
Hierarchical Clustering Based Automatic Refactorings Detection

ISTVAN GERGELY CZIBULA, GABRIELA (SERBAN) CZIBULA
Babeş - Bolyai University

Department of Computer Science
1, M. Kogalniceanu Street, Cluj-Napoca

ROMANIA
istvanc@cs.ubbcluj.ro, gabis@cs.ubbcluj.ro

Abstract: -The structure of software systems is subject of many changes during the systems lifecycle. A continuous
improvement of the software systems structure can be made usingrefactoring, that assures a clean and easy to
maintain software structure. In this paper we are focusing on the problem of restructuring object oriented software
systems using hierarchical clustering. We propose two hierachical clustering based algorithms which takes an
existing software and reassembles it using clustering, in order to obtain a better design, suggesting the needed
refactorings. We evaluate the proposed algorithms using the open source case study JHotDraw and a real software
system, providing a comparison with previous approaches.

Key–Words: -Software engineering, system design, object-oriented systems, refactoring, clustering, algorithm

1 Introduction
The structure of a software system has a major im-
pact on the maintainability of the system. That is why
continuous restructurings of the code are needed, oth-
erwise the system becomes difficult to understand and
change, and therefore it is often costly to maintain.

Fowler defines in [1] refactoring as “the process
of changing a software system in such a way that it
does not alter the external behavior of the code yet im-
proves its internal structure. It is a disciplined way to
clean up code that minimizes the chances of introduc-
ing bugs”. Refactoring is viewed as a way to improve
the design of the code after it has been written. Soft-
ware developers have to identify parts of code having
a negative impact on the system’s maintainability, and
to apply appropriate refactorings in order to remove
the so called “bad-smells” [2].

In this paper we propose two hierarchical cluster-
ing algorithms that would help developers to identify
the appropriate refactorings in a software system. Our
approach takes an existing software and reassembles
it using hierarchical clustering, in order to obtain a
better design, suggesting the needed refactorings. Ap-
plying the proposed refactorings remains the decision
of the software engineer.

The main contribution of this paper is to improve
the approach from [3], by defining twoagglomera-
tive hierarchicalclustering algorithms for identifying
refactorings in order to recondition the class structure
of software systems. The proposed algorithms can be
useful for assisting software engineers in their daily
work of restructuring software systems.

The rest of the paper is structured as follows. Sec-
tion 2 presents existing approaches in the field of im-
proving software systems structure and in the field of
refactoring. The main aspects related to the cluster-
ing approach for systems design improvement (that
we have previously introduced in [3]) are exposed in
Section 3. The hierarchical clustering algorithms for
identifying refactorings are introduced in Section 4.
Section 5 provides an experimental evaluation of the
proposed algorithms. A comparison of the approach
proposed in this paper with other similar approaches
is given in Section 6. Conclusions of the paper and
further research directions are outlined in Section 7.

2 Related Work
In this section we present some approaches existing
in the literature in the fields ofsoftware clusteringand
refactoring.

There is a lot of work in the literature in the field
of software clustering.

One of the most active researches in the area of
software clustering were made by Schwanke. The au-
thor addressed the problem of automatic clustering by
introducing theshared neighborstechnique [5], tech-
nique that was added to the low-coupling and high-
cohesion heuristics in order to capture patterns that
appear commonly in software systems. In [6], a par-
tition of a software system is refined by identifying
components that belong to the wrong subsystem, and
by placing them into the correct one. The paper de-
scribes a program that attempts to reverse engineer

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 291 Issue 7, Volume 5, July 2008

software in order to provide better software modular-
ity. Schwanke assumes that procedures referencing
the same name must share design information on the
named item, and are thus “design coupled”. He uses
this concept as a clustering metric to identify proce-
dures that should be placed in the same module. Even
if the approaches from [5] and [6] were not tested on
large software systems, they were promising.

Mancoridis et al. introduce in [7] a collection
of algorithms that facilitate the automatic recovery of
the modular structure of a software system from its
source code. Clustering is treated as an optimization
problem and genetic algorithms are used in order to
avoid the local optima problem ofhill-climbing algo-
rithms. The authors accomplish the software modular-
ization process by constructing amodule dependency
graphand by maximizing an objective function based
on inter- and intra-connectivity between the software
components. A clustering tool for the recovery and
the maintenance of software system structures, named
Bunch, is developed. Some extensions ofBunchare
presented in [8], allowing user-directed clustering and
incremental software structure maintenance.

A variety of software clustering approaches has
been presented in the literature. Each of these ap-
proaches looks at the software clustering problem
from a different angle, by either trying to compute
a measure of similarity between software objects [5];
deducing clusters from file and procedure names [9];
utilizing the connectivity between software objects
[10, 11, 12]; or looking at the problem at hand as an
optimization problem [7].

Another approach for software clustering was
presented in [9] by Anquetil and Lethbridge. The au-
thors use common patterns in file names as a clus-
tering criterion. The authors’ experiments produced
promising results, but their approach relies on the
developers’ consistency with the naming of their re-
sources.

The paper [13] also approaches the problem of
software clustering, by defining a metric that can be
used in evaluating the similarity of two different de-
compositions of a software system. The proposed
metric calculates a distance between two partitions of
the same set of software resources. For calculating the
distance, the minimum number of operations (such as
moving a resource from one cluster to another, join-
ing two clusters etc.) one needs to perform in order to
transform one partition to the other is computed. Tzer-
pos and Holt introduce in [14] a software clustering
algorithm in order to discover clusters that follow pat-
terns that are commonly observed in decompositions
of large software systems that were prepared manually
by their architects.

