for 

work in two areas: improving two-level minimization 

algorithms; and developing algorithms for multi-level 

minimization. A new algorithm for the two-level 

minimization of Dual Reed-Muller representations of 

switching functions has been developed [14].  

A procedure for multi-level Dual Reed-Muller 

minimization has been developed which introduces a 

Dual Reed-Muller factored form, and uses algebraic 

algorithms for factorization, decomposition, re-

substitution, and extraction of common cubes and sub-

expressions.  

 

 

2   Preliminaries  

In this section, essential definitions and notations are 

presented. These are important for the understanding of 

the paper. 

Definitions: A rectangle (R,C) of a matrix B, Bij ∈ 

{0,1,*} is a subset of rows R and subset of columns C 

such that Bij ∈ {1,*} for all I ∈ R and I ∈ C. A rectangle 

(R, C) of B is said to be a prime rectangle if it is not 

strictly contained in any other rectangle of B. The co-

rectangle of a rectangle (R,C) is the pair (R,C′) where C′ 
is the set of columns not in C.  

For example: 

f = (a + b + e) ⊗ (a + c + d) ⊗ (b + c + d) 

 

({2,3},{3,4}) is a prime rectangle, because it is not 

contained in any other rectangle.  

 A literal is a Boolean variable in positive or negative 

polarity.  

A cube C is a sum term composed of literals using 

Boolean OR operation. 

A Dual Reed-Muller is minimum if it contains the 

minimum number of cubes among all the OR- XNOR of 

the given Boolean function. 

A variable in the cube can have three forms: (1) positive 

polarity; (2) negative polarity; (3) don’t-care.  

The fundamental properties of the XNOR operation are 

given as follows: 

 

                       0=⊗ xx                       (1) 

                                        1=⊗ xx                       (2) 

                                        xx =⊗ 0                              (3) 

                                          x ⊗ 1= x          (4) 

The Distributive Law: This law shows that 

combinations of OR and XNOR can be written in an 

expanded form [14]. 

 

  )()()(( CABACBA +⊗+=⊗+            (5) 

 

Definition 2.1 An n-variable Boolean function can be 

expressed as 
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Where ‘∏’ represents logical products (AND), the ‘+’ is 

an OR operation and I is a binary n-tuple I = [i0, i 1,…, in-

1]2, [d0,d1,…, d2
n
-1] is the truth vector of the function  f , 

di ∈{0,1} [12],  Mi is a sum term 
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Alternatively, any Boolean function can be represented 

by a FPDRM expression as: 

 

           f(xn-1,xn-2,…,x0) =  ( )ii
i
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Where ‘⊗’ is XNOR operator, [c2
n
-1, c2

n
-2,…,c0] is the 

truth vector of the function  f , ci ∈{0,1}, i = [i0, i 1,…, in-

1]2, Si represents a Sum term as  
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Definition 2.2 A polarity vector (pn-1,pn-2,…,p0) for a 

FPDRM of an n-variable Boolean function is a binary 

vector with n elements, where pi = 0 indicates the 

variable xi in an un-complemented form (xi), while pi = 1 

indicates the variable xi in the complemented form. 

Property 1 For an n-variable Boolean function, there are 

2
n
 FPDRM expansions corresponding to 2

n
 different 

polarity numbers. Each of such expansions is a canonical 

representation of a completely specified Boolean 

function. 

Maxterms can be identified by expanding a Kronecker 

sum of n basis vectors of the form [0 xi] for ‘0’ polarity 

 A

1 

B 

2 

C 

3 

D 

4 

E 

5 

a + b + e  1 1 1 0 0 1 

a + c + d  2 1 0 1 1 0 

b + c + d  3 0 1 1 1 0 
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and [0  xi ] for ‘1’ polarity .  

The FPDRM can be deduced by substituting the 

coefficient vector c as shown in equation (9).  

 

f(xn-1,xn-2,.,x0)={[0 xn-1]*[0 xn-2]*…*[0 x0]}c       (9) 

 

Where ‘’ represents matrix multiplication based on OR 

and XNOR [9-13]. 

