
Computational Techniques to Solve Electromagnetic Problems by Using
FEM

N.FÜSUN SERTELLER (*) , DURSUN ÜSTÜNDAĞ(**)

* Electrical Education Department, Faculty of Technical Education,
**Mathematics Department, Faculty of Art and Science

Marmara University, Ziverbey Campus 34722, Istanbul/TURKEY.
e-mail: fserteller@marmara.edu.tr, dustundag@marmara.edu.tr

Abstract: Numerical modeling is nowadays an essential tool for all researchers involved with the field of electrical,
mechanical engineering, physics and etc. The object of this paper is to provide a clear, easy and understandable study
on FEM (finite element method) using MATLAB and MATHEMATICA, which both provide powerful support to
solve large equations. 1D and 2D FEM solutions are studied on electromagnetic (EM) field distribution which is one
of the essential parts of electrical engineering. The results from the two different programs were compared with those
obtained by using the finite difference method (FD). Computer programs and formulations of the finite element
technique have been constructed to make the concept more understandable and explicit for engineering students and
practicing engineers.

Key-Words: MATLAB, Mathematica, FEM, FD, Electrostatic Analysis.

1 Introduction
In the past few decades, numerical analysis methods
have come to prominence and became more appealing
with the advent of fast digital computers. In the study
of electrostatics the most commonly used numerical
techniques for the numerical solution of the partial
differential equations is finite difference (FD) and
finite element method (FEM). Both methods[22] are
based on some discretization of the fields into a
collection of the points or cells so that the differential
equations are approximated by a set of algebraic
equations on this collection. This system of algebraic
equations is then solved to produce a set of discrete
values which approximates the solution of the
differential systems over the fields. Furthermore, FD
uses point-wise approximations of the governing
equations, while FEM uses piecewise or regional
approximations. Although numerical methods give
approximate solutions, these solutions are sufficiently
accurate for electrical engineering purposes[27,28].
Without computers, solving the numerical equations is
very complicated and time consuming. An intersection
of Computational science and electrical engineering
(CSEE) is a new and rapidly evolving field. O’Leary
defined CSEE as “an interdisciplinary approach to the
solution of the problems in the natural science and
technology, drawing on the tools of a science or
engineering discipline plus computer science plus
mathematics”. This definition of CSEE can simply be
illustrated in Figure 1. Furthermore, as the software
enables visualization, the term CSEE can also be
extended to encompass computational and visual

electromagnetic for electrical engineers (CVEMEE)
[9].

In this study, using MATLAB and
MATHEMATICA programming languages some
computer programs were developed for finding
solution of Poisson type equations, which are
commonly used to define the magnetic field of the

Fig.1 The definition of computational science and
engineering

electrical systems. It is assumed that the internal
potential values within any domain are initially empty.
In the EM problems, the region is chosen as the

WSEAS TRANSACTIONS on ELECTRONICS

N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 166 Issue 5, Volume 5, May 2008

mailto:fserteller@marmara.edu.tr
mailto:dustundag@marmara.edu.tr

most popular and the most explicit state. This is
because of the complexity of the numerical
methods. This kind of structure is seen generally in
transmission lines, earthing systems and in electrodes
with a gap between the electrodes.

2 Comparisons of Programming
Features
This study assesses the similarities between two
powerful software programs, namely MATLAB[7]
and MATHEMATICA[21], which are important for
engineers and scientists. MATLAB started as an
interactive program for doing matrix calculations and
has now grown to a high level mathematical language
that can solve integrals and differential equations
numerically and plot a wide variety of two and three
dimensional graphs. On the other hand,
MATHEMATICA is a state-of-the-art and powerful
system for doing mathematics by computer. It has
steadily grown in breadth and depth to become today
an unparalleled platform for all forms of computation.
Although MATLAB is widely-used among engineers,
it is more suitable for numerical solutions of
engineering problems. MATHEMATICA is designed
for doing symbolic computations rather than numerical
ones. MATHEMATICA has inbuilt converters for
converting to or from other languages and file formats
such as FORTRAN and C. This means that the users
of these languages are able to adapt easily their
programs to MATHEMATICA.
 In this study, it is shown how MATLAB and
MATHEMATICA are suited for engineering
computations. Let us see some examples:
The first one is to calculate the element coefficient
matrix and the potential values of an area in MATLAB
and MATHEMATICA respectively. In MATLAB,

