

Adaptive Wiener Filter Based Numerical Filter with an
Application to Beam Position Monitoring

KHUANJAI NACHAIYAPHUM1, SARAWUT SUJITJORN2† and SUPAKORN RUGMAI3

1,2School of Electrical Engineering, Institute of Engineering, Suranaree University of
Technology, Nakhon Ratchasima, THAILAND

3Department of Technical and Engineering, National Synchrotron Research Center, Seconded
to School of Physics, Institute of Science, Suranaree University of Technology,

Nakhon Ratchasima, THAILAND
†Corresponding author: sarawut@sut.ac.th, http://www.sut.ac.th

Abstract: - This article proposes a numerical filter having an adaptive Wiener filter (AWF) as its main component. It
presents detailed investigation of the performances of the Savitzky-Golay filter (SGF) and the AWF. As a result, the
AWF is superior to the SGF in terms of less distortion of the filtered waveform. The desired signal fed to the AWF can
be selectively generated by using a Butterworth filter, a Savitzky-Golay filter, and a downloaded waveform,
respectively. User can easily choose filter’s parameters to suit their applications via a user-interface module. The
proposed filter is simple, rapidly computable, and efficient to suppress noise. An application to the Siam Photon
Source (Synchrotron Radiation Unit on Thailand) is also described. The filters coded in C are listed in the appendices
and downloadable from our web site.

Key-Words: noise, adaptive Wiener filter, Butterworth filter, Savitzky-Golay filter, Siam Photon Source

1 Introduction
Digital filters have been applied to various engineering
and scientific researches. This is due to their accuracy,
flexibility and reusability with minimum modifications.
Some recent developments include noise reduction in
biomedical signals via digital filters [1,2]. They compared
the performances of the Butterworth, elliptic, Chebyshev
type I and II filters, respectively, and found out that the
digital elliptic filter outperformed the others in removing
power line noises and aliasing artifacts. Another
interesting application is the use of the decision-based
median filter (DMF), one type of non-linear filter, for the
removal of impulsive noises in an image [3]. Some
researchers incorporated an empirical decomposition
method into a common adaptive filter to gain a very
effective filter capable of handling multi-frequency
interference problem occurred in partial discharge
detection [4]. Cancellation of noise in acoustic signals
using recursive least square (RLS) algorithm can be found
in [5]. However, in the field of random noise elimination,
Wiener filter has been widely applied for optimum
filtering. Conventionally, the filter needs the second-order
covariance for its filtering process. To obtain the
covariance from direct computing of the Wiener filter is
quite a computational burden. Thus, an adaptive form
based on the least mean square algorithm (LMS) has been
available for many years to overcome this burden [6]. The
LMS algorithm uses some gradient values to adjust the
filter’s coefficients while minimum error is assured [7].
The filter with the LMS algorithm has been known as the

adaptive Wiener filter (AWF) whose structure is shown in
Fig. 1. Due to its simple structure, the computational
process of filtering is straightforward and does not require
any statistical parameters of the input signal. The AWF
adaptively adjusts relevant coefficients according to the
input signal characteristics. This type of filter is very
suitable to applications in which signal and noise come
within the same frequency band. The AWF requires the
knowledge of a desired signal. As such, this can become a
serious drawback to some applications. The Savitzky-
Golay filter, introduced in the mid 1960s, has been applied
for smoothing out noises in data streams [8-12]. The filter
is best known for its smoothing performance, and thus
widely used for scientific instruments. Even though the
Wiener filter has been widely known for its seismographic
application, recent developments show that its adaptive
form has become a useful tool for image processing [13-
15], and speech enhancement [16]. With an application in
mind, our present work investigates carefully the filtering
performances of the Savitzky-Golay and the adaptive
Wiener filters (SGF and AWF), respectively, such that the
better one could be used for removal of noise in beam-
position-monitor (BPM) signals of an accelerator. The
BPM signals usually contain random noise, noise from
power line, and high frequency glitches caused by
electronic switching devices.