All of these techniques seem to be successful on

a number of examples. However, not only is there no
approach that is widely recognized as superior, but it
is also hard to compare the effectiveness of different
approaches.

As presented above, the approaches in the field of
software clusteringdeal with the software decomposi-
tion problem. Even if similarities exist with refactor-
ings extraction, a comparison is hard to make due to
the different granularity of the decompositions (mod-
ules vs. classes, methods, fields).

There are various approaches in the literature in
the field of refactoring, but few approaches exist in
the direction of automatic detection of refactorings.

Deursen et al. have approached the problem of
refactoring in [18]. The authors illustrate the dif-
ference between refactoring test code and refactoring
production code, and they describe a set of bad smells
that indicate trouble in test code, and a collection of
test refactorings to remove these smells.

Xing and Stroulia present in [19] an approach for
detecting refactorings by analyzing the system evolu-
tion at the design level.

A search based approach for refactoring software
systems structure is proposed in [20]. The authors use
an evolutionary algorithm for identifying refactorings
that improve the system structure.

An approach for restructuring programs written
in Java starting from a catalog of bad smells is intro-
duced in [21]. Based on some elementary metrics, the
approach in [22] aids the user in deciding what kind
of refactoring should be applied. The paper [23] de-
scribes a software vizualization tool which offers sup-
port to the developers in judging which refactoring to
apply.

Clustering techniques have already been applied
for program restructuring. A clustering based ap-
proach for program restructuring at the functional
level is presented in [24]. This approach focuses on
automated support for identifying ill-structured or low
cohesive functions. The paper [25] presents a quan-
titative approach based on clustering techniques for
software architecture restructuring and reengineering
as well for software architecture recovery. It focuses
on system decomposition into subsystems.

We have previously introduced in [3] a clustering
approach for identifying refactorings in order to im-
prove the structure of software systems. To our knowl-
edge, there is no approach in the literature that uses
clustering in order to improve the class structure of a
software system, excepting the approach introduced in
[3]. The existing clustering approaches handle meth-
ods decomposition [24] or system decomposition into
subsystems [25].

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 292 Issue 7, Volume 5, July 2008

3 A Clustering Approach for Refac-
torings Determination - CARD

In this section we briefly describe the clustering ap-
proach (CARD) that we have previously introduced in
[3] in order to find adequate refactorings to improve
the structure of software systems.

CARDapproach consists of three steps shortly de-
scribed below.

Data collection- The existing software system is
analyzed in order to extract from it the relevant enti-
ties: classes, methods, attributes and the existing re-
lationships between them: inheritance relations, ag-
gregation relations, dependencies between the entities
from the software system. All these collected data will
be used in theGrouping step.

Grouping - The set of entities extracted at the
previous step are re-grouped in clusters using a clus-
tering algorithm (HARDin our approach). The goal
of this step is to obtain an improved structure of the
existing software system.

Refactorings extraction - The newly obtained
software structure is compared with the original soft-
ware structure in order to provide a list of refactor-
ings which transform the original structure into an im-
proved one.

A software systemS is considered in [3] as a set
S = {s1, s2, ..., sn}, wheresi (1 ≤ i ≤ n) can be an
application class, a class method or a class attribute.

As described above, at theGrouping step of
CARD, the software systemS has to be re-grouped.
This re-grouping can be viewed as apartition K =
{K1,K2, ...,Kv} of S. In the following, we will refer
Ki as thei-th clusterof K, K as aset of clusters, and
an elementsi from S as anentity. A clusterKi from
the partitionK represents an application class in the
new structure of the software system.

4 Hierarchical Clustering Algo-
rithms for Refactorings Detection

In this section we introduce two hierarchical ag-
glomerative clustering algorithms (HARD1 and
HARD2), which aim at identifying apartition of a
software systemS that corresponds to an improved
structure of it. The proposed algorithms can be used
in theGrouping step ofCARD.

Both algorithms are based on the idea of hier-
archical agglomerative clustering and use a measure
for evaluating a partition of the software system from
the system’s design point of view.HARD1 uses an
heuristic for merging two clusters in the agglomera-
tive process, andHARD2 uses an heuristic for deter-
mining the number of clusters to obtain.

In our clustering approach, the objects to be clus-
tered are the entities from the software system S, i.e.,
O = {s1, s2, . . . , sn}. Our focus is to group similar
entities from S in order to obtain high cohesive groups
(clusters).

We will adapt the generic cohesion measure in-
troduced in [26] that is connected with the theory of
similarity and dissimilarity. In our view, this cohesion
measure is the most appropriate to our goal. We will
consider the dissimilarity degree between any two en-
tities from the software systemS. Consequently, we
will consider the distanced(si, sj) between two enti-
tiessi andsj as expressed in Equation (1).

d(si, sj) =

{
1− |p(si)∩p(sj)|

|p(si)∪p(sj)| if p(si) ∩ p(sj) 6= ∅
∞ otherwise

,

(1)
where, for a given entitye ∈ S, p(e) represents a set
of relevant properties ofe, defined as follows. Ife is
an attribute, thenp(e) consists of: the attribute itself,
the application class where the attribute is defined, and
all the methods fromS that access the attribute. Ife
is a method, thenp(e) consists of: the method itself,
the application class where the method is defined, all
the attributes fromS accessed by the method, all the
methods fromS used by methode, and all methods
from S that overwrite methode. If e is a class, then
p(e) consists of: the application class itself, all the at-
tributes and the methods defined in the class, all inter-
faces implemented by classe and all classes extended
by classe.