 ce=(p*p’+q*q’)/(4.0* Area)
 v=Inv(ce)*b;

and in MATHEMATICA,

 ce=Outer[Times, p, p]+Outer[Times,q,q]/(4.0 Area)
 v=Inverse[ce].b

where “p” and “q” are local coordinate vectors, “ce” is
a global coefficient matrix and “b” the right hand
vector. MATHEMATICA does not understand the
transpose of one dimensional matrix, but the symbol
(’) implies the transpose of the vector in MATLAB
automatically [1, 2, 3]. Although a vector “q” can be
multiplied by its transpose using (’) in MATLAB, this
can be done by calling a special function called

“Outer” in MATEMATICA. In MATLAB, The
symbol (*) is used for an ordinary multiplication and a
matrix product operator. However, MATHEMATICA
separates this multiplication and uses (*) for an
ordinary multiplication and the symbol (.) for the
matrix product.

Standard MATLAB is not capable of telling you
that the cosine function is the derivative of the sine
function. So when we plotted the sine function in
MATLAB we have done all the hard work implicitly.
With the command 'x=0:0.01:2*pi' we have selected
the sample points and with 'plot(x, sin(x))' we have
told MATLAB to plot the sample points and use an
interpolation technique to find (and plot) the function
values in between the samples. Now compare this with
the way MATHEMATICA operates. The command to
plot the sine function would look something like:

Plot[Sin[x], {x, 0, 2 Pi}]

Now it is MATHEMATICA who decides on the
sampling interval (in fact it is not even a uniform
sampling, i.e. more samples are taken where needed to
obtain an accurate plot).
As a programming language, MATHEMATICA and
MATLAB contain programming structures that are
similar to those in other programming languages such
as function definition, looping structures ect. But they
use quite different syntax and punctuation conventions
for coding. However MATHEMATICA allows us to
program in several different styles, including
procedural, rule-based, mathematical, and functional
programming, mirroring the styles of programming
used in BASIC, FORTRAN, C, Lisp, APL, and many
other languages. As a result, MATHEMATICA and
MATLAB provide “grey boxes” that is of sufficiently
high level to avoid unnecessary details, yet visible
enough to be modified and customized by users.

3 Governing Equations
This work considers Poisson type electromagnetic
equation in a region whose two-dimensional profile is
given in Fig. 2:

 2 sV ρ
ε

∇ = − , (1)

where sρ charge density, ε permittivity of medium.
For 2D, one horizontal outside boundary value of

and a vertical boundary of 30 were used.
Inside the boundary, the value is zero. We consider
only one quarter part of the device . If the

50V V

(,x y 0)≥

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 167 Issue 5, Volume 5, May 2008

solution region is charge free 0sρ = , the Equation (1)

turns into Laplace's equation:

2 2

2
2

∂ ∂
+

∂ ∂
)n

2 0V VV
x y

∇ = = (2)

 Given the size (nx y× of the solution region in
Fig.2, the goal is here to divide the region into
subregions. Suppose that xn and are numbers of
divisions in

yn
x and y direction. The total number of

elements , nodes and the boundary ne dn pn are then
given:

 . (3)

2

(1 (1

2()

x y

d x y

p x y

ne n n

n n n

n n n

=

= + +

= +

))

On the solution region, a systematic way of

numbering the elements and nodes are completed. It is
easy to model uniform and nonuniform meshes. A
mesh is also uniform if all xΔ and yΔ are equal,
otherwise, a nonuniform mesh is preferred if it is
known in advance that the parameter of interest varies
rapidly within some part of the solution domain. This
allows a concentration of relatively small elements in
the regions where the parameter changes rapidly and
particularly since these regions are often of greatest
interest in the solution [10,11,24].