To overcome the difficulties of desired signal
generation for the AWF, this work proposes 3
approaches: using i) a Butterworth filter, ii) a Savitzky-
Golay filter, and iii) a downloaded waveform,

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
40

Issue 2, Volume 5, February 2008

respectively. Each approach can be selected by the user
of our proposed numerical filter via a user-interface
module. This paper describes the proposed filter in
details with an application to the Siam Photon Source.

2 Adaptive Wiener filter
Fig. 1 shows the structure of an adaptive Wiener filter
(AWF). The filter employs the LMS method to compute
and update its parameters, and weighting vectors. The error
signal, ()e n , can be computed using equation (1).

Fig.1 Structure of an adaptive Wiener filter.

ˆ() () () () ()Te n d n d n d n n= − = −w x (1)

Equation (2) is used for updating the weighting vectors.

(1) () () ()n n e n nμ+ = +w w x (2)

, where

() [() (1) (1)]Tn x n x n x n L= − − +x " (3)

1 2() [() () ()]T
Ln w n w n w n=w " (4)

μ is an adaptive gain that can be selected according to
equation (5).

max

10 μ
λ

< < (5)

Fig. 2 shows the flow diagram of the LMS algorithm. It
starts with initializing the variables ()w n and ()x n .
Then, it reads the current input ()x n and the desired
signal ()d n through ADCs. The input signal is filtered
through a convolution process between the input ()x n
and the AWF coefficients, thus resulting in the filtered
signal ˆ()d n . The ˆ()d n is compared with the signal

()d n , and the term ()e nμ is computed afterward. The
final step is to compute the updated coefficients of the
AWF. The whole process, except variable initialization,
is then repeated. Our C-codes for AWF are listed in the
appendix A (downloadable from http://www.sut.ac.th/
engineering/electrical/carg/software/awf.cpp).

Fig. 2 Least mean square algorithm (LMS).

3 Butterworth filter
The Butterworth filter (BF) has been widely used and
best known for its maximally flat characteristic [17].
This work uses the low-pass type of which magnitude
can be computed according to equation (6).

2

2

1
() ; 2

1
c cN

c

H j fω ω π
ω
ω

= =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6)

Fig. 3 illustrates the magnitude responses of the
low-pass BF having the order N = 1, 3, 5, 10, and 15.
With a higher order, the filter characteristic moves
closer to an idealistic one. To obtain a good result for
our proposed numerical filter, we have used N = 4 as
discussions presented in section 6.

Fig. 3 Frequency responses of Butterworth filters.

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
41

Issue 2, Volume 5, February 2008

4 Savitzky-Golay filter
The polynomial fit method for data smoothing and the
moving window averaging method form the basis of the
Savitzky-Golay filter (SGF) [8,18]. For simplification, the
output of a SGF can be represented by ig in equation (7).

; , 2, 1,0,1, 2,
R

L

K

i L i L
L K

g c f i+
=−

= = − −∑ … … (7)

The filter’s coefficients, Lc , can take the form of

0 1 2

M

Ma a i a i a i+ + +" . The coefficient vector, a
expressed as in equations (8) and (9), respectively.

0 1 2; ()T
Ma a a a⋅ = = …A a f a (8)

 ()T T⋅ ⋅ = ⋅A A a A f and 1() ()T T−= ⋅ ⋅ ⋅a A A A f (9)

Since the least mean square approximation results in a
linear treatment of the data, the function f in equation
(9) can be replaced by a unit-vector Le . This yields the
equation (10) for the coefficient Lc of the SGF.

