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Abstract: This study presents a method for computing thermal properties of an actuator and compares various 
magnetic materials. The two-dimensional heat conduction problem is studied using the boundary element 
method (BEM) with Poisson equivalence. Linear elements are used in the solution procedure. The temperature 
distribution in the ferromagnetic body is evaluated under stationary condition. The numerical results have been 
compared with the results of the finite element method (FEM). Numerical experiments have been carried out on 
soft ferromagnetic materials such as silicon steel iron; mild iron; pure iron and amorf and results the 
temperature distribution are graphed. 
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1 Introduction 
Computational analyses have been successfully developed 
using the finite difference (FD), finite element method (FEM) 
and also the boundary element method (BEM). Recently 
developed, numerical modeling software has become an 
indispensable everyday tool for analyzing many kinds of 
problem (Electrostatics, magnetic field, heat distribution etc.). 
As the numerical solutions, finite element and finite difference 
methods give a global solution at any particular point desired. 
The BEM analysis gives the exact solution at any particular 
point desired. Also, notice that, although FEM is very 
commonly used for solving a range of problems, it is time 
consuming to prepare and modify the finite element 
discretization, boundary element method (BEM) handles 
problems with open regions and does not require domain 
discretization when solving linear problems. 

The reported work is focused on the electromagnetic part 
or in other words on the core; the coil is the heat source within 
the system. For a standard, electro-thermal core design, the 
current can be either DC or AC.  Multiplication of the 
supplied voltage and current in the coil per cross section of the 
core gives the heat source flux (W/m2) of the ferromagnetic 
system.  For this study 220 V AC- DC contactor core has been 
used.  It has 1630 turns of 0.3 mm diameter. This type of 
contactor core is suitable for all types of load including 
transformers, motors and resistive heating loads.  

When the electrical energy is applied to the coils, the core 
starts to heat. The heating temperature differs from one 
material to another. As the temperature of a ferromagnetic 
material is increased dramatically its magnetization is 

decreased and we know modern magnetic materials, with 
excellent magnetic properties allow to miniaturization of 
electrical devices and machines. Also in some electrical 
equipment it can be very useful to calculate the temperature 
dependent on the currents, especially when high voltages or 
high currents are studied. For example, when the contacts of 
contactors or circuit breakers or any kind of these type 
electrical instruments are submitted high currents, the 
temperature can increase very quickly and if the contacts of 
electrical instruments do not open, the conductor can be melt 
damaging the electromagnetic part. Although the temperature 
is very important for the application, most of the time, the 
magnetic circuit temperature is not measured by the 
manufacturers.  For a stable operating condition, temperatures 
of both core and armature should be kept within expected 
margins according to operation standards [1, 3,16,32].  
 
 
2 Thermal effects on Ferromagnetic Material 
Ferromagnetic materials are commonly recognized as suitable 
core materials for high-frequency magnetic devices, such as 
inductors, transformers actuators and transducers used in 
modern power electronic systems, because of their attractive 
characteristics of high permeability, low eddy-current loss, 
and low cost. Their magnetic properties, on the other hand, 
are sensitive to the operating temperature. 
       The temperature in the materials may increase because of 
energy dissipation which is called the thermal effect. This is 
not the desired result for ferromagnetic so the temperatures 
increase should be kept within a limited range in order for the 
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system to operate effectively. The temperature analyses on 
materials for different purposes have been widely studied by 
using 1D or 2D FEM; some examples can be countered as 
laser surface treatments, to minimize semiconductor devices, 
etc. The coupled thermal-electric system is of interest in chip-
design. [21,22,23].  
       Strongly magnetic ferromagnetic materials like iron, 
nickel, cobalt or their combinations even lose all their 
magnetic properties if they are heated to a high enough 
temperature. This temperature is called the Curie temperature. 
The atoms become too excited by the heat to remain pointing 
in one direction for long. However before reaching this point, 
magnetic structure begins to fail. The saturation flux density 
at 1000 C, for example, can be only about half of that at 200 C 
depending on the type of ferromagnetic materials. A few 
papers in literature addressed this issue  [22,27,32]. 