Beside nodes and elements numbering, we should
consider bandwidth reduction on FEM analysis. The
bandwidth of the global coefficient matrix depends on
the nodes numbering. In order to minimize the
bandwidth, we must number the nodes across the
narrowest part of the region.

The approximate solution for the whole region is

 (4)
1

eV(,) (,)
N

e
V x y x y

=

≅∑

and the energy per unit length associated with the
element is given by the following Equation: e

2 21 1

2 2
dse eW E V dsε ε= = ∇∫ ∫ (5)

This can be written in matrix form:

 [] []()1
2

T e
e eW V C Vε ⎡ ⎤= ⎣ ⎦

where denotes the transpose of the matrix and T
[])(eC is the coefficient matrix. Finite differences are
solved using general formulation of Equation (2),
which is the three point approximation used for the
second derivative. Thus transforms to the
following equation [2,3,4]:

(,)V x y

 , , 1, , 1
1 ()
4i j i j j i j i j i jV V V V V+ − + −= + + + , 1 (7)

For simplicity, we use the notation that the index
 indicates the coordinate(,)i j (,)i jx y .

On the other hand, 1D electromagnetic equation
can be given by the following equation:

 k′′Φ = − (8)

In order to solve this boundary value problem using
finite differences, we obtain

 2
1 1

1 (
2i i i kh+ −Φ = Φ +Φ +) (9)

where Nh /1= . The entire domain is divided
equal segments each of length as in Figure 2 so that
there are

N

1+N nodes. By integrating 1D
electromagnetic Equation (8) with respect to x we
obtain the exact solution[1,18] in the following form:

BAxkx
++−=Φ

2

2

 (10)

4 Numerical Results
To implement the methods for solving one and two
dimensional Poisson and Laplace type problems
shown in Fig.2 - 3, some programs were developed in
both MATHEMATICA and MATLAB and are given
in Appendix. Although the programs can be used for
1D, 2D and 3D EM problems, their general usages are
only given for 1D and 2D. In this paper, we therefore
attempt to solve 1D and 2D EM problems[24,26].

e (6)

The 1D EM problems involve mostly magnetic
induction, magnetic flux and magnetic field for
electrical engineers and researchers. The solution is
done for 1D since only z direction of the Poisson
equation (Eq.1) is handled. The first example was run
in Mathematica, the second using MATLAB. In this
analysis 100 and 300 elements was used with the
suitable iteration number in which the numerical
solutions should be in a good agreement with exact
solution. Poisson type equation (Eqs.8 and 9) was
developed for two different kind right hand sides (see
in appendix 1D programs).

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 168 Issue 5, Volume 5, May 2008

For 2D, the solution region which has been
investigated, given in Figure 3, whose dimensions are
in meters. In the FEM analysis, 83 nodes and 112
triangular elements are chosen. This indicates a
relatively fine meshing structure for this work. The
linear system constructed according to Equation (4) is
solved by the preconditioned conjugate gradient
[5,6,9,25]. The numerical results are tested by the FD
method, based on 37 boundary elements for outside
boundaries and 47 nodes inside the region. In both
methods, numerical solutions are obtained at the same
spatial locations.

Fig.2 One dimensional example

Fig.3 Solution domain for finite elements

To solve the problem using FEM a mesh is applied to
Fig. 3 and FD is used in testing FEM’s accuracy.

Fig.4. Potentials values along the contour.

This solution was calculated using the
MATHEMATICA program and results are shown in
the Figs 3, 4 and 5. The FEM and FD programs give
equal values at the same spatial nodes.

Fig.5. Potential Values versus ()x m . Comparison the
FEM and FD along x coordinate.

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 169 Issue 5, Volume 5, May 2008

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVH-4HNSJM3-19&_user=1730902&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000054352&_version=1&_urlVersion=0&_userid=1730902&md5=25fe82c460ce7864418f3f79be3280c5#eq5%23eq5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVH-4HNSJM3-19&_user=1730902&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000054352&_version=1&_urlVersion=0&_userid=1730902&md5=25fe82c460ce7864418f3f79be3280c5#bib7%23bib7

Fig.6. Potential Values versus FEM and FD
comparison along the coordinate.