{ } { }1 1

0 0
0

() () ()
M

T T T m
L L m

m
c L− −

=

= ⋅ ⋅ ⋅ = ⋅∑A A A e A A (10)

, where

() 1

1

M
L L

M
RR

K K

KK

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A
"

% #
"

 (11)

2 1 ; L RL K K K K= + = = (12)

There are 2 parameters, M and K, affecting the

frequency response of the SGF. This is illustrated by
Fig. 4 in which some magnitude ripples can be observed
at high frequencies [19]. Also, a higher M results in a
wider pass-band. For M = 0, the SGF acts like an
averaging filter. M = K results in an all-pass
characteristic. It can be noticed from Fig. 5 that the noise
reduction ratios, , (0)M Kh , should be low to obtain an
effective filter. Hence, M ≤ K-2 is recommended. Our C-
codes for the SGF are listed in the appendix B
(downloadable from http://www.sut.ac.th/engineering/
electrical/carg/software/sgf.cpp).

5 The Proposed Numerical Filter
When the desired signal, ()d n , is generated by a band-
pass (BP) filter, our proposed filter can be represented by
the block diagram in Fig. 6. The BP filter in the diagram is

Fig. 4 Frequency responses of Savitzky-Golay filters for
K = 11 and M = 0(1)11 [19].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K →

↑ hM,K(0)

M=0

M=1

M=2

M=3

M=4

M=5

M=6

M=5

Fig. 5 Ratios of noise reduction dependence of
 K with M as a parameter [20].

Fig. 6 Structure of an AWF using a band-pass filter to

generate the desired signal, ()d n .

Fig. 7 Structure of an AWF using a downloaded
waveform for ()d n .

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
42

Issue 2, Volume 5, February 2008

user selective, and can be either the BF or the SGF. With
a pre-defined, ()d n , the signal waveform of ()d n can
be downloaded from a library, and the diagram is
reduced to that in Fig. 7. The computing process of the
proposed filter is represented by the flow diagram in Fig.
8. After choosing the BP filter and its associate
parameters, the user has to specify the parameter μ for
the AWF to work on. Then the signal-to-noise ratio (SNR)
is calculated according to equation (13).

10 1010 log 20 logsignal signal
dB

noise noise

P A
SNR

P A
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (13)

6 Experimental Results
At first, the SGF and the AWF were tested against the
Gaussian, chirp and pulse train signals to compare their
effectiveness. The clean waveforms of such signals are
shown in Fig. 9 a). To be used as filter inputs, these
signals are mixed with white noise having SNR = 10 dB,
and sampling frequency of 1 kHz. Fig. 9 b) shows the
waveforms of the signals mixed with white noise. Fig.
10 illustrates the outputs of the SGF when M = 1 and 2,
respectively, the filtered waveforms confirm the
smoothing effectiveness of the SGF. However, a
considerable amount of magnitude reduction in the
outputs can be observed, particularly in high
frequencies. This is due to the polynomial-like nature of
the SGF. Fig. 11 illustrates the filtered waveforms
obtained from the AWF with different values of μ .
Smoothing effect is not so good as that obtained from
the SGF. But, the AWF provides better results in noise
reduction without degradation in signal magnitudes and
waveforms. In other words, the AWF well preserves the
frequency components of the original signals. It requires
only a short initialization time at the beginning. This
first step experiments serve to confirm that the main
structure of our proposed filter should be based on the
AWF. Its initialization time is not at all a drawback.
Since the SGF provides very good smoothing results and
behaves like a BP filter, we also adopt it for generating
the desired signal ()d n for the AWF.

Next, the effects of the parameters of our proposed
filter are investigated. Tables 1-3 summarize the results.
Firstly, the order N of the BF is set to 10, and the cutoff
frequency cf = 20, 30, 40, and 50 Hz, respectively. The
high values of SNR could be expected with cf between
30-40 Hz. Afterward, cf = 35 Hz is chosen, and N = 4, 6,
8, and 10, respectively. As a result, N = 4 and cf = 35
Hz can be chosen and expected to provide highly
satisfactory filtering. Secondly, the parameters M and K

of the SGF are studied. M is set to 2, and K = 10, 20, 30,
and 40, respectively. It is found that K between 20-30
results in high values of SNR. Then, K is fixed to 25, and
M = 2, 4, 6, and 8, respectively. As a results, M = 4 and
K = 25 can be chosen, and expected to provide very
good filtering. In terms of use of the AWF, the
adaptation gain (μ) has to be chosen. For the Gaussian
signal, μ = 0.0005 is used, and μ = 0.01 is used for the
chirp and the pulse-train signals. Figs. 12 a) and b)
illustrate the filtered signals when the BF and the SGF
are used, respectively.