From this point of view, ferromagnetic materials are to be 
said heat sensitive. When the magnetic properties of the 
materials are increased, the electrical losses or joule heating 
should be taken into consideration. In addition we should 
note that, frequency also affects magnetism and temperature. 
Ferromagnetic materials are used for a variety of uses within 
the electrical industry including motors, transducers, 
actuators or galvanometers [15,19]. 

To prevent any failing under operating condition is 
necessary to reduce the temperature or the cool side of the 
equipment that is hottest. 
 
 
3 Boundary Element Method Program 
The Boundary Element method entails the conversion of the 
partial equation into integral equation, as outlined in [17]. The 
integrand contains the equivalent source and the free space 
Green’s function or its normal derivative depending on the 
boundary condition. The usage of the Green function is shown 
in following section. Boundaries and interfaces are divided 
into small sections which are referred to as boundary 
elements.  
      The accuracy of the approximation will obviously depend 
upon the choice of the expansion and testing functions, and 
the number of using them as being other numerical solutions. 
These coordinate functions must be linearly independent as 
linear dependence result s in a singular S matrix. 

In a typical computer aided design the researcher enters 
the description of the problem and calculates the parameters 
of interest. If the values are found to be unsatisfactory, the 
design is modified and the parameters are recalculated. This 
process is repeated until satisfactory results are produced. The 
efficiency of the process is measured by the amount of the 
time required. The factors that affect the efficiency are the 
ease of use, the accuracy of the results, the capabilities and the 

speed of the program. 
A numerical technique has been developed using the 

boundary element method which lends itself very well to open 
field thermal and electromagnetic problems. The boundary 
element method approach is gaining recognition within the 
induction heating industry as being as effective and efficient 
approach to solving industry specific problems  in linear and 
nonlinear media as well as non homogenous media using 
boundary only discretization. In addition to boundary only 
discretization, a distinct feature of BEM is that unknowns 
which appear in BEM formulation are the surface temperature 
and heat flux [10,24,28]. 
      Boundary element solutions offer important advantages 
over domain type methods, such as finite elements and finite 
difference. The most interesting features of Boundary 
solutions are the much smaller resulting systems of equations 
and the considerable reduction, in data required to solve a 
problem. In addition, the numerical accuracy of boundary 
methods can be greater   than that of the finite element method 
[18,20]. 

To implement the method of boundary element, macro 
flow diagram for both the finite element and boundary 
element techniques are shown in figure 1. From this 
comparison, it is obvious that there is one less step involved n 
BEM compared to completing the same routine using FEM. 
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Fig.1 Comparison of flow control in finite elements versus 
that in boundary elements. 
When the two programs are executed simultaneously, it is 
seen that the distinction in the systems program saves time 
and unnecessary duplication of effort in the long run.  BEM 
analysis has therefore been preferred for those advantages. 
 
 
4 BEM Analysis of the Actuator 
In this work we considered an actuator whose two 
dimensional profile is given in Fig. 2. The shaded region 
consists of coils and the current is transformed into heat to 
provide a thermal source for the ferromagnetic body.  This 
heat dissipation is called joule losses (Watt) and calculated 
using the following formula Eq.1:  

 
RIP *2= (Watt)                       (1) 

 
“I “is the current and (A)” R “is the resistance of the 

coil (Ω).  
 
  

 
 Fig.2. A planar cross-section of the ferromagnetic core 

 
       It is now intended to evaluate temperature distribution 
throughout a planar cross-section of the ferromagnetic core. 
Since the problem inherits a symmetry with respect to the x-
axis, we consider only the part of the device where ( ) 
part of the device. The formulation of the problem (Eq.(2)) is 
given such that [4] 

0y ≥

 

2 2
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∂ ∂
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where  T  is temperature, Q  is heat source and is the 
thermal conduction coefficient of the actuator metal.  Eq. (2) 
is subject to the boundary conditions 
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For the rest of the boundaries including the air gap in the 
middle for natural convective air cooling, mixed boundary 
condition was used. In Eq. (3), h  and  denote the heat 
transfer coefficient of air and ambient temperature at normal 
conditions, respectively. 