For example for a zero polarity (p = 0), with n = 2 the 

basis vector is generated as follows: 

 

[0  x1]*[0  x0] = [0+0  0+ x0  x1+0  x1+ x0] 

 

In order to restructure the Dual Reed Muller expressions 

we introduce the following operations and algorithms to 

minimize the multi level Dual reed Muller expressions 

 

 

3   Multi-level minimization operations 
The objective of multi-level optimization is to find a 

good multi-level representation of a switching function 

that minimize a cost function with respect to area, speed, 

testability, and power dissipation. In order to reorganize 

a switching function the operations described in the 

sequel are used. 

 

3.1 Decomposition 
Decomposition of a switching function is the process of 

re-expressing a single function as a collection of new 

functions [15]. For example, 

 

F = (a + b + c)  ⊗ (a + b +d) ⊗ (a′ + c′ + d′) ⊗ (b′ + c′ + 

d′) 
To the following set of expressions: 

F = (c ⊗ d) + X ⊗ (a′ ⊗ b′) + Y 
X = (a + b) 
Y = (c′ + d′) 
 

3.2  Extraction 
Extraction operation is similar to decomposition. It is the 

process of identifying, creating some intermediate 

functions and variables, and re-expressing the original 

switching functions in terms of the original as well as the 

intermediate variables. This creates new multiple fan-out 

nodes. The extraction process thus identifies common 

sub-functions among different switching functions 

forming a network. For example, 

 

F = (a + c + d) ⊗ (b + c + d) ⊗ e 

G = (a + e′) ⊗ (b + e′) 
H = (c + d +e) 

yields 

 

F = (X + Y) ⊗ e 

G = X + e′ 
H = Y + e 

X = (a ⊗ b) 

Y = (c + d) 

 

3.3  Factorization 
Factorization is the process of deriving the Dual Reed-

Muller factored form the two level form of the 

expression. For example, 

 

F = (a + c) ⊗ (a + d) ⊗ (b + c) ⊗ (b + d) ⊗ e 

F = [(a ⊗ b) + c] ⊗ [(a ⊗ b) + d] ⊗ e 

F = (a ⊗ b) + (c ⊗ d) ⊗ e 

 

 

4   Algebraic division 
A key idea behind multilevel minimization process is the 

concept of division. This is the process that, given Dual 

Reed Muller expressions of functions f and p, finds 

quotient q and reminder r so that f = (p+q) ⊗ r. If p and 

q are disjoint then the operation is algebraic. 

A division operation for sum of products representation 

was described in [16]. Because this algorithm is 

algebraic it can be applied to Dual reed Muller 

expressions. The following is a sketch of the algorithm 

for carrying out algebraic division: given f and p it 

returns the quotient q and remainder r:  

 

Algebraic Division (f,p) 

  

U = restriction of f to the literals in p 

V = restriction of f to the literals not in p 

/* not that ujvj is the jth term of f */ 

Vi = { vj ∈ V | uj = pi} 

q = ∩Vi 

r =  f – (p+q) 

Return (q,r) 

Figure 1: Algebraic division algorithm 

 

For example:  

F = (a +d) ⊗ (b + c) ⊗ (b + d) ⊗ e 

P = (a ⊗ b) 

 

Then 

U = a ⊗ b ⊗ b ⊗ 0 

V = d ⊗ c ⊗ d ⊗ e 

V1 = d 

V2 = c ⊗ d 

q = ∩Vi = d 

p + q = [(a ⊗ b)] + d = (a + d) ⊗ (b + d) 

r = f – (p + q) 

r = (a +d) ⊗ (b + c) ⊗ (b + d) ⊗ e –[( a + d) ⊗ (b + d)] 

r = (b + c) ⊗ e 
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Therefore,  

F = (p + q) ⊗ r 

 

4.1  Kernels and algebraic divisors 
Given an efficient method for algebraic division, 

optimization can be carried out if good algebraic divisors 

can be found.  

