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Abstract: Numerical modeling is nowadays an essential tool for all researchers involved with the field of electrical, 
mechanical engineering, physics and etc. The object of this paper is to provide a clear, easy and understandable study 
on FEM (finite element method) using MATLAB and MATHEMATICA, which both provide powerful support to 
solve large equations.  1D and 2D FEM solutions are studied on electromagnetic (EM) field distribution which is one 
of the essential parts of electrical engineering. The results from the two different programs were compared with those 
obtained by using the finite difference method (FD).  Computer programs and formulations of the finite element 
technique have been constructed to make the concept more understandable and explicit for engineering students and 
practicing engineers. 
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1 Introduction 
In the past few decades, numerical analysis methods 
have come to prominence and became more appealing 
with the advent of fast digital computers. In the study 
of electrostatics the most commonly used numerical 
techniques for the numerical solution of the partial 
differential equations is finite difference (FD) and 
finite element method (FEM). Both methods[22] are 
based on some discretization of the fields into a 
collection of the points or cells so that the differential 
equations are approximated by a set of algebraic 
equations on this collection.  This system of algebraic 
equations is then solved to produce a set of discrete 
values which approximates the solution of the 
differential systems over the fields. Furthermore, FD 
uses point-wise approximations of the governing 
equations, while FEM uses piecewise or regional 
approximations.  Although numerical methods give 
approximate solutions, these solutions are sufficiently 
accurate for electrical engineering purposes[27,28]. 
Without computers, solving the numerical equations is 
very complicated and time consuming. An intersection 
of Computational science and electrical engineering 
(CSEE) is a new and rapidly evolving field. O’Leary 
defined CSEE as “an interdisciplinary approach to the 
solution of the problems in the natural science and 
technology, drawing on the tools of a science or 
engineering discipline plus computer science plus 
mathematics”. This definition of CSEE can simply be 
illustrated in Figure 1. Furthermore, as the software 
enables visualization, the term CSEE can also be 
extended to encompass computational and visual 

electromagnetic for electrical engineers (CVEMEE) 
[9]. 

In this study, using MATLAB and 
MATHEMATICA programming languages some 
computer programs were developed for finding 
solution of Poisson type equations, which are 
commonly used to define the magnetic field of the 

 
Fig.1 The definition of computational science and 
engineering 

 
electrical systems. It is assumed that the internal 
potential values within any domain are initially empty. 
In the EM problems, the region is chosen as the 
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most popular and the most explicit state. This is 
because of the complexity of the numerical 
methods. This kind of structure is seen generally in 
transmission lines, earthing systems and in electrodes 
with a gap between the electrodes.  
 
 
2 Comparisons of Programming 
Features 
This study assesses the similarities between two 
powerful software programs, namely MATLAB[7] 
and MATHEMATICA[21], which are important for 
engineers and scientists. MATLAB started as an 
interactive program for doing matrix calculations and 
has now grown to a high level mathematical language 
that can solve integrals and differential equations 
numerically and plot a wide variety of two and three 
dimensional graphs.  On the other hand, 
MATHEMATICA is a state-of-the-art and powerful 
system for doing mathematics by computer. It has 
steadily grown in breadth and depth to become today 
an unparalleled platform for all forms of computation. 
Although MATLAB is widely-used among engineers, 
it is more suitable for numerical solutions of 
engineering problems. MATHEMATICA is designed 
for doing symbolic computations rather than numerical 
ones. MATHEMATICA has inbuilt converters for 
converting to or from other languages and file formats 
such as FORTRAN and C.   This means that the users 
of these languages are able to adapt easily their 
programs to MATHEMATICA. 
   In this study, it is shown how MATLAB and 
MATHEMATICA are suited for engineering 
computations. Let us see some examples: 
The first one is to calculate the element coefficient 
matrix and the potential values of an area in MATLAB 
and MATHEMATICA respectively. In MATLAB, 
 
      ce=(p*p’+q*q’)/(4.0* Area) 
      v=Inv(ce)*b;  
 