Fig. 8 Computing process of the proposed numerical filter.

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
43

Issue 2, Volume 5, February 2008

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

G
au

ss
ia

n

Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

0

1

C
hi

rp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

0

1

Time (sec)

P
ul

se
 tr

ai
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

0

2

ch
irp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

G
au

ss
ia

n

Signal + White Noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

0

2

pu
ls

e
tra

in

Time (sec)
 a) Clean original signals. b) Mixed with white noise.

Fig. 9 Test signals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

ch
irp

SNR = 13.6075

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

Time (sec)

pu
ls

e-
tra

in

SNR = 11.0827

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

G
au

ss
ia

n

SNR = 17.518

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

ch
irp

SNR = 18.1168

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

G
au

ss
ia

n

SNR = 15.2471

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

Time (sec)

pu
ls

e-
tra

in

SNR = 12.8002

 a) M = 1 b) M = 2

Fig. 10 Experimental results (SGF).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

Time (sec)

P
ul

se
 tr

ai
n SNR = 11.0825, mu = 0.0035

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

C
hi

rp

SNR = 13.5944, mu = 0.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

G
au

ss
ia

n

SNR = 17.2799, mu = 0.0013

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

G
au

ss
ia

n

SNR = 15.2242, mu = 0.00066

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

C
hi

rp

SNR = 14.6894, mu = 0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

Time (sec)

P
ul

se
 tr

ai
n SNR = 12.8022, mu = 0.011

 a) b)

Fig. 11 Experimental results (AWF).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

ch
irp

SNR = 16.1071, mu = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

G
au

ss
ia

n

N = 4, and fc = 35 Hz

SNR = 14.603, mu = 0.0005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

pu
ls

e
tra

in

Time (sec)

SNR = 12.7746, mu = 0.01

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

P
ul

se
 tr

ai
n

Time (sec)

SNR = 13.1754, mu = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

G
au

ss
ia

n

M = 4, and K = 25

SNR = 14.7288, mu = 0.0005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

ch
irp

SNR = 15.81, mu = 0.01

 a) BF (N = 4 and cf =35 Hz) b) SGF (M = 4 and K = 25)

Fig. 12 Experimental results (proposed filter).

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
44

Issue 2, Volume 5, February 2008

Table 1 SNRs between using BF and SGF: desired signal
is Gaussian.

Butterworth filter Savitzky-Golay filter
N fc (Hz) SNR M K SNR
10 20 11.9260 2 10 14.7381
10 30 14.4249 2 20 14.7031
10 40 14.5629 2 30 14.2349
10 50 14.4230 2 40 13.1132
4 35 14.6030 2 25 14.4440
6 35 14.5342 4 25 14.7288
8 35 14.4893 6 25 14.7062
10 35 14.4691 8 25 14.7132

Table 2 SNRs between using BF and SGF: desired
signal is chirp.

Butterworth filter Savitzky-Golay filter
N fc (Hz) SNR M K SNR
10 20 12.0742 2 10 15.6686
10 30 16.0311 2 20 16.0302
10 40 16.0533 2 30 16.2126
10 50 15.9007 2 40 14.9993
4 35 16.1071 2 25 16.1756
6 35 16.1287 4 25 15.8100
8 35 16.1321 6 25 15.6522
10 35 16.1353 8 25 15.5630

Table 3 SNRs between using BF and SGF: desired signal
is pulse-train.