Kernels 

The idea of the kernel of an algebraic expression is used 

to find good divisors and sub-expressions common to 

two or more expressions [16, 17]. An expression t is a 

common sub-expression of f and g if f and can be 

written as: 

F = (q1 + t)  ⊗ r1 

And  

G = (q2 + t) ⊗ r2 

where q1 and q2 are nonzero. 

 

The notation of a kernel of a logic expression was 

introduced to provide an efficient means for finding 

common sub-expressions. We see that kernels are a 

bridge between algebraic expressions and factored form. 

A kernel of an expression f is defined by the following 

two rules: 

 

1) A kernel k of an expression f is the quotient of f 

and a cube c; k= f/c. 

2) A kernel k is "cube-free" (k cannot be written as 

k = dg, where d is a nontrivial cube and g is an 

expression.) 

 

For example, suppose that  

F = (a + b + c + d + e) ⊗ (a + b + c + d + f) ⊗ (a + b + c 

+ g). 

 

 

 

 

Then F/a = (b + c + d + e) ⊗ (b + c + d + f) ⊗ (b + c + g) 

is a primary divisor, but not a kernel, because b divides 

each term. The kernels are the quotient of f and the cube 

a, but it is not cube-free since the cube b is a factor of 

f/a, 

 

F/a = [(b + c + d + e) ⊗ (b + c + d + f) ⊗ (b + c + g). 

However, F/(a+b) = [(c + d + e) ⊗ (c + d + f) ⊗ (c + g) 

is cube free and hence a kernel. 

 

4.2  Computing the kernels 
It is possible to find kernels of an expression by looking 

at the intersection of the cubes of a function. If a subset 

of the cubes intersect then the cube corresponding to this 

intersection is a co-kernel, therefore, the kernel can be 

found by dividing the co-kernel into F. this intersection 

can be found by finding the prime rectangles of a matrix 

formed from the cubes and the literals of an expression 

[17]. This algorithm can be applied directly to dual 

Reed-Muller expressions. 

 

 a 

1 

b 

2 

c 

3 

d 

4 

e 

5 

f 

6 

g 

7 

a + b + c + d + e       1         1 1 1 1 1 . . 

a + b + c + d + f       2 1 1 1 1 . 1 . 

a + b + c + g             3  1 1 1 . . . 1 

 

Each row corresponds to a cube of the function, while 

each column corresponds to a literal in the set of cubes. 

A position (i,j) is set to 1 if cube ci contains literal j. For 

instance the prime rectangle {{1,2,3},{1,2,3}} which 

gives co-kernel (a + b + c). 

 

 

4.3  Common kernel extraction 

Common kernel extraction is the process of finding sub-

expressions that appear in two or more expressions, then 

extracting the sub-expression to simplify those 

expressions. To optimize the switching functions it is 

necessary to find the particular kernel-cube, which is 

common to two or more functions. 

 

 

4.4   Common cube extraction Kernels 
Common cube extraction is the process of finding cubes 

common to two or more expressions and extracting the 

common cube to simplify each of the expressions. The 

process of extracting a cube adds a new node the 

network with a logic function which is the common cube 

divisor. 

 

For example, 

F = (a + b + c) ⊗ (a + b + d) ⊗ (e + g) 

G = a + b + f + g 

H = (b + d) ⊗ (e + f) 

Thus the cube literal matrix is  

The rectangle ({1,2,4},{1,2}) corresponds to a common 

cube (a + b). If this common cube is extracted a new 

node is added with a function representing the common 

cube.  

 

 

 

a 

1 

b 

2 

c 

3 

d 

4 

e 

5 

f 

6 

g 

7 

a + b + c       1 1 1 1 . . . . 

a + b + d       2 1 1 . 1 . . . 

e + g              3 . . . . 1  1 

a + b + f + g  4 1 1 . . . 1 1 

b + d             5 . 1 . 1 . . . 

e + f              6 . . . . 1 1 . 
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 F = X + (c ⊗ d) ⊗ (e + g) 

 G = X + f + g 

 H = (b + d) V⊗ (e + f) 

 

 

5   Conclusion 
We introduced the fundamental foundations, and theory 

for minimization of the multi-level Dual Reed-Muller 

expressions. The process uses algebraic algorithms for 

factorization, decomposition, re-substitution, and 

extraction of common cubes and sub-expressions.  