and in MATHEMATICA, 
      
     ce=Outer[Times, p, p]+Outer[Times,q,q]/(4.0 Area) 
      v=Inverse[ce].b 
 
where “p” and “q” are local coordinate vectors, “ce” is 
a global coefficient matrix and “b” the right hand 
vector. MATHEMATICA does not understand the 
transpose of one dimensional matrix, but the symbol 
(’) implies the transpose of the vector in MATLAB 
automatically [1, 2, 3].  Although a vector “q” can be 
multiplied by its transpose using (’) in MATLAB, this 
can be done by calling a special function called 

“Outer” in MATEMATICA. In MATLAB, The 
symbol (*) is used for an ordinary multiplication and a 
matrix product operator. However, MATHEMATICA 
separates this multiplication and uses (*) for an 
ordinary multiplication and the symbol (.) for the 
matrix product.  

Standard MATLAB is not capable of telling you 
that the cosine function is the derivative of the sine 
function. So when we plotted the sine function in 
MATLAB we have done all the hard work implicitly. 
With the command 'x=0:0.01:2*pi' we have selected 
the sample points and with 'plot(x, sin(x))' we have 
told MATLAB to plot the sample points and use an 
interpolation technique to find (and plot) the function 
values in between the samples. Now compare this with 
the way MATHEMATICA operates. The command to 
plot the sine function would look something like:  

 
Plot[Sin[x], {x, 0, 2 Pi} ] 

 
Now it is MATHEMATICA who decides on the 
sampling interval (in fact it is not even a uniform 
sampling, i.e. more samples are taken where needed to 
obtain an accurate plot).  
As a programming language, MATHEMATICA and 
MATLAB contain programming structures that are 
similar to those in other programming languages such 
as function definition, looping structures ect. But they 
use quite different syntax and punctuation conventions 
for coding. However MATHEMATICA allows us to 
program in several different styles, including 
procedural, rule-based, mathematical, and functional 
programming, mirroring the styles of programming 
used in BASIC, FORTRAN, C, Lisp, APL, and many 
other languages. As a result, MATHEMATICA and 
MATLAB provide “grey boxes”  that  is of sufficiently 
high level to avoid unnecessary details, yet visible 
enough to be modified and customized by users. 
 
 
3 Governing Equations 
This work considers Poisson type electromagnetic 
equation in a region whose two-dimensional profile is 
given in Fig. 2: 

 2 sV ρ
ε

∇ = − , (1) 

where sρ  charge density, ε  permittivity of medium. 
For 2D, one horizontal outside boundary value of 

and a vertical boundary of 30  were used. 
Inside the boundary, the value is zero. We consider 
only one quarter part of the device . If the 

50V V

( ,x y 0)≥
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solution region is charge free 0sρ = , the Equation (1) 

turns into Laplace's equation:  
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 Given the size ( nx y×  of the solution region in 
Fig.2, the goal is here to divide the region into 
subregions. Suppose that xn  and  are numbers of 
divisions in 

yn
x  and y  direction. The total number of 

elements , nodes and the boundary ne dn pn are then 
given: 
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On the solution region, a systematic way of 

numbering the elements and nodes are completed.  It is 
easy to model uniform and nonuniform meshes.  A 
mesh is also uniform if all xΔ  and yΔ  are equal, 
otherwise, a nonuniform mesh is preferred if it is 
known in advance that the parameter of interest varies 
rapidly within some part of the solution domain. This 
allows a concentration of relatively small elements in 
the regions where the parameter changes rapidly and 
particularly since these regions are often of greatest 
interest in the solution [10,11,24]. 

Beside nodes and elements numbering, we should 
consider bandwidth reduction on FEM analysis.  The 
bandwidth of the global coefficient matrix depends on 
the nodes numbering. In order to minimize the 
bandwidth, we must number the nodes across the 
narrowest part of the region. 