We have chosen the distance between two entities
as expressed in Equation (1), because it emphasizes
the idea of cohesion. The authors define in [27] cohe-
sion as “the degree to which module components be-
long together”. Our distance, as defined in Equation
(1), highlights the concept of cohesion, i.e., entities
with low distances are cohesive, whereas entities with
higher distances are less cohesive. A theoretical vali-
dation of this statement is given in [4].

Based on the definition of distanced given in
Equation (1) it can be easily proved thatd is a semi-
metric function, so it can be used for discriminating
the entities from the software system in a clustering
approach. We will consider the distancedist(k, k′)
between two clustersk ∈ K andk′ ∈ K (k 6= k′)
given by the average link metric, as expressed in
Equation (2). We mention that we useaverage link
as linkage metric, because we have obtained better re-
sults with this metric.

dist(k, k′) =
1

|k| · |k′|
·

∑
e∈k,e′∈k′

d(e, e′) (2)

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 293 Issue 7, Volume 5, July 2008

Starting from the idea that we intend to obtain
high cohesive clusters and as a high cohesion between
two entities from a cluster is given by a low distance
(dissimilarity) between them, we will search for the
clustering with the lowest overall dissimilarity. For
each cluster, we define its diversity as the sum of pair-
wise entities dissimilarities, and we seek to minimize
that sum over all clusters.

Consequently, the diversity of a partitionK =
{K1,K2, . . . ,Kp}, DIV (K), is defined as given in
Equation (3).

DIV (K) =
p∑

i=1

div(Ki), (3)

wherediv(Ki) represents the diversity of clusterKi

and is defined as:

div(Ki) =

∑

e∈Ki, e′∈Ki, e6=e′

d(e, e′) if |Ki| 6= 1

∞ otherwise

Intuitively, thediversityof a cluster indicates the
cohesion degreebetween the entities from the corre-
sponding application class. This is due to the fact that
if an entity e should belong to an application class
(cluster)Ki, then it is very likely that thedistance
(Equation (1)) betweene and the elements fromKi

is less than thedistancebetweene and all the other
elements from the other clusters.

For these reasons, we intend to minimize thedi-
versityof a partition, in order to maximize the cohe-
sion of the corresponding application classes from the
software system. We mention that we are currently
working on giving a rigorous proof for this statement.

4.1 HARD1 algorithm
The heuristic used inHARD1 for merging two clus-
ters in the agglomerative clustering process is that, at
a given step, the two most similar clusters (the pair of
clusters that have the smallest distance between them)
are merged only if the distance between them is less
or equal to a given threshold,distMin. This means
that the entities from the two clusters are close enough
in order to be placed in the same cluster (application
class). This heuristic is particular to our approach and
it will provide a good enough choice for merging two
clusters (application classes).

The main steps ofHARD1 algorithm are:

• Each entity from the software system is put in its
own cluster (singleton).

• The following steps are repeated until the parti-
tion remains unchanged:

– Select the two most similar clusters from
the current partition, i.e, the pair of clusters
that minimizes the distance from Equation
(2). Let us denote bydmin this minimum
distance.

– If dmin ≤ distMin (the given threshold),
then the clusters selected at the previous
step will be merged, otherwise the partition
remains unchanged. Let us denote byK the
obtained partition.

– Compute the diversity of partitionK (see
Equation (3)).

– From all the generated partitions we retain
the one with the smallest diversity.

We give bellow theHARD1 algorithm.

Algorithm HARD1 is

Input: - the software system S = {s1, . . . , sn},
- the threshold distMin.

Output: - the partition K = {K1, K2, ..., Kp},
i.e., the new structure of S.

Begin
K ← {K1, . . . , Kn} //the initial partition

minDiv ← DIV (K) // the minimum diversity

//the partition with the min. diversity

Kmin ← K
While K remains unchanged do

//the most similar clusters are chosen

(Ki, Kj)← argmin(Ki∗ ,Kj∗)dist(K∗
i , K∗

j)

d← dist(Ki, Kj)

If d < distMin then

Knew ← Ki ∪Kj

K ← (K \ {Ki, Kj}) ∪ {Knew}
// the diversity of the new patition

div ← DIV (K)

If div < minDiv then

Kmin ← K
minDiv ← div

endif

noClus← noClus− 1

endif

endwhile

//K min is the output partition

End.

4.2 HARD2 algorithm
HARD2 is an adaptation of the traditional agglomer-
ative clustering algorithm that stops whenp clusters
are reached,p being determined using a heuristic.

In the following we will present the heuristic for
choosing the numberp of clusters. This heuristic will
provide a good enough choice for the number of ap-
plication classes in the restructured software system.

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 294 Issue 7, Volume 5, July 2008

In order to determine the numberp of clusters,we are
focusing on determiningp representative entities, i.e.,
a representative entity for each cluster.

The main idea ofHARD2’s heuristic for choos-
ing the representative entities and the numberp of
clusters is the following:

(i) The initial numberp of clusters isn (the number
of entities from the software system).

(ii) The first representative entity chosen is the most
“distant” entity from the set of all entities (the
entity that maximizes the sum of distances from
all other entities).

(iii) In order to choose the next representative entity
we reason as follows. For each remaining entity
(that was not already chosen), we compute the
minimum distance (dmin) from the entity and
the already chosen representative entities. The
next representative entity is chosen as the en-
tity e that maximizesdmin and this distance is
greater than a positive given threshold (distMin).
If such an entity does not exist, it means thate
is very close to all the already chosen represen-
tatives and should not be chosen as a new rep-
resentative (from the software system structure
point of view this means thate should belong to
the same application class with an already cho-
sen representative). In this case, the numberp of
clusters will be decreased.