()y m
y

Figure 7 illustrates the computer output of the 1D
MATHEMATICA program. The exact and the
numerical results are also compared on the same graph
shown in Figure 8. After developing the programme,
the numerical results can easily be visualized.

Fig.7 One dimensional FEM analysis results

The FEM analysis graph shown in Fig.7 was given
separately, since the exact solution and FEM solution
coincide on the same spatial points.

Fig.8. Comparison of 1D EM numerical and exact
solution.

The iteration number plays an important role in the
numerical solution of the equations because the
numerical solution approaches to exact solution as the
iteration number increases.

5 Conclusions
Although simulation programs exist that greatly
simplify problems relating to EM, and FEM and FD,
they are not adequate for engineering design and
analyses. Solving a problem by limiting the model
within defined boundaries also means reducing the
accuracy of the solution. This study was carried out for
FEM using MATHEMATICA and MATLAB
programs. It was observed that MATHEMATICA can
easily be used as a programming language like
MATLAB, and has greater functionality than
MATLAB in some areas, for instance doing symbolic
computations rather than numerical ones. The FEM
results were compared with those obtained by using
the FD method, coded in MATHEMATICA and
MATLAB. Finally, the results of the two software
programs were found to be closely matched. The
comments presented in this paper can serve as an
important introduction to a course of more complex
computational methods.
 The ability to use higher order languages such as
MATHEMATICA and MATLAB is becoming an
important skill sought by industrial employers in

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 170 Issue 5, Volume 5, May 2008

today’s competitive environment. Therefore, the
ability to program in low-level computer languages
such as C or FORTRAN will become less relevant to
industry in the nearest future.

References:
[1] M.N.O. Sadiku, Elements of Electromagnetic,

Oxford university press, 2001.
[2] O.C. Zienkiewicz, R.L. Taylor, The Finite Element

Method, McGraw Hill Company, 1989.
[3] E. Don, Mathematica Schaum' Outlines, Mc Graw

Hill Company, 2001.
[4] B. Klaus-Jürgen, Finite Element Method

Procedures, prentice Hall, 1996.
[5] D.P. O’Leary, Computational science and applied

mathematics, IEEE Computational Science &
Engineering, pp.13-18, 1997.

[6] J. Ju, D.V. Thiel, Computational and visual
Electromagnetic using an Integrated Programming
language for Undergraduate Engineering Students,
IEEE transaction on magnetic, Vol.36, No.4,
pp.1000-1003, 2000.

[7] B. M. Brenier, MATLAB for Engineers, Addison-
Wesley, 1995.

[8] M.K. Haldar, Introducing the Finite Element
Method in Electromagnetic to Undergraduate
Using MATLAB, International Journal of
Electrical Engineering Education, Vol. 43, pp.
232-244, 2006.

[9] L.C. Agba, M. Sadıku, A. Makki, A Further
Introduction to Finite Element Analysis of
Electromagnetic Problems, IEEE transaction on
Education, Vol. 34, No. 2, pp. 322-329, 1991.

[10] J. Ju, D.V. Thiel, Numerical Techniques in
Electromagnetic and Communications- A PC
Based Third Year Undergraduate Subject for
Microelectronic Engineering, IEEE AP-S
International Symposium and URSI Radio
Science meeting, USA, pp. 111-114, 1994.

[11] E. Hinton, D.R.J. Owen, An introduction to
finite element calculation, Swansea, U.K.
Pineridge, pp. 247-260, 1980.

[12] T. Akhlanghi, Finite Element Lower Bound Limit
Analysis in Soil Mechanics Using Nonlinear
Programming, Wseas Transaction on Advances
in Engineering Education, Vol. 3, No. 8, 2006.

[13] K. LAPIN, S. RAGAISIS, Integrating team
projects into the SE Curriculum, Wseas
transaction on Advances in Engineering
Education, Issue 3, Volume 5, March, 2008.