The approximate solution for the whole region is 
 

  (4) 
1

eV( , ) ( , )
N

e
V x y x y

=

≅∑
 
and the energy per unit length associated with the 
element  is given by the following Equation: e
 

 
2 21 1

2 2
dse eW E V dsε ε= = ∇∫ ∫  (5) 

This can be written in matrix form: 
 

 [ ] [ ]( )1
2

T e
e eW V C Vε ⎡ ⎤= ⎣ ⎦

where  denotes the transpose of the matrix and T
[ ])(eC  is the coefficient matrix. Finite differences are 
solved using general formulation of Equation (2), 
which is the three point approximation used for the 
second derivative. Thus transforms to the 
following equation [2,3,4]: 

( , )V x y

 

 , , 1, , 1
1 ( )
4i j i j j i j i j i jV V V V V+ − + −= + + + , 1  (7) 

For simplicity, we use the notation that the index 
 indicates the coordinate( , )i j ( , )i jx y .  

On the other hand,  1D electromagnetic equation 
can be given by the following equation: 

 
 k′′Φ = −  (8) 
 
In order to solve this boundary value problem using 
finite differences, we obtain 

 2
1 1

1 (
2i i i kh+ −Φ = Φ +Φ + )  (9) 

 
where Nh /1= . The entire domain is divided  
equal segments each of length as in Figure 2 so that 
there are 

N

1+N  nodes. By integrating 1D 
electromagnetic Equation (8) with respect to x  we 
obtain  the exact solution[1,18]  in the following form: 

BAxkx
++−=Φ

2

2

                                           (10) 

   
 
4 Numerical Results 
To implement the methods for solving one and two 
dimensional Poisson and Laplace  type problems 
shown in Fig.2 - 3,  some programs were developed in 
both MATHEMATICA and MATLAB and are given 
in Appendix.  Although the programs can be used for 
1D, 2D and 3D EM problems, their general usages are 
only given for 1D and 2D.  In this paper, we therefore 
attempt to  solve 1D and 2D EM problems[24,26]. 

e  (6) 

The 1D EM problems involve mostly magnetic 
induction, magnetic flux and magnetic field for 
electrical engineers and researchers. The solution is 
done for 1D since only z  direction of the Poisson 
equation (Eq.1) is handled. The first example was run 
in Mathematica, the second using MATLAB. In this 
analysis 100 and 300 elements was used with the 
suitable iteration number in which the numerical 
solutions should be in a good agreement with exact 
solution. Poisson type equation (Eqs.8 and 9) was 
developed for two different kind right hand sides (see 
in appendix 1D programs). 
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For 2D, the solution region which has been 
investigated, given in Figure 3, whose dimensions are 
in meters. In the FEM analysis, 83 nodes and 112 
triangular elements are chosen. This indicates a 
relatively fine meshing structure for this work. The 
linear system constructed according to Equation (4) is 
solved by the preconditioned conjugate gradient 
[5,6,9,25]. The numerical results are tested by the FD 
method, based on 37 boundary elements for outside 
boundaries and 47 nodes inside the region. In both 
methods, numerical solutions are obtained at the same 
spatial locations. 

 
Fig.2 One dimensional example 
 

 

Fig.3 Solution domain for finite elements 
 
To solve the problem using FEM a mesh is applied to 
Fig. 3 and FD is used in testing FEM’s accuracy.  
 
 

 
Fig.4. Potentials values along the contour. 
 
This solution was calculated using the 
MATHEMATICA program and results are shown in 
the Figs 3, 4 and 5.  The FEM and FD programs give 
equal values at the same spatial nodes. 
 
 

 
Fig.5. Potential Values versus ( )x m . Comparison the 
FEM and FD along x  coordinate. 
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Fig.6. Potential Values versus FEM and FD 
comparison along the  coordinate.  

( )y m
y

  
Figure 7 illustrates the computer output of the 1D 
MATHEMATICA program. The exact and the 
numerical results are also compared on the same graph 
shown in Figure 8.  After developing the programme,   
the numerical results can easily be visualized. 