(iv) The step (iii) will be repeatedly performed, until
p representatives will be chosen.

We have to notice that step (iii) described above
assures, from the software system design point of
view, that near entities (with respect to the given
thresholddistMin) will be merged into a single appli-
cation class (cluster), instead of being distributed in
different application classes (clusters).

We mention that at steps (ii) and (iii) the choice
could be a non-deterministic one. In the cur-
rent version ofHARD2 algorithm, if such a non-
deterministic case exists, the first selection is chosen.
Improvements ofHARD2 algorithm will deal with
these kind of situations.

The main steps ofHARD2 algorithm are:

• determine the numberp of clusters using the
heuristic presented above;

• each entity from the software systemS is put in
its own cluster (singleton);

• the following step is repeated untilp clusters are
reached:

– Select the two most similar clusters from
the current partition, i.e, the pair of clusters
that minimizes the distance from Equation
(2).

– Merge the two clusters obtained at the pre-
vious step into a new cluster. Let us denote
byK the obtained partition.

– Compute the diversity of partitionK (see
Equation (3)).

– From all the generated partitions we retain
the one with the smallest diversity.

We give nextHARD2 algorithm.

Algorithm HARD2 is

Input: - the software system S = {s1, . . . , sn},
- the threshold distMin.

Output: - the partition K = {K1, K2, ..., Kp},
i.e., the new structure of S.

Begin
//determine the number of clusters

p← n //the initial number of clusters

//the index of the first representative

i1 ← argmaxi=1,n

{
n∑

j=1,j 6=i

dE(si, sj)

}
//nr is the number of chosen clusters

nr ← 1

While nr < p do

D ← {j | 1 ≤ j ≤ n, j /∈ {i1, ..., inr}, d =

minl=1,nr {dE(sj , sil)} , d > distMin}
If D = ∅ then

//the number of clusters is decreased

p← p− 1

else

//another representative is chosen

nr ← nr + 1

inr ← argmaxj∈D {minl=1,nr−1{dE(sj , sil)}}
endif

endwhile

For i ← 1 to n do

//each entity is put in its own cluster

Ki ← {si}
endfor

K ← {K1, . . . , Kn} //the initial partition

minDiv ← DIV (K) // the minimum diversity

//the partition with the min. diversity

Kmin ← K
noClus← n //the number of clusters

While noClus > p do

//the most similar clusters are chosen

(Ki, Kj)← argmin(Ki∗ ,Kj∗)dist(K∗
i , K∗

j)

Knew ← Ki ∪Kj

K ← (K \ {Ki, Kj}) ∪ {Knew}
// the diversity of the new patition

div ← DIV (K)

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 295 Issue 7, Volume 5, July 2008

If div < minDiv then

Kmin ← K
minDiv ← div

endif

noClus← noClus− 1

endwhile

//K min is the output partition

End.

For bothHARD1 andHARD2 algorithms we have
chosen the value1 for the thresholddistMin, because
distances greater than1 are obtained only for unre-
lated entities (Equation (1)). Our intuition for choos-
ing the value for the thresholddistMin was also ex-
perimentally confirmed. In the future we plan to find
the most appropriate value for the thresholddistMin
using supervised learning techniques [29] and to give
a rigurous proof for our selection.

The main refactorings identified byHARD1 and
HARD2 algorithms are:

1. Move Method [1] refactoring. It moves a
methodm of a classC to another classC

′
that

uses the method most; the methodm of classC
should be turned into a simple delegation, or it
should be removed completely. The bad smell
motivating this refactoring is that a method uses
or is used by more features of another class than
the class in which it is defined [23].

This refactoring is identified byHARD1 and
HARD2 algorithms by moving the methodm in
the cluster corresponding to the application class
C

′
.

2. Move Attribute[1] refactoring. It moves an at-
tributea of a classC to another classC

′
that uses

the attribute most. The bad smell motivating this
refactoring is that an attribute is used by another
class more than the class in which it is defined
[23].

This refactoring is identified byHARD1 and
HARD2 algorithms by moving the attributea in
the cluster corresponding to the application class
C

′
.

3. Inline Class [1] refactoring. It moves all the
members of a classC into another classC

′
and

deletes the old class. The bad smell motivating
this refactoring is that a class is not doing very
much [23].

This refactoring is identified byHARD1 and
HARD2 algorithms by decreasing the number
of application classes in the new structure ofS.

ClassesC andC
′

with their corresponding en-
tities (methods and attributes) will be merged in
the same cluster.

4. Extract Class [1] refactoring. Creates a new
classC and move some cohesive attributes and
methods into the new class. The bad smell moti-
vating this refactoring is that one class offers too
much functionality that should be provided by at
least two classes [23].

This refactoring is identified byHARD1 and
HARD2 algorithms by increasing the number
of application classes in the new structure of
S. Consequently, a new cluster appears, corre-
sponding to a new application class in the new
structure ofS.

We have currently implemented the above enu-
merated refactorings, butHARD1 andHARD2 al-
gorithms can also identify other refactorings, like:
Pull Up Attribute, Pull Down Attribute, Pull Up
Method,Pull Down Method,Collapse Class Hierar-
chy. Future improvements will deal with these situa-
tions, also.