[14] J.C.M., KAMPE, Division of Engineering
Fundamentals, MATLAB Programming, Virginia
Polytechnic & State University, 1999.

[15] E. Hall, Mathematical and Visualization
Software, ITC Research Computing Support
Group, www.itc.virgina.edu.tr.

[16] V.L. Charles, Introduction to Scientific
Computing: A Matrix Vector Approach Using
MATLAB, Printice Hall, 1997.

[17] O. Preis, T. Biro, I. Ebner, I. Ticar, An
Electromagnetic Field Analysis Tool in Education,
IEEE Transaction on Magnetics, Vol. 38, No.2,
pp.1317-1320, 2002.

[18] M. Eduardo, D. Tobiac, Experimental Study of
the Neumann and Dirichlet Boundary Conditions
in Two-Dimensional Electrostatic Problems,
American Journal of Physics, pp. 70 -12, 2002.

[19] K.F. Warnick, R.H. Selfridge, D.V. Arnold,
Teaching Electromagnetic Field Theory using
Differential Forms, IEEE Transaction on
Education, Vol. 46, No.1, pp. 53-68, 1997.

[20] K.R. Richter, K. Preis, H. Stoegner, Numerical
field Calculations in Electrical Engineering
Education, IEEE MELECON’83, Volume1,
Athens, Greece.

[21] P. Wellim, R. Gaylord, S. Kamin, An
Introduction to Programming with Mathematica,
Cambridge University Press, 2005.

[22] G.D. Smith, Numerical Solution of Partial
Differential Equations :Finite Difference Methods,
Oxford University Press, 2004.

[23] M. Rizzi, M. Maurantonio, B., Castagnolo, 3d
Finite Element Model for GaAs α – particles pixel
detector, WSEAS Transaction on Electronic, Issue
4, Volume 1, October, 2004.

[24] K.Aniserowicz, Comparison of Diffrent
Numerical Methods for Solving Boundary-Value
Problems in ElectroMagnetics, IEEE Transactions
on Education, Vol. 47, No.2, pp. 241-246, 2004.

[25] M.N.O. Sadiku, A Comparison of Numerical
Methods for Computing Electromagnetics Fields,
Conference Proceedings IEEE Southeastcon, Vol.
1, pp. 42-47, 1990.

[26] P.P. Silvester, R.F. Ferrari, Finite Element for
Electrical Engineer, Cambridge Univerisity Press,
1983.

[27] O.C. Zienkiewicz, K. Morgan, Finite Element
and Approximation, Nw York: Wiley-
Interscience, 1982.

[28] J.L. Volakis, A. Chatterjee, L.C. Kempel, Finit
Element Method for Electromagnetics,
Piscataway, NJ: IEEE Press, 1998.

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 171 Issue 5, Volume 5, May 2008

mailto:www.itc.virgina.edu.tr

Appendix
(* Finite Difference Method for 2D*)
 (* v1: Vertical Potential *)
(* v2: Horizontal Potential*)
(* v3 : Potential inside the region*)
(* ni: iteration number*)
(* nx: node number of x coordinate*)
(*ny: node number of y coordinate*)
(* v: Potential values inside the region*)
Clear[ni,nx,ny];
v1=30.0;
v2=20.0;
v3=0.0;
ni=200.0;
nx=9.0;
ny=11.0;
(* Input File *)
v=Table[0,{nx},{ny}]
For[j=1,j≤ny-1,j++, v[[1,j]]=v3;
 v[[nx,j]]=v1;
];