Butterworth filter Savitzky-Golay filter
N fc (Hz) SNR M K SNR
10 20 11.7292 2 10 13.1172
10 30 12.3873 2 20 13.1200
10 40 12.6736 2 30 12.5385
10 50 13.1935 2 40 11.9890
4 35 12.7746 2 25 12.8503
6 35 12.6160 4 25 13.1754
8 35 12.5040 6 25 13.0511

10 35 12.4058 8 25 12.9269

Another approach of our tests is to use some pre-defined
waveforms downloaded from the library. Figs. 13-16
illustrate the test results corresponding to the downloaded
Gaussian, chirp, pulse-train and sine signals, respectively.
The best filtered outputs can be obtained for the cases of the
Gaussian, and the pulse-train signals as shown in the Figs.
13 and 15, respectively. Fig. 14 shows that the chirp signal
is the best output corresponding to the same desired signal
downloaded. However, care must be taken to interpret the
results as the chirp and the pulse-train signals contain some
frequency components in the same bands as those of the
desired signal ()d n . Fig. 16 illustrates a useful case of
detecting a signal of certain frequency that might be a
component as shown by the insets.

 Fig. 13 Detection of Gaussian signal via Fig. 14 Detection of chirp signal via

 downloaded waveform. downloaded waveform.

 Fig. 15 Detection of pulse-train signal via Fig. 16 Detection of sine signal via

 downloaded waveform. downloaded waveform.

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
45

Issue 2, Volume 5, February 2008

7 Application
A useful application of our proposed numerical filter is to
smooth the display of the noisy orbital signals obtained
from the beam position monitor (BPM) of the Siam Photon
Source (Synchrotron Radiation Unit on Thailand). Now, it
operates at 1.2 GeV and is capable of generating the x-ray
radiation. Fig. 17 depicts the Siam Photon Source model
consisting of an injection system and a storage ring as the
main components. The dark arrows in the figure indicate
the 20 BPMs each of which operates on a sampling rate of
2.5 kHz. In practice, white noise is found to be the main
contamination to the BPM’s signals [21-24]. Some noises
of deterministic nature, such as 50 Hz-noise from main

supply, 100 Hz-noise or higher from some switching
circuits, etc., may be found at very low amplitudes. Such
deterministic noises can be sifted easily by some notch or
band-stop filters. Our proposed filter is applied to the
original signal obtained from one BPM as shown in Fig. 18
a). As a result, the filtered signals shown in Fig. 18 b) and
c) are obtained from using the BF and the SGF to generate
the signal ()d n , respectively. The BF parameters are N =
10 and cf = 2.5 kHz. Those of the SGF are M = 2 and K =
10. Both types of filters provide highly satisfactory results.
Selection of the BP filters is the operator’s choice.

Fig. 17 Positions of 20 BPMs around the storage ring.

0 50 100 150 200 250 300
-0.015

-0.01

-0.005

0

0.005

0.01

0.015
BPM signal

P
os

iti
on

Time (sec)
 a) Original signal from BPM.

0 50 100 150 200 250 300
-0.015

-0.01

-0.005

0

0.005

0.01

Time (sec)

P
os

iti
on

 b) Result using BF to generate the signal ()d n .

0 50 100 150 200 250 300
-0.015

-0.01

-0.005

0

0.005

0.01

Time (sec)

P
os

iti
on

 c) Result using SGF to generate the signal ()d n .

Fig. 18 Experimental results of the proposed filter
applied to a BPM.

8 Conclusion
This paper has presented a numerical filter based on the
AWF’s structure. Extensive studies of the SGF and the
AWF performances are detailed. The AWF is superior to
the SGF in terms of noise cancellation without signal
magnitude degradation. Generation of the desired signal,

()d n , required by the AWF is user selective. Three
modes of ()d n generation are available: using the BF,
SGF and library of waveforms, respectively. The users
can also select filter’s parameters to suit their
applications. An application to the display smoothing of
a BPM of the Siam Photon Source is described.

9 Acknowledgement
This work has been supported by the National
Synchrotron Research Center (NSRC), and Suranaree
University of Technology, Thailand. The first author
greatly acknowledges the financial support of the NSRC
for her conference participation. S. Sujitjorn greatly

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
46

Issue 2, Volume 5, February 2008

acknowledges the support of Suranaree University of
Technology for his expenses.