5 Experimental Evaluation
In order to validate our clustering approach, we will
consider three evaluations, which are described in
Subsections 5.1, 5.2 and 5.3. In the following, we will
briefly describe theData Collectionstep from our ap-
proach.

Each of the systems evaluated in Subsections 5.1,
5.2, and 5.3 are written in Java. In order to extract
from the systems the data needed in theGroupingstep
of our approach (Section 3) we use ASM 3.0 [30].
ASM is a Java bytecode manipulation framework. We
use this framework in order to extract the structure of
the systems (attributes, methods, classes and relation-
ships between all these entities).

5.1 Code Refactoring Examples
The first case study, described in this subsection, con-
tains two simple examples to provide the reader with
easy to follow examples of refactoring extractions.

Example 1.

We aim at illustrating how theMove Method
refactoring is obtained after applyingHARD1 and
HARD2 algorithms. We have chosen this example
in order to compare our approach with the one in [23],
as this example is the only result provided by the au-
thors.

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 296 Issue 7, Volume 5, July 2008

Let us consider the Java code example from [23]
shownbelow.

public class Class A {
public static int attributeA1;
public static int attributeA2;
public static void methodA1(){

attributeA1 = 0;
methodA2();

}
public static void methodA2(){
attributeA2 = 0;
attributeA1 = 0;

}
public static void methodA3(){

attributeA2 = 0;
attributeA1 = 0;
methodA1();
methodA2();

}
}

public class Class B {
private static int attributeB1;

private static int attributeB2;

public static void methodB1(){
Class A.attributeA1=0;

Class A.attributeA2=0;

Class A.methodA1();

}
public static void methodB2(){

attributeB1=0;

attributeB2=0;

}
public static void methodB3(){

attributeB1=0;

methodB1();

methodB2();

}
}

Analyzing the code presented above, it is obvious
that the methodmethodB1()has to belong toClassA,
because ituses features ofClassA only. Thus, the
refactoring Move Methodshould be applied to this
method.

We have appliedHARD1 and HARD2 algo-
rithms, introduced in Section 4, and theMove Method
refactoring formethodB1()was determined.

The two obtained clusters are:

• Cluster 1:
{ClassA, methodA1(), methodA2(), methodA3(),
methodB1(), attributeA1, attributeA2}.

• Cluster 2:
{ClassB, methodB2(), methodB3(), attributeB1,
attributeB2}.

The first cluster corresponds to application class
ClassA and the second cluster corresponds to applica-
tion classClassB in the new structure of the system.
Consequently, HARD1 andHARD2 algorithms pro-
pose the refactoringMove MethodmethodB1() from
ClassB to ClassA.

We mention that the refactoring proposed by our
algorithms coincides with the one given in [23].

Example 2.

We aim to illustrate how theMove Attribute
refactoring is obtained after applyingHARD1 and
HARD2 algorithms. Let us consider the Java code
example shown below.

public class Class A {
public static int attributeA2;
public static int attributeA1;
public static void methodA1() {

methodA2();
}
public static void methodA2() {

attributeA2 = 0;
}
public static void methodA3() {

attributeA2 = 0;
methodA1();
methodA2();
}

}

public class Class B {
private static int attributeB1;

private static int attributeB2;

public static void methodB1() {
attributeB1 = 0;

Class A.methodA1();

}
public static void methodB2() {

attributeB1 = 0;

attributeB2 = 0;

Class A.attributeA1 = 12;

}
public static void methodB3() {

attributeB1 = 0;

methodB1();

methodB2();

Class A.attributeA1 = 12;

}
public static void methodB4() {

attributeB1 = 0;

methodB2();

}
}

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 297 Issue 7, Volume 5, July 2008

Analyzing the code presented above, it is obvious
that theattributeattributeA1 has to belong toClassB,
because itis used only by methods fromClassB.
Thus, therefactoringMove Attributeshould be ap-
plied to this attribute.

We have appliedHARD1 and HARD2 algo-
rithms, introduced in Section 4, and theMove At-
tribute refactoring forattributeA1 was determined.

The obtained clusters are:

• Cluster 1:
{ClassA, methodA1(), methodA2(), methodA3(),
attributeA2}.

• Cluster 2:
{ClassB, methodB1(), methodB2(), methodB3(),
methodB4(), attributeA1, attributeB1, at-
tributeB2}.

The first cluster corresponds to application class
ClassA and the second cluster corresponds to applica-
tion classClassB in the new structure of the system.
Consequently, HARD1 andHARD2 algorithms pro-
pose the refactoringMove AttributeattributeA1 from
ClassA to ClassB.

5.2 JHotDraw Case Study
Our second evaluation is the open source software
JHotDraw, version 5.1 [31]. It is a Java GUI frame-
work for technical and structured graphics, developed
by Erich Gamma and Thomas Eggenschwiler, as a de-
sign exercise for using design patterns. It consists of
173 classes,1375 methods and475 attributes. The
reason for choosing JHotDraw as a case study is that
it is well-known as a good example for the use of de-
sign patterns and as a good design.

Our focus is to test the accuracy of our approach
on JHotDraw, i.e., how accurate are the results ob-
tained after applyingHARD1 and HARD2 algo-
rithms in comparison with the current design of JHot-
Draw. As JHotDraw has a good class structure,
HARD1 andHARD2 algorithms should generate a
nearly identical class structure. We evaluate how sim-
ilar is a partition the partition of JHotDraw determined
after applyingHARD1 andHARD2 algorithms with
its actual partition (that is considered a good partition,
as JHotDraw is well known for a good design).