For[i=1,i≤nx-1,i++,
 v[[i,ny]]=v2; v[[i,1]]=v3;
];
v[[nx,1]]=15.0;
v[[1,ny]]=10.0;
v[[nx,ny]]=25.0;
For[k=1,k≤ni,k++,
 For[i=2,i≤nx-1,i++,
 For[j=2,j≤ny-1,j++,
If[i≤5Λj≤5,v[[i,j]]=v3;,
 v[[i,j]]=0.25 (v[[i+1,j]]+v[[i-
1,j]]+v[[i,j+1]]+v[[i,j-1]]);]
];
];
];
m1=Do[Print[v[[i,j]]],{i,2,4},{j,2,5}]
Do[Print[v[[i,j]]], {i,1,nx},{j,1,ny}]
Print["v1=",v[[2,5]],"------" "v2-=",v[[2,4]],"------
""v3-=",v[[3,5]],"-------""v4=",v[[3,4]],"-------","v7 =-
",v[[4,3]]]
and
Finite Difference 2D [Matlab]
Clear[ni,nx,ny];
v1=30.0;
v2=20.0;
v3=0.0;
ni=200.0;
nx=9.0;
ny=11.0;
% Input File
v=zeros(nx,ny);
For j=1:ny-1
 V(1,j)=v3;

 v(nx,j)=v1;
 end

For i=1,i≤nx-1,i++,
 v(i,ny)=v2;
 v(i,1)=v3;
 end
v(nx,1)=15.0;
v(1,ny)=10.0;
v(nx,ny)=25.0;

For k=1:ni
 For i=2:nx-1
 For j=2:ny-1
 If(i≤5 and j≤5,v(i,j)=v3;
 v(i,j)=0.25 *(v(i+1,j)+v(i-1,j)+v(i,j+1)+v(i,j-
1));
 end
 end
 end

diary a:test1:out
[v(2,5) , v(2,4), v(3,5),v(3,4),v(4,3)]
[[1:nx,1:ny] v(i,j)]
diary off

(* Finite Element Method for 2D*)
(* nd: node number*)
(*c: global coefficient matrix*)
(*ce: element coefficient matrix *)
(*np: fixed element number*)
(*val: boundary element value*)
(*b: right hand side matrix*)
(*ndp: boundary node number*)
Clear[nd,c,ce,np,nd,ne,b,nl,x,y,val,ndp];
nd=83;
ne=112;
(* Input File *)
{n1,np,x,y,pot,npot}
p=Table[0,{3}];
c=Table[0,{nd},{nd}];
b=Table[0,{nd}];
For[i=1,i≤ ne,i++,
 knodes=nl[[i]];
 xl=x[[knodes]];
 yl=y[[knodes]];
 Print[yl,xl];
 p=Table[0,{3}];
 q=Table[0,{3}];
 p[[1]]=yl[[2]]-yl[[3]];
 p[[2]]=yl[[3]]-yl[[1]];
 p[[3]]=yl[[1]]-yl[[2]];
 q[[1]]=xl[[3]]-xl[[2]];
 q[[2]]=xl[[1]]-xl[[3]];
 q[[3]]=xl[[2]]-xl[[1]];

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 172 Issue 5, Volume 5, May 2008

 alan=0.5 *Abs[p[[2]]* q[[3]]-q[[2]]* p[[3]]];

 (* Determine coefficient Matrix *)
 ce=(Outer[Times,p,p]+Outer[Times,q,q])/(4.0 alan);
 Print[MatrixForm[ce]];

 (* Assemble *)
 For[j=1,j 3,j++, ≤
 ir=nl[[i,j]];
 Print[ir];
 iflag1=0;
 For[k=1,k np,k++, ≤
 Print["k=",k];
 If[ir==ndp[[k]],
 c[[ir,ir]]=1;
 b[[ir]]=val[[k]];
 iflag1=1;
];
];
 If[iflag1==0,
 For[i=1,i≤ 3,l++,
 ic=nl[[i,l]];
 iflag2=0;
 For[k=1,k np,k++, ≤
 If[ic==ndp[[k]],
 b[[ir]]-=ce[[j,l]]* val[[k]];
 iflag2=1;
];
];
 If[iflag2==0,
 c[[ir,ic]]+=ce[[j,l]];
];
];
];
];
];
v=Inverse[c].b;
Print["Node"," x "," y "," v "];
Print["---------------------------------------"];
Do[Print[i," ",x[[i]]," ",y[[i]],"
",v[[i]]],{i,1,nd}];