This algorithms have been tested on some random 

functions.  

 

 

References: 

[1] Reed, I.S., A claa of multiple-error-correction 

codes and their decoding schem. IRE trans. Inform. 

Theory, IT-4, 1954, pp. 38-49. 

[2] Muller, D.E. Sept., Application of Boolean 

algebra to switching circuit design for error detection. 

IEEE trans. Comput, EC-3, 1954, pp. 6-12. 

[3] Jeong, B.k., Sung, J.H., and Jong, K., New 

circuit for XOR and XNOR functions. International 

Journal of Electronics, 82, 1997, pp. 131-143. 

[4] McCluskey, E., Logic Design Principles with 

Emphasis on Testable Semicustom Circuits. (Prentice 

Hall). 1986. 

[5] Wang, J.M., Fang, S. C., and Feng, W.S., New 

efficient design for XOR and XNOR functions on the 

transistor level. IEEE Journal of solid-state Circuits, 29, 

1994, pp. 780-786. 

[6] Sasao, T.,Easily Testable Realizations for 

Generalized Reed-Muller Expressions. IEEE Transaction 

on computers, 46, 1997, pp. 709-716. 

[7] Robinson, J.P. and Yeh, C.L. Aug., A method 

for modulo-2 minimization. IEEE Trans. Comput, C-31, 

1982, pp. 800-801. 

[8] Sassao, T and Besslich, P. Feb., On the 

complexity of Mod-2 sum PLA’s. IEEE Trans. Comput. 

C-39, 1990, pp. 262-266. 

[9] Cheng, J., Chen, X., Faraj, K.M., and Almaini, 

A.E.A., Expansion of logical functions in the OR-

coincidence system and the transform between it and 

maxterm. IEE Proc.-comput. Digit. Tech, 150, 2003, pp. 

397-402. 

[10] Green, D.H., Dual forms of Reed-Muller 

expansions. IEE Proc.-Comput. Digit. Tech, 141, 1994, 

pp. 184-192. 

[11] Faraj, K., MacCallum, M., and Almaini, A.E.A., 

Fast computation of Conjunctive Canonical Reed-Muller 

functions. PREP Proceeding, University of 

Hertfordshire, 2004, 144. 

[12] Faraj, K., Almaini, A.E.A.,Minimization of Dual 

Reed-Muller Forms using Dual Property. WSEAS 

TRANSACTIONS on CIRCUITS and SYSTEMS, Issue 

1, Vol. 6, January 2007, pp. 9-15. 

[13] Faraj, K., Almaini, A.E.A., Optimal Expression 

for Fixed Polarity Dual Reed-Muller Forms. WSEAS 

TRANSACTIONS on CIRCUITS and SYSTEMS, Issue 

3, Vol. 6, March 2007. 

[14] Faraj, K., Minimization of OR-XNOR 

Expressions Using Four New Linking Rules. Advances 

on artificial intelligence, knowledge Engineering and 

data bases.rack, February 2008, pp. 489-494 

[15] S. Devadas, A. Ghosh, and K. Keutzer, Logic 

Synthesis,McGraw-Hill, Inc.1994.   

[16] Brayton, R. K., Factoring logic functions., IBM 

J. RES. DEVELOP. VOL. 31 NO. 2, March 1987, pp 

187-198. 

[17] Jonathan Saul, An algorithm for the Multi-level 

minimization of Reed-Muller representations, IEEE, 

1991, pp. 634-637. 

 

WSEAS TRANSACTIONS on ELECTRONICS Khalid Faraj

ISSN: 1109-9445 349 Issue 8, Volume 5, August 2008