After applyingHARD1 algorithm on JHotDraw
we have obtained the following results:

(i) The algorithm obtains a new class after the re-
grouping step, meaning that anExtract Class
refactoring is suggested. The methods which
are placed in the new class are:PertFig-
ure.handles, GroupFigure.handles, TextFig-
ure.handles,StandardDrawing.handles.

(ii) In the obtained partition there are no misplaced
attributes.

(iii) In the obtained partition there are four misplaced
methods.

In our view, the refactoring identified at (i) can be
justified. All these methods provide similar function-
alities, that is why, in our view, these methods can be
extracted in a new class in order to avoid duplicated
code, applyingExtract Classrefactoring.

After applyingHARD2 algorithm we have ob-
tained the following results:

(i) The algorithm obtains a new class after the re-
grouping step, meaning that anExtract Class
refactoring is suggested. The methods which
are placed in the new class are:PertFig-
ure.handles, GroupFigure.handles, TextFig-
ure.handles,StandardDrawing.handles.

(ii) There are two misplaced attributes,ColorEn-
try.fColor and ColorEntry.fName which are
placed inColorMap class. This means that two
Move Attributerefactorings are suggested.

(iii) There are four misplaced methods.

In our view, the refactorings identified at (ii) can
also be justified.ColorMap andColorEntry are two
classes defined in the same source file.ColorMap is
an utility class which manages the default colors used
in the application.ColorEntry is a simple class used
only by ColorMap, that is why, in our view,fColor
and fName attributes can be placed in either of the
two classes.

5.3 A Real Software System
This subsection describes the last case study used
for experimentally evaluate our approach. As shown
in Subsection 5.2,HARD1 obtains better results on
JHotDraw thanHARD2, that is why in this subsec-
tion we select onlyHARD1 algorithm for evalua-
tion. The chosen case study is a DICOM (Digital
Imaging and Communications in Medicine) [32] and
HL7 (Health Level 7) [33] compliant PACS (Picture
Archiving and Communications System) system, fa-
cilitating medical images management, offering quick
access to radiological images, and making the diagno-
sis process easier.

The analyzed application is a distributed system,
currently used by hospitals in locations such as Roma-
nia, United Kingdom, South Africa, Bulgaria and the
Republic of Moldova. It is a large system that consists

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 298 Issue 7, Volume 5, July 2008

of several subsystems in form of stand-alone and web-
based applications.We have appliedHARDalgorithm
on one of the subsystems from this application.

For confidentiality reasons, we will refer the ana-
lyzed application asA. A is a stand-alone Java appli-
cation used for archiving radiological images for long
time storage (on CD, DVD or tape).A consists of675
classes,5759methods and2970attributes.

After applyingHARD1 algorithm, a total of56
refactorings have been suggested:4 Move Attribute
refactorings,51 Move Methodrefactorings, and1 Ex-
tract Classrefactoring.

The obtained results have been analyzed by the
developers ofA and the following conclusions were
made:17 refactorings identified byHARD1 were ac-
cepted by the developers as useful in order to improve
the system;13 refactorings were acceptable for the
developers, but they concluded that these refactorings
are not necessary in the current stage of the project;26
refactorings were strongly rejected by the developers.

Analyzing the obtained results, based on the feed-
back provided by the developers, we have concluded
the following.

HARD1 successfully identified classes with low
cohesion (classes with more than one responsibility),
misplaced constants (constants used only on a sub-
tree of a class hierarchy, but defined in some base
class). These kind of weaknesses can be discovered
only if the developer manually inspects all the classes,
or if a bug arises. That is why automatic detection by
HARD1 of these kind of weaknesses can prevent sys-
tem failure or other kind of bugs and also save a lot of
manual work.

A large number of miss-identified refactorings are
due to technical issues: the use of Java anonymous
inner classes, introspection, the use of dynamic prox-
ies. These kind of technical aspects appear frequently
in projects developed in JAVA. In order to correctly
deal with these aspects, we have to improve only the
Data collection step of our approach, without modi-
fying HARD1 algorithm.

Another cause of miss-identified refactorings is
due to the fact that thedistance(Equation (1)) used for
discriminating entities in the clustering process con-
sider only two aspects of a good design:low coupling
andhigh cohesion. It would be also important to con-
sider other principles related to an improved design,
like: Single Responsibility Principle,Open-Closed
Principle, Interface Segregation Principle,Common
Closure Principle[34], etc. Future improvements of
our approach will deal with these aspects, also.

6 Comparative analysis with existing
approaches

In this section we aim at providing a comparison be-
tween HARD1 algorithm and similar existing ap-
proaches. We have chosen onlyHARD1 for evalu-
ation, because it obtains better results on JHotDraw
thanHARD2, as shown in Subsection 5.2.

A complete comparison between our approach
and the approaches from [21], [22], [24] and [25] can
not be provided, because of the following reasons:

• The obtained results for relevant case studies are
not available. There are given only short exam-
ples indicating the obtained refactorings.

• The techniques [24] and [25] address particular
refactorings: the one in ([24]) focuses on auto-
matic support only for identifying ill-structured
or low cohesive functions and the technique in
[25] focuses on system decomposition into sub-
systems.

A comparison between our approach and the one
presented in [23] is illustrated in Subsection 5.1. The
example from Subsection 5.1 is the only result given
by the paper [23].

The only approach on the topic studied in this pa-
per, that partially gives the results obtained on a rele-
vant case study (like JHotDraw) is [20]. The authors
use an evolutionary algorithm in order to obtain a list
of refactorings using case study JHotDraw.