 
Fig.7 One dimensional FEM analysis results 
 
The FEM analysis graph  shown in Fig.7 was given 
separately, since the exact solution and FEM solution  
coincide on the same spatial points.  
 

 
Fig.8. Comparison of 1D EM numerical and exact 
solution. 
  
The iteration number plays  an important role in the 
numerical solution of the equations because the  
numerical  solution approaches to exact solution as the 
iteration number increases. 
 
 
5 Conclusions 
Although simulation programs exist that greatly 
simplify problems relating to EM, and FEM and FD, 
they are not adequate for engineering design and 
analyses. Solving a problem by limiting the model 
within defined boundaries also means reducing the 
accuracy of the solution. This study was carried out for 
FEM using MATHEMATICA and MATLAB 
programs. It was observed that MATHEMATICA can 
easily be used as a programming language like 
MATLAB, and has greater functionality than 
MATLAB in some areas, for instance doing symbolic 
computations rather than numerical ones.  The FEM 
results were compared with those obtained by using  
the FD method, coded in MATHEMATICA and 
MATLAB.  Finally,  the results of the two software 
programs were found to be closely matched. The 
comments presented in this paper can serve as an 
important  introduction to a course of more complex 
computational methods. 
   The ability to use higher order languages such as 
MATHEMATICA and MATLAB is becoming an 
important skill sought by industrial employers in 
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today’s competitive environment. Therefore,  the 
ability to program in low-level computer  languages 
such as C  or  FORTRAN will become less relevant to 
industry in the nearest future.  
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Appendix 
(* Finite Difference Method for 2D*) 
 (* v1:  Vertical Potential *) 
(* v2:  Horizontal Potential*) 
(* v3 :  Potential inside the region*) 
(* ni:  iteration number*) 
(* nx:  node number of x coordinate*) 
(*ny:  node number of y coordinate*) 
(* v:   Potential values inside the region*) 
Clear[ni,nx,ny]; 
v1=30.0;  
v2=20.0; 
v3=0.0; 
ni=200.0; 
nx=9.0; 
ny=11.0; 
(* Input File *) 
v=Table[0,{nx},{ny}] 
For[j=1,j≤ny-1,j++, v[[1,j]]=v3; 
    v[[nx,j]]=v1; 
    ]; 
 
For[i=1,i≤nx-1,i++, 
    v[[i,ny]]=v2;    v[[i,1]]=v3; 
    ]; 
v[[nx,1]]=15.0; 
v[[1,ny]]=10.0; 
v[[nx,ny]]=25.0; 
For[k=1,k≤ni,k++, 
    For[i=2,i≤nx-1,i++, 
        For[j=2,j≤ny-1,j++,            
If[i≤5Λj≤5,v[[i,j]]=v3;, 
              v[[i,j]]=0.25  (v[[i+1,j]]+v[[i-
1,j]]+v[[i,j+1]]+v[[i,j-1]]);] 
          ]; 
        ]; 
    ]; 
m1=Do[Print[v[[i,j]]],{i,2,4},{j,2,5}] 
Do[Print[v[[i,j]]],           {i,1,nx},{j,1,ny}] 
Print["v1=",v[[2,5]],"------"         "v2-=",v[[2,4]],"------
""v3-=",v[[3,5]],"-------""v4=",v[[3,4]],"-------","v7 =-
",v[[4,3]]] 
and 
Finite Difference 2D [Matlab] 
Clear[ni,nx,ny]; 
v1=30.0; 
v2=20.0; 
v3=0.0; 
ni=200.0; 
nx=9.0; 
ny=11.0; 
% Input File  
v=zeros(nx,ny); 
For j=1:ny-1 
    V(1,j)=v3; 

    v(nx,j)=v1; 
    end 
 
For i=1,i≤nx-1,i++, 
    v(i,ny)=v2; 
    v(i,1)=v3; 
    end 
v(nx,1)=15.0; 
v(1,ny)=10.0; 
v(nx,ny)=25.0; 
 