References:
[1] M. S. Chawan, R. A. Agarwala and M. D. Uplane,

Digital elliptic filter application for noise reduction
in ECG signal, WSEAS Trans. on Electronics, Vol.
3, No.1, 2006, pp. 65-70.

[2] M. S. Chawan, R. A. Agarwala and M. D. Uplane,
Application of Chebyshev type II digital filter for
noise reduction in ECG signal, WSEAS Trans. on
Circuits and Systems, Vol. 4, No.10, 2005, pp.
1260-1266.

[3] K. S. Srinivasan and D. Ebenezer, A new class of
cascaded non-linear filter for removal of high-density
impulse noise in an image, WSEAS Trans. on
Systems, Vol. 4, No.5, 2005, pp. 682-690.

[4] C-J. Huang, Y. Qian, B-Y. Xu and X-C. Jiang,
Application of EMD based adaptive filtering
algorithm to suppress DSI in partial discharge
detection, WSEAS Trans. on Circuits and Systems,
Vol. 5, No.1, 2006, pp. 117-122.

[5] K. J. Kim, J. K. Kim, I. S. Kim and S. W. Nam,
Nonlinear active noise control using a filtered-x RLS
algorithm, WSEAS Trans. on Systems, Vol. 5, No.8,
2006, pp. 1802-1807.

[6] S. Haykin, Adaptive Filter Theory, 4th Edition,
Prentice-Hall, 2002

[7] V. Saeed, Advanced Digital Signal Processing and
Noise Reduction, John Wiley & Sons, 2006

[8] A. Savitzky and M. J. E. Golay, Smoothing
differentiation of data by simplified least squares
procedures. Anal. Chem., Vol.36, No.8, 1964, pp.
1627-1639.

[9] A. Ergin, M. J. Vilabo, A. Tchouassi, R. Greenel and G.
A. Thomas, Detection and analysis of glucose at
metabolic concentration using Raman spectroscopy,
Proc. IEEE Conf. Bioengineering., 2003, pp. 337-338.

[10] I. Nakajima, H. Juzoji, Y. Zhao and N. Hamamoto,
DSP technology in wearable satellite terminals for
ETS-VIII < Savitzky - Golay smoothing filter >, 7th
Int. Workshop on Digital Signal Processing
Techniques for Space Communications, 2001, pp.
131-136.

[11] S. Bakkali, Using Savitzky-Golay filtering method
to optimize surface phosphate deposit
“disturbances”. CIINDET Conf. Engineering,
2007, Vol.10, No.35, pp. 62-67.

[12] J. L. Guiñón, E. Ortega, J. García-Antón and V.
Pérez-Herranz, Moving average and Savitzki-
Golay smoothing filters using Mathcad. ICEE Int.
Conf. Engineering Education, 2007, 39.

[13] I-H. Jang and N-C. Kim, Denoising of images
using locally adaptive Wiener filter in wavelet

domain, IEICE Trans. on Information and
Systems, Vol. E84-D, No.4, 2001, pp. 495-501.

[14] E. Ercelebi and S. Koc, Lifting-based wavelet
domain adaptive Wiener filter for image
enhancement, IEE Proc. Vision, Image and Signal
Processing, Vol. 153, No.1, 2006, pp. 31-36.

[15] R. Hardie, A fast image super-resolution algorithm
using an adaptive Wiener filter, IEEE Trans. on
Image Processing, Vol. 16, No.12, 2007, pp. 2953-
2964.

[16] M.A. Akhaee, A. Ameri, F.A. Marvasti, Speech
enhancement by adaptive noise cancellation in the
wavelet domain. IEEE Int. Conf. Information,
Communications and Signal Processing, 2005, pp.
719-723.