0T

For the BEM formulation, we define the Green’s function as a 
solution of the equation, 
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And multiplying equations, it is written following 
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Subtracting eq. (5a) from eq. (5b) 
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where rr and ρr  are field and source points, respectively. 
Substituting Eqs (6) into (2) and integrating over the problem 
domainV , and using integration by parts, the boundary 
integral equation form of Eq. (2) can be written in the general 
form [5-7] 
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Where n is the surface normal and Q is a harmonic function, 
at boundaries: 
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Further we can write equation (8), 
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So breaking down г to г= г1+г2+ г3 the equation is written as 
follows 
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                   (10)  
   Submitting boundary conditions equations (3a) and (3b) into 
equations (10) 
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 The volume term starting in Eq. (7) can be transformed into 
surface integral and we can write that U satisfies [7] 
                                                             2 ( , ) ( , )U r G rρ ρ∇ = −
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        The Green’s function which satisfies Eq. (4) with free 
boundary conditions in two dimensions is given by 
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Where R r ρ= −
r rr

.  This is referred to as an influence 
function or as a fundamental solution depending upon its 
particular physical interpretation.  
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And rearranging Eq.(13a) we have 
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The boundary is represented with linear elements. The 
Cartesian co-ordinates ix of an arbitrary point of an element 

defined in terms of nodal co-ordinates c
ix  and shape functions 

can be calculated from 
 

  c c
i ix N x=                                                      (16)      

 
where c is the node number which ranges from 1 to 2, i = 1, 2 
and are the shape functions of elements defined. Each 
solution variable, temperature and flux, can then be 
represented in terms of the same shape functions as follows 

cN

 

                                                        (17) 
c c

c c
T N T
q N q

=

=
 
where  and are the nodal values of temperature and 
flux, respectively. Substituting the parametric representations 
of geometry, temperature and flux into Eq. (7), for a region 
wise constant heat source, the boundary integral equation may 
then be written in the discretized form as 

cT cq
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where ( )c ρr  takes value between 0 and 1 depending on 

where ρr  lies [6]. The discretization procedure is fairly simple. 
It proceeds by breaking г down into distinct segments (Fig.3). 
Since the most accurate result is achieved fine meshing, the 
study has been completed with the quickest computation time 
and affective fine-mesh matrix both inside and outside the 
boundaries. 

 
Fig.3 The discretization of the boundary into ’E’ elements 

(each denoted as  ) eΓ
 
The continuous function values are replaced by 

piecewise continuous function over each element. The 
unknown function values are sought only the boundary. By 
discretization only by the boundary, BEM requires a much 
smaller system of equation. Once the transformation on the 
boundary is complete, the function values of any internal point 
can be calculated by an integration involving only function 
values on the boundary, without having to obtain a solution 

everywhere. So that, for the problems where the interior and 
exterior regions are solved simultaneously. The latest research 
has shown some advantages to using elements with some or 
all the nodes on the interiors of the elements. These kinds of 
elements are useful for modeling corners [24,25,31]. 

 
Fig.4 Boundary element discretization into constant and linear 
elements 
 

In figure 4 linear elements, constant elements and 
nodal points are highlighted. The discretization on the 
boundary surface using a patchwork of “elements” is drawn in 
figure 4 following a specified functional relationship for the 
desired field variable. 

Because of the geometric symmetry of the problem, 
half of the geometry (y ) has been solved numerically, as 
shown in fig.2. 

0≥

Thus in Eq. (18) ( )c ρr  is chosen for the multiply-connected 
domain as follows (see Fig. 1) 
                       

1/ 4    corners outside boundary  
( ) 3 / 4     corners inside boundary    

1/ 2     other nodes                      
c ρ

⎧
⎪= ⎨
⎪
⎩

r
          (19) 

 
Eq. (18) completely defines the solution to the problem when 
the unknown boundary values are found. We need to first find 
the values of the derivatives on the boundaries. The accuracy 
of the BEM essentially depends on the accuracy of evaluation 
of integrals. Therefore, all integrals in Eq. (18) are calculated 
analytically. The details of the integration schemes are 
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covered within the work of previous authors [7, 8, 9,15].  
 
 
5 Numerical Results 
To implement the method, a program was developed using the 
MATHEMATICA software. In the BEM analysis, 60 and 28 
linear boundary elements are considered for the outside and 
inside boundary, respectively since the boundary element 
error is reduced by introducing smaller element sizes. The 
problem domain defines a multiply connected region as 
shown in Fig. 2.   