For k=1:ni 
    For i=2:nx-1 
        For j=2:ny-1 
            If(i≤5 and j≤5,v(i,j)=v3; 
              v(i,j)=0.25 *(v(i+1,j)+v(i-1,j)+v(i,j+1)+v(i,j-
1)); 
               end 
        end 
    end 
 
diary a:test1:out 
[v(2,5) , v(2,4), v(3,5),v(3,4),v(4,3)] 
[[1:nx,1:ny]  v(i,j)] 
diary off 
 
(* Finite Element Method for 2D*) 
(* nd:  node number*) 
(*c:   global coefficient matrix*) 
(*ce: element coefficient matrix *) 
(*np:  fixed element number*) 
(*val:  boundary element value*) 
(*b:  right hand side matrix*) 
(*ndp:  boundary node number*) 
Clear[nd,c,ce,np,nd,ne,b,nl,x,y,val,ndp]; 
nd=83; 
ne=112; 
(* Input File *) 
{n1,np,x,y,pot,npot} 
p=Table[0,{3}]; 
c=Table[0,{nd},{nd}]; 
b=Table[0,{nd}]; 
For[i=1,i≤ ne,i++, 
  knodes=nl[[i]]; 
  xl=x[[knodes]]; 
  yl=y[[knodes]]; 
  Print[yl,xl]; 
  p=Table[0,{3}]; 
  q=Table[0,{3}]; 
  p[[1]]=yl[[2]]-yl[[3]]; 
  p[[2]]=yl[[3]]-yl[[1]]; 
  p[[3]]=yl[[1]]-yl[[2]]; 
  q[[1]]=xl[[3]]-xl[[2]]; 
  q[[2]]=xl[[1]]-xl[[3]]; 
  q[[3]]=xl[[2]]-xl[[1]]; 
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  alan=0.5 *Abs[p[[2]]* q[[3]]-q[[2]]* p[[3]]]; 
  
 (* Determine coefficient Matrix *) 
  ce=(Outer[Times,p,p]+Outer[Times,q,q])/(4.0  alan); 
  Print[MatrixForm[ce]]; 
  
 (* Assemble *) 
  For[j=1,j 3,j++, ≤
   ir=nl[[i,j]]; 
   Print[ir]; 
   iflag1=0; 
   For[k=1,k np,k++, ≤
    Print["k=",k]; 
    If[ir==ndp[[k]], 
     c[[ir,ir]]=1; 
     b[[ir]]=val[[k]]; 
     iflag1=1; 
     ]; 
    ]; 
   If[iflag1==0, 
    For[i=1,i≤ 3,l++, 
      ic=nl[[i,l]]; 
      iflag2=0; 
      For[k=1,k np,k++, ≤
       If[ic==ndp[[k]], 
         b[[ir]]-=ce[[j,l]]* val[[k]]; 
         iflag2=1; 
         ]; 
       ]; 
      If[iflag2==0, 
       c[[ir,ic]]+=ce[[j,l]]; 
       ]; 
      ]; 
    ]; 
   ]; 
  ]; 
v=Inverse[c].b; 
Print["Node","     x     ","     y   ","       v     "]; 
Print["---------------------------------------"]; 
Do[Print[i,"        ",x[[i]],"        ",y[[i]],"        
",v[[i]]],{i,1,nd}]; 
 
 (* Finite Difference 1D Poisson Type Problem with 
constant k (k=1.5)*) 
(*h mesh size*) 
(*ni=no. of iteration desired*) 
(*n=no. of elements*) 
Needs["PlotLegends`"] 
Clear[x,x1,h,phi,phiExact]; 
n=100; 
ni=10000; 
l=1.0; 
h=N[1/n]; 
x=h Range[0,n]; 
x1=Drop[x,{1,2}]; 