 (* Finite Difference 1D Poisson Type Problem with
constant k (k=1.5)*)
(*h mesh size*)
(*ni=no. of iteration desired*)
(*n=no. of elements*)
Needs["PlotLegends`"]
Clear[x,x1,h,phi,phiExact];
n=100;
ni=10000;
l=1.0;
h=N[1/n];
x=h Range[0,n];
x1=Drop[x,{1,2}];

phi=Table[0,{n+1}];
For[k=1,k<=ni, k++,
For[i=2,i<=n-1, i++,
phi[[i]]=(phi[[i+1]]+phi[[i-1]]+ 1.5 h^2)/2;];];
(*calculate exact value*)
constant=0.75;
phiExact[x0_]:=constant x0 (1-x0);
g2=ListPlot[Transpose[{x,phi}],Joined-
>True,PlotStyle→{{Blue,Thickness[.005]},{Green,Th
ickness[.005],Dashing[{.02}]}},DisplayFunction→Ide
ntity];
g3=Plot[phiExact[x0],{x0,0,1},PlotStyle→{{Red,Thic
kness[.005]},{Green,Thickness[.005],Dashing[{.02}]}
},DisplayFunction→Identity];
ShowLegend[Show[g3,g2,g1,PlotRange-
>All,DisplayFunction→$DisplayFunction],{{{Red,"E
xact"},{Blue,"FD"},{Green,"FEM"}},LegendPosition
->{1.5,-0.5}}]

Following is MATLAB software:

% 1D Possion Equation k=1.5
% Finite difference method
% Matlab sofware
n=100;
ni=1000;
l=1.0
h=1/n
phi=zeros(n+1,1);
for k=1:ni
phi([2:n])=[phi(3:n+1)+phi(1:n-1)+1.5 *h^2]/2;
end
%Exact value calculation
Phiex=075*x (1.0-x)
Diary a:test.out
[[1:n+1]’phi phiex]
Diary off

[14,15,16]

The following 1D Poisson type equation by using
Finite element method:

(* 1D Finite Element *)
Clear[nd,c,ce,np,nd,ne,b,nl,x,val,ndp];
nd=101;
np=2;
ne=nd-1;
(* Input File *)
nl=Table [{i, i+1},{i,1,nd-1}];
delta=1/ne;
x=Table [(i-1) delta, {i, 1, nd}];
val= {0.0, 0.0}
ndp= {1, nd};
c=Table [0, {nd}, {nd}];
b=Table [0, {nd}];

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 173 Issue 5, Volume 5, May 2008

Qvec=Table [0, {nd}];
p=Table [0, {2}];
For [i=1,i�ne,i++,
 knodes=nl [[i]];
 xl=x[[knodes]];
 p[[1]]=1.0;
 p[[2]]=-1.0;
 l=xl[[2]]-xl[[1]];
 Qvec[[i]]=1.5 l;
 (* Determine coefficient Matrix *)
 ce0=Outer[Times,p,p];
 ce=ce0/l;
 b=Qvec;

 (* Assemble *)
 For [j=1, j≤2, j++,
 ir=nl [[i, j]];
 iflag1=0;
 For [k=1,k≤np,k++,
 If [ir= =ndp[[k]],
 c[[ir,ir]]=1;
 b[[ir]]=val[[k]];
 iflag1=1;
];
];
 If[iflag1= =0,
 For [l=1,l≤2,l++,
 ic=nl[[i,l]];
 iflag2=0;
 For[k=1,k≤np,k++,
 If[ic= =ndp[[k]],
 b[[ir]]-=ce[[j,l]] val[[k]];
 iflag2=1;
];
];
 If[iflag2= =0,
 c[[ir,ic]]+=ce[[j,l]]
];
];
];
];
 b[[i]]+=Qvec[[i]];
];
 v=Inverse[c]. b;
 Print["Node"," x "," v "];
 Print ["---------------------------------------"];
 Do [Print [i," ", x [[i]]," ", v [[i]]],{i,1,nd}];
 g1=ListPlot[Transpose[{x,v}],Joined-
>True,PlotStyle→{{Green,Thickness[.005]},{Green,T
hickness[.005],Dashing[{.02}]}},DisplayFunction→Id
entity]