The linear system constructed according to Eq. (5) is 
solved by the preconditioned conjugate gradient algorithm 
[5,26]. The numerical results are tested by the FEM method 
[6] that based on 204 nodes and 320 triangular elements. 
Following the boundary solution in the BEM method, internal 
calculations are performed in the points that they coincide 
with the FEM nodes. This means that in both methods the 
temperature is evaluated at the same spatial points. 

The BEM results are compared with FEM results 
along closed contours i i i i iK A B C D A= i  for …… as 
shown in Fig.5 (contour K). In this study only one contour has 
been taken but contours are easily expanded as it is required. 

1,2,3i =

 

 
Fig.5. Contour description for temperature variation 

  
In this figure, the contour K lies in the centre of the 

actuator.  The test results are given for four materials cast 

iron, mild steel, silicon sheet iron and amorf in figure 6, 7, 8 
and 9 respectively. Clearly visible is that the effect of the 
electrical losses on the magnetic materials causes various 
temperature degrees. 

 

 
Fig.6. Temperature distributions for cast iron 
 
     The cast iron has the lowest magnetic permeability µ value 
of the four materials. Magnetic permeability is µ=1,256x10-3 
H/m (µ= µ0 µr, here, µ0 and µr free space and relative magnetic 
permabilities respectively) at low frequency, like other 
materials. The peak value of temperature function is between 
900 C and 950 C.  
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Fig.7.Temperature distributions for mild steel 

 
The magnetic permeability of the mild steel is between 

silicon sheet iron and cast iron, and is taken as 2,512x10-3 
H/m for this study (fig.7). The peak temperature is 100 0 C. 
Mild steel and its compounds are commonly used in the 
electrical industry, such as in coating technology and the 
magnetic core of sensor or actuators due to its corrosion 
protection and electrical insulating respectivly [30,31]. 
 

 
Fig.8. Temperature distributions for silicon sheet iron. 

 
 Fig.8 shows temperature distribution for the silicon sheet 

iron. The peak value of temperature is between 1000 C and 
105 0 C . Its magnetic permeability is 0, 0892 H/m as high as 
that of amorf. Silicon sheet iron is commonly used in 
electromechanical systems such as a core because of it is low 
cost. To reduce electrical ferrite losses and keep magnetic 
permeability high, silicon matter is drawn along one side of 
the each steel slice.  It can be considered as an early identified 
soft magnetic material. 

 

WSEAS TRANSACTIONS on ELECTRONICS Füsun Serteller

ISSN: 1109-9445 182 Issue 5, Volume 5, May 2008



 
Fig.9. Temperature distributions for amorf  
 
Amorf (Metallic glasses), is manufactured as thin 

tapes. The Main components of these materials are iron and 
cobalt. Therefore it would be expected to show similar 
behaviors as the other ferromagnetic. The temperature peak 
value is 115 0C (fig.9). Its magnetic permeability is 0,091 
H/m. Previous research has also shown that magnetic 
susceptibility is not applicable in the high thermal state [29]. 
Comparisons of the results are given in Figure 10, which 
shows that the agreement between the results is remarkably 
good. Figure 10 shows that magnetic permeability and 
temperature of each specific contactor material are closely 
interrelated. Figure 10 clearly shows that the lowest heating 
material is cast iron which has the lowest magnetic 
permeability. As also seen in the whole figures, solution is not 
a linear as a function of y, but behaves in a sinusoidal way 
around the coil region [15, 16, 19,29].  

  
 

 

 
Fig.10. Temperature variation around coils for different core 
materials 
 
 
6 Conclusions 
In this study, the thermal analysis of actuators cores was 
investigated. This information would be of use in many 
operating conditions. Also, the high thermal state of a 
contactor can affect its magnetic properties. The BEM 
analysis based on linear elements provides an accurate model 
for evaluating temperature distribution in the actuator. The 
BEM results were tested against those using the FEM 
analysis. Various core materials that are commonly used in 
electrical devices were simulated. From the comparison of the 
results (Fig.10) it can be seen that the effect of temperature is 
more pronounced in amorf than silicon sheet iron, meaning 
that amorf exhibits a greater temperature rise than other 
materials. The methodology presented in this paper can be 
extended to thermal analysis problems of other electrical 
systems. This is especially relevant for electrical devices with 
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a ferromagnetic core (i.e. electric motors, transformers, etc.), 
which are exposed to more severe thermal effects. 
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