The advantages ofCARD approach using
HARD1 algorithm, in comparison with the approach
presented in [20] are illustrated bellow:

• Our technique is deterministic, in comparison
with the approach described in [20]. The evolu-
tionary algorithm from [20] is executed10 times,
in order to judge how stable are the results, while
HARD1 algorithm from our approach is exe-
cuted justonce.

• The technique from [20] reports10 misplaced
methods, while in our approach there are only4
misplaced methods.

• The overall running time for the technique from
[20] is about300 minutes (30 minutes for one
run), whileHARD1 algorithm in our approach
provide the results in about4.73 minutes. We
mention that the execution was made on similar
computers.

• Because the results are provided in a reasonable
time, our approach can be used for assisting de-
velopers in their daily work for improving soft-
ware systems.

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 299 Issue 7, Volume 5, July 2008

The authors from [23] present a short example il-
lustrating theMove methodrefactoring. We have ap-
plied HARD1 algorithm on the code example from
[23] and the suggested refactoring was obtained by
our algorithm, also.

A clustering approach for identifying refactorings
in order to improve the structure of software systems
is developed in [3]. For this purpose, a clustering al-
gorithm (namedkRED) is introduced and an evalua-
tion of kRED algorithm on JHotDraw case study is
provided.

A comparison betweenHARD1 algorithm intro-
duced in this paper andkREDalgorithm is illustrated
in Table 1. The comparison is made considering the
following characteristics: the number of misplaced
methods, the number of misplaced attributes, the run-
ning time and if the algorithm identifies or not theEx-
tract Classrefactoring. We mention that the execution
was made on similar computers.

Table 1: Comparative results

Alg. No. of No. of Running Extract
misplaced misplaced time Class
methods attributes refactoring

HARD1 4 0 4.73 Yes

kRED 4 4 5 No

From Table 1 we can conclude that:

• The resultsobtained byHARD1 are better than
the results provided bykREDalgorithm, as the
numbers of methods and attributes misplaced by
HARD1 are less than those misplaced bykRED
algorithm.

• The running time ofHARD1 is less than the
running time ofkRED.

• HARD1 algorithm, unlikekRED, identifies the
Extract Classrefactoring, also.

We cannot make a complete comparison with
other refactoring approaches existing in the litera-
ture, because, for most of them, the obtained results
for relevant case studies are not available. Most ap-
proaches give only short examples indicating the ob-
tained refactorings. Other techniques address particu-
lar refactorings: the one in [24] focuses on automated
support only for identifying ill-structured or low co-
hesive functions and the technique in [25] focuses on
system decomposition into subsystems.

7 Conclusions and Further Work
Starting from the approach introduced in [3], we have
presented in this paper two hierarchical clustering al-
gorithms (HARD1 andHARD2) that can be used for
improving software systems design.

We have demonstrated the potential of our algo-
rithms by applying them to the open source case study
JHotDraw and a real software system and we have
also presented the advantages of our approach in com-
parison with existing approaches.

Further work can be done in the following direc-
tions:

• To use other search based approaches, cluster-
ing techniques [15, 16, 17], and machine learn-
ing techniques [29] in order to determine refac-
torings that improve the design of a software sys-
tem.

• To improve thedistancesemi-metric used for
discriminating the entities from the software sys-
tem.

• To develop a tool (as a plugin for Eclipse)
that is based on determining refactorings using
HARD1 andHARD2 algorithms.

• To applyHARD1 andHARD2 algorithms for
other case studies, like JEdit [35].

• To apply our approach in order to transform
non object-oriented software into object-oriented
systems.

Acknowledgements: This work was supported by
the research project TD No. 411/2008, sponsored by
the Romanian National University Research Council.

References:

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts,Refactoring: Improving the Design
of Existing Code. Addison-Wesley, Reading,
MA, USA, 1999.

[2] W. J. Brown, R. C. Malveau, I. Hays W. Mc-
Cormick, and T. J. Mowbray,AntiPatterns:
refactoring software, architectures, and projects
in crisis. New York, NY, USA: John Wiley &
Sons, Inc., 1998.

[3] I. G. Czibula and G. Serban, Improving Systems
Design Using a Clustering Approach,Interna-
tional Journal of Computer Science and Network
Security (IJCSNS), vol. 6, no. 12, 2006, pp. 40–
49.

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 300 Issue 7, Volume 5, July 2008

[4] G. Serban and I.G. Czibula, On evaluating
softwaresystems design,Studia Universitatis
“Babes-Bolyai”, Informatica, LII(1), 2007, pp.
55–66.

[5] R. W. Schwanke and M. A. Platoff, Cross ref-
erences are features, inProceedings of the 2nd
International Workshop on Software configura-
tion management. New York, NY, USA: ACM
Press, 1989, pp. 86–95.

[6] R. W. Schwanke, An intelligent tool for re-
engineering software modularity, inICSE ’91:
Proceedings of the 13th international conference
on Software engineering. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1991, pp.
83–92.

[7] S. Mancoridis, B. S. Mitchell, C. Rorres,
Y. Chen, and E. R. Gansner, Using automatic
clustering to produce high-level system organi-
zations of source code, inIEEE Proceedings of
the 1998 Int. Workshop on Program Understand-
ing (IWPC’98). Piscataway, NY: IEEE Press,
1998, pp. 45–52.

[8] S. Mancoridis, B. S. Mitchell, Y.-F. Chen, and
E. R. Gansner, Bunch: A clustering tool for the
recovery and maintenance of software system
structures, inICSM, 1999, pp. 50–59.