(*One dimensional Problem Poisson type right
hand side x2*)
(*h mesh size*)

(*ni=no of iteration desired*)
Needs["PlotLegends`"]
Clear[h,phi];

n=300;
ni=9000;
l=1.0;
h=N[1/n]
phi=Table[0,{n+1}];
x=h Range[0,n];
x1=Drop[x,{1,2}]

For [k=1 , k≤ni,k++,
 For[i=2,i≤n-1,i++,
 phi[[i]]=(phi[[i+1]]+phi[[i-1]]+x1[[i]]^2 h^2)/2;
];
];
(*calculate exact value*)
(*phiExact=x (1.0-x^3)/12 *)
phiExact=# (1.0-#^3)/12&

Below is to plot function

g1=ListPlot[Transpose[{x,phi}],Joined→True,PlotS
tyle-
>{{Blue,Thickness[.005]},{Green,Thickness[.005],D
ashing[{.02}]}},DisplayFunction->Identity];
g2=Plot[phiExact[x],{x,0,1},PlotStyle-
>{{Red,Thickness[.005]},{Green,Thickness[.005],D
ashing[{.02}]}},DisplayFunction->Identity];

ShowLegend[Show[g1,g2,PlotRange→All,DisplayFun
ction-
>$DisplayFunction],{{{Red,"Exact"},{Blue,"Estimate
"}},LegendPosition→{1.5,-0.5}}]
(* Finite Element * Poisson Type with right hand
side x2 *)
Clear[nd,c,ce,np,nd,ne,b,nl,x,val,ndp];
nd=301;
np=2;
ne=nd-1;
(* Input File *)
nl=Table[{i,i+1},{i,1,nd-1}];
delta=1/ne;
x=Table[(i-1) delta,{i,1,nd}];
val={0.0,0.0}
ndp={1,nd};
p={1,-1};
ce0=Outer[Times,p,p];
c=Table[0,{nd},{nd}];
b=Table[0,{nd}];
Qvec=Table[0,{nd}];
p=Table[0,{2}];
For[i=1,i≤ne,i++,
 knodes=nl[[i]];

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 174 Issue 5, Volume 5, May 2008

 xl=x[[knodes]];
 l=xl[[2]]-xl[[1]];
 Qvec[[i]]=x[[i]]^2 l;
 (* Determine coefficient Matrix *)
 ce=ce0/l;
 (* Assemble *)
 For[j=1,j≤2,j++,
 ir=nl[[i,j]];
 iflag1=0;
 For[k=1,k≤np,k++,
 If[ir ndp[[k]],
 c[[ir,ir]]=1;
 b[[ir]]=val[[k]];
 iflag1=1;
];
];
 If[iflag1 0,
 For[l=1,l≤2,l++,
 ic=nl[[i,l]];
 iflag2=0;
 For[k=1,k≤np,k++,
 If[ic ndp[[k]],
 b[[ir]]-=ce[[j,l]] val[[k]];
 iflag2=1;
];
];
 If[iflag2 0,
 c[[ir,ic]]+=ce[[j,l]]
];
];
];
];
 b[[i]]+=Qvec[[i]];
];
v=Inverse[c]. b;
(*Print["Node"," x "," v "];
Print["---------------------------------------"];
Do[Print[i," ",x[[i]]," ",v[[i]]],{i,1,nd}];*)

To visualize the function graph, the following
expression is written

g1=ListPlot[Transpose[{x,v}],Joined-
>True,PlotStyle→{{Green,Thickness[.005]},{Green,T
hickness[.005],Dashing[{.02}]}},DisplayFunction→Id
entity]

WSEAS TRANSACTIONS on ELECTRONICS N.FÜSUN SERTELLER, DURSUN ÜSTÜNDAĞ

ISSN: 1109-9445 175 Issue 5, Volume 5, May 2008