[17] I. Anatol, Handbook of Filter Synthesis, John Wiley
& Sons, 2005

[18] H. William, P. Brian, A. Saul and T. William,
Numerical Recipes in C. Cambridge University Press,
1992

[19] P. Steffen, On digital smoothing filters: A brief
review of closed form solutions and two new filter
approaches, Circuits, Syst. Signal Processing, Vol.5,
No.2, 1986, pp.187-210.

[20] S. Jae and V. Alan, Advanced Topics in Signal
Processing, Prentice-Hall, 1988

[21] D. S. Jonathan and E. Richard, Low noise position
sensitive detector for optical probe beam deflection
measurements. Rev. Sci. Instrum, Vol.67, No.7, 1996,
pp. 2481-2484.

[22] D. S. Jonathan, Shot noise in x-ray measurements
with p-i-n diodes, Rev. Sci. Instrum, Vol.76, No.7,
2005, pp. 076101(1) – (3).

[23] H. Schopper, Advances of Accelerator Physics and
Technologies, World Scientific Publishing, 1993

[24] L. Johnson, J. Faust, W. Pierce, and M. Stangenes, A
low frequency beam position monitor, IEEE Trans.
on Nuclear Science, 1967, pp. 1106-1110.

Notation lists:

Lc coefficients of SGF

()d n desired signal
ˆ()d n output signal of AWF
()e n error signal

cf cutoff frequency (Hz)

if original data

ig output signal of SGF

LK left datum point of the Lth datum

RK right datum point of the Lth datum
L window width (odd)

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
47

Issue 2, Volume 5, February 2008

M polynomial order
N filter order
A design matrix of the fitting problem
 a coefficient vector of polynomial
f data vector

, ()M Kh L frequency response of SGF

, (0)M Kh ratio of the noise reduction

()nw weighting vector of AWF
()nx input vector of AWF

cω cutoff frequency

maxλ maximum eigenvalue of correlation matrix of
input signal

μ adaptation gain

Appendices
A. C-codes for AWF (http://www.sut.ac.th/engineering/

electrical/carg/software/awf.cpp)

// C-Codes for Adaptive Wiener filter (AWF)
// Created by Khuanjai Nachaiyaphum, CARG-SUT, Jan-2008
// School of Electrical engineering, Suranaree University of
Technology, Nakhon Ratchasima, THAILAND

#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
#include <numeric>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <cmath>

typedef std::vector<double> VectorT;

VectorT adaptive_wiener_filter(const VectorT& t, // Time (sec)
 const VectorT& x, // Input signal
 const VectorT& d, // Desired signal
 const double mu, // Adaptation gain or step-size parameter
 const int N) // Window size
{
 int signal_size = x.size();
 VectorT y(signal_size, 0);
 VectorT h(N, 0);
 VectorT x1(N, 0);
 double error;

 for (int n = N; n <= signal_size; n++)
 {
 std::reverse_copy(x.begin()+n-N, x.begin()+n, x1.begin());

 y[n-1] = std::inner_product(h.begin(), h.end(), x1.begin(), 0.0);
 // errors between desired and filtered signals
 error = d[n-1] - y[n-1];

for (int j = 0; j < h.size(); j++)
 // updating filter’s coefficients
 h[j] = h[j] + (mu * error * x1[j]);
 }

 return y;
}
//function for downloading waveforms
void load_data(const std::string& filename,
VectorT& t, VectorT& x, VectorT& d)
{
 std::ifstream fin(filename.c_str());
 if (!fin.is_open())
 {
 std::cerr << "File not found!\n";
 exit(1);
 }

 std::string record_line;
 double c1, c2, c3;
 // read every line from the stream
 while (std::getline(fin, record_line))
 {
 std::istringstream ss(record_line);
 if (ss >> c1 >> c2 >> c3)
 {
 t.push_back(c1); //storing time data in #1 column
 d.push_back(c2); //storing desired signal data in #2

column
 x.push_back(c3); //storing input signal data in #3

column
 }
 }

 fin.close();
}
// function for recording the signals t, d, x, y
void save_data(const std::string& filename