[9] N. Anquetil and T. Lethbridge, Extracting con-
cepts from file names; a new file clustering cri-
terion, in20th International Conf. Software En-
gineering, 1998, pp. 84–93.

[10] D. H. Hutchens and V. R. Basili, System struc-
ture analysis: clustering with data bindings,
IEEE Trans. Softw. Eng., vol. 11, no. 8, 1985,
pp. 749–757.

[11] J. M. Neighbors, Finding reusable software com-
ponents in large systems, inWorking Conference
on Reverse Engineering, 1996, pp. 2–10.

[12] S. C. Choi and W. Scacchi, Extracting and re-
structuring the design of large systems,IEEE
Softw., vol. 7, no. 1, 1990, pp. 66–71.

[13] V. Tzerpos and R. C. Holt, Mojo: A distance
metric for software clusterings, inWorking Con-
ference on Reverse Engineering, 1999, pp. 187–
193.

[14] V. Tzerpos and R. C. Holt, ACDC: An algorithm
for comprehension-driven clustering, inWorking
Conference on Reverse Engineering, 2000, pp.
258–267.

[15] N. P. Lin, C.-I. Chang, H.-E. Chueh, H.-J. Chen,
and W.-H., Hao,A Deflected Grid-based Algo-
rithm for Clustering Analysis,WSEAS Transac-
tions on Computers, Issue 3, vol. 7, 2008, pp.
125–132.

[16] W., Barbakh and C., Fyfe,A Novel Construc-
tion of Connectivity Graphs for Clustering and
Visualization,WSEAS Transactions on Comput-
ers, Issue 5, vol. 7, 2008, pp. 424–434.

[17] J.R., Avila, A.F., Ramirez, C.A., Cruz, and I.,
Vasquez-Alvarez,The Clustering Algorithm for
Nonlinear System Identification,WSEAS Trans-
actions on Computers, Issue 7, vol. 7, 2008, pp.
1179–1188.

[18] A. van Deursen, L. Moonen, A. van den Bergh,
and G. Kok, Refactoring test code, inIn M.
Marchesi, editor, Extreme Programming and
Flexible Processes; Proc. XP2001, 2001., 2001,
pp. 92–95.

[19] Z. Xing and E. Stroulia, Refactoring detection
based on UMLDiff change-facts queries,WCRE,
2006, pp. 263–274.

[20] O. Seng, J. Stammel, and D. Burkhart, Search-
based determination of refactorings for improv-
ing the class structure of object-oriented sys-
tems, inGECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolution-
ary computation. New York, NY, USA: ACM
Press, 2006, pp. 1909–1916.

[21] T. Dudzikan and J. Wlodka, Tool-supported dis-
covery and refactoring of structural weakness,
2002, masters’ Thesis, TU Berlin.

[22] L. Tahvildari and K. Kontogiannis, A metric-
based approach to enhance design quality
through meta-pattern transformations, inCSMR
’03: Proceedings of the Seventh European Con-
ference on Software Maintenance and Reengi-
neering. Washington, DC, USA: IEEE Com-
puter Society, 2003, pp. 183–192.

[23] F. Simon, F. Steinbruckner, and C. Lewer-
entz, Metrics based refactoring, inCSMR ’01:
Proceedings of the Fifth European Conference
on Software Maintenance and Reengineering.
Washington, DC, USA: IEEE Computer Society,
2001, pp. 30–38.

[24] X. Xu, C.-H. Lung, M. Zaman, and A. Srini-
vasan, Program restructuring through clustering
techniques, inSCAM ’04: Proceedings of the
Source Code Analysis and Manipulation, Fourth
IEEE International Workshop on (SCAM’04).
Washington, DC, USA: IEEE Computer Society,
2004, pp. 75–84.

[25] C.-H. Lung, Software architecture recovery and
restructuring through clustering techniques, in
ISAW ’98: Proceedings of the third international
workshop on Software architecture. New York,
NY, USA: ACM Press, 1998, pp. 101–104.

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 301 Issue 7, Volume 5, July 2008

[26] F. Simon, S. Loffler, and C. Lewerentz, Distance
based cohesionmeasuring, inproceedings of the
2nd European Software Measurement Confer-
ence (FESMA), Technologisch Instituut Amster-
dam, 1999, pp. 69–83.

[27] J. M. Bieman and B.-K. Kang, Measuring
design-level cohesion,Software Engineering,
vol. 24, no. 2, 1998, pp. 111–124.

[28] A. K. Jain, M. N. Murty, and P. J. Flynn, Data
clustering: a review,ACM Computing Surveys,
vol. 31, no. 3, 1999, pp. 264–323.

[29] T. M. Mitchell, Machine Learning. New York:
McGraw-Hill, 1997.

[30] ObjectWeb: Open Source Middleware,
http://asm.objectweb.org/.

[31] E. Gamma, JHotDraw Project,
http://sourceforge.net/projects/jhotdraw.

[32] Digital Imaging and Communications in
Medicine, http://medical.nema.org/.

[33] Health Level 7, www.hl7.org/.
[34] T. DeMarco, Structured analysis and system

specification,Software pioneers: contributions
to software engineering, 2002, pp. 529–560.

[35] JEdit Programmer’s Text Editor,
http://www.jedit.org.

WSEAS TRANSACTIONS on ELECTRONICS Istvan Gergely Czibula, Gabriela (Serban) Czibula

ISSN: 1109-9445 302 Issue 7, Volume 5, July 2008