phi=Table[0,{n+1}]; 
For[k=1,k<=ni, k++,  
For[i=2,i<=n-1, i++, 
phi[[i]]=(phi[[i+1]]+phi[[i-1]]+  1.5 h^2)/2;];]; 
(*calculate exact value*) 
constant=0.75; 
phiExact[x0_]:=constant x0 (1-x0); 
g2=ListPlot[Transpose[{x,phi}],Joined-
>True,PlotStyle→{{Blue,Thickness[.005]},{Green,Th
ickness[.005],Dashing[{.02}]}},DisplayFunction→Ide
ntity]; 
g3=Plot[phiExact[x0],{x0,0,1},PlotStyle→{{Red,Thic
kness[.005]},{Green,Thickness[.005],Dashing[{.02}]}
},DisplayFunction→Identity]; 
ShowLegend[Show[g3,g2,g1,PlotRange-
>All,DisplayFunction→$DisplayFunction],{{{Red,"E
xact"},{Blue,"FD"},{Green,"FEM"}},LegendPosition
->{1.5,-0.5}}] 
 
Following is MATLAB software: 
 
% 1D Possion Equation k=1.5 
% Finite difference method 
% Matlab sofware 
n=100; 
ni=1000; 
l=1.0 
h=1/n 
phi=zeros(n+1,1); 
for k=1:ni 
phi([2:n])=[phi(3:n+1)+phi(1:n-1)+1.5 *h^2]/2; 
end 
%Exact value calculation 
Phiex=075*x (1.0-x) 
Diary a:test.out 
[[1:n+1]’phi phiex] 
Diary off 

[14,15,16] 
 

The following 1D Poisson type equation by using 
Finite element method: 

 
(* 1D Finite Element *) 
Clear[nd,c,ce,np,nd,ne,b,nl,x,val,ndp]; 
nd=101; 
np=2; 
ne=nd-1; 
(* Input File *) 
nl=Table [{i, i+1},{i,1,nd-1}]; 
delta=1/ne; 
x=Table [(i-1) delta, {i, 1, nd}]; 
val= {0.0, 0.0} 
ndp= {1, nd}; 
c=Table [0, {nd}, {nd}]; 
b=Table [0, {nd}]; 
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Qvec=Table [0, {nd}]; 
p=Table [0, {2}]; 
For [i=1,i�ne,i++, 
    knodes=nl [[i]]; 
    xl=x[[knodes]]; 
    p[[1]]=1.0; 
    p[[2]]=-1.0; 
    l=xl[[2]]-xl[[1]]; 
    Qvec[[i]]=1.5 l; 
       (* Determine coefficient Matrix *) 
  ce0=Outer[Times,p,p]; 
  ce=ce0/l; 
    b=Qvec; 
     
    (* Assemble *) 
    For [j=1, j≤2, j++, 
      ir=nl [[i, j]]; 
      iflag1=0; 
      For [k=1,k≤np,k++, 
        If [ir= =ndp[[k]], 
            c[[ir,ir]]=1; 
            b[[ir]]=val[[k]]; 
            iflag1=1; 
            ]; 
        ]; 
      If[iflag1= =0, 
        For [l=1,l≤2,l++, 
            ic=nl[[i,l]]; 
            iflag2=0; 
            For[k=1,k≤np,k++, 
              If[ic= =ndp[[k]], 
                  b[[ir]]-=ce[[j,l]] val[[k]]; 
                  iflag2=1; 
                  ]; 
              ]; 
            If[iflag2= =0, 
              c[[ir,ic]]+=ce[[j,l]] 
              ]; 
            ]; 
        ]; 
      ]; 
    b[[i]]+=Qvec[[i]]; 
    ]; 
    v=Inverse[c]. b; 
    Print["Node","     x     ","       v     "]; 
    Print ["---------------------------------------"]; 
    Do [Print [i,"        ", x [[i]],"        ", v [[i]]],{i,1,nd}]; 
    g1=ListPlot[Transpose[{x,v}],Joined-       
>True,PlotStyle→{{Green,Thickness[.005]},{Green,T  
hickness[.005],Dashing[{.02}]}},DisplayFunction→Id
entity] 
 
(*One dimensional Problem Poisson type right 
hand side x2*) 
(*h mesh size*) 

(*ni=no of iteration desired*) 
Needs["PlotLegends`"] 
Clear[h,phi]; 
 
n=300; 
ni=9000; 
l=1.0; 
h=N[1/n] 
phi=Table[0,{n+1}]; 
x=h Range[0,n]; 
x1=Drop[x,{1,2}] 
 
For [k=1 , k≤ni,k++, 
  For[i=2,i≤n-1,i++, 
    phi[[i]]=(phi[[i+1]]+phi[[i-1]]+x1[[i]]^2  h^2)/2; 
    ]; 
  ]; 
(*calculate exact value*) 
(*phiExact=x (1.0-x^3)/12 *) 
phiExact=# (1.0-#^3)/12& 
 
Below is to plot function 
 
g1=ListPlot[Transpose[{x,phi}],Joined→True,PlotS
tyle-
>{{Blue,Thickness[.005]},{Green,Thickness[.005],D
ashing[{.02}]}},DisplayFunction->Identity]; 
g2=Plot[phiExact[x],{x,0,1},PlotStyle-
>{{Red,Thickness[.005]},{Green,Thickness[.005],D
ashing[{.02}]}},DisplayFunction->Identity]; 
 
ShowLegend[Show[g1,g2,PlotRange→All,DisplayFun
ction-
>$DisplayFunction],{{{Red,"Exact"},{Blue,"Estimate
"}},LegendPosition→{1.5,-0.5}}] 
(* Finite Element *  Poisson Type with right hand 
side x2 *) 
Clear[nd,c,ce,np,nd,ne,b,nl,x,val,ndp]; 
nd=301; 
np=2; 
ne=nd-1; 
(* Input File *) 
nl=Table[{i,i+1},{i,1,nd-1}]; 
delta=1/ne; 
x=Table[(i-1) delta,{i,1,nd}]; 
val={0.0,0.0} 
ndp={1,nd}; 
p={1,-1}; 
ce0=Outer[Times,p,p]; 
c=Table[0,{nd},{nd}]; 
b=Table[0,{nd}]; 
Qvec=Table[0,{nd}]; 
p=Table[0,{2}]; 
For[i=1,i≤ne,i++, 
  knodes=nl[[i]]; 
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  xl=x[[knodes]]; 
  l=xl[[2]]-xl[[1]]; 
  Qvec[[i]]=x[[i]]^2 l; 
  (* Determine coefficient Matrix *) 
  ce=ce0/l; 
  (* Assemble *) 
  For[j=1,j≤2,j++, 
   ir=nl[[i,j]]; 
   iflag1=0; 
   For[k=1,k≤np,k++, 
    If[ir ndp[[k]], 
      c[[ir,ir]]=1; 
      b[[ir]]=val[[k]]; 
      iflag1=1; 
      ]; 
    ]; 
   If[iflag1 0, 
    For[l=1,l≤2,l++, 
      ic=nl[[i,l]]; 
      iflag2=0; 
      For[k=1,k≤np,k++, 
       If[ic ndp[[k]], 
         b[[ir]]-=ce[[j,l]]  val[[k]]; 
         iflag2=1; 
         ]; 
       ]; 
      If[iflag2 0, 
       c[[ir,ic]]+=ce[[j,l]] 
       ]; 
      ]; 
    ]; 
   ]; 
  b[[i]]+=Qvec[[i]]; 
  ]; 
v=Inverse[c]. b; 
(*Print["Node","     x     ","       v     "]; 
Print["---------------------------------------"]; 
Do[Print[i,"        ",x[[i]],"        ",v[[i]]],{i,1,nd}];*) 
 
To visualize the function graph, the following 
expression is written 
 
g1=ListPlot[Transpose[{x,v}],Joined-
>True,PlotStyle→{{Green,Thickness[.005]},{Green,T
hickness[.005],Dashing[{.02}]}},DisplayFunction→Id
entity] 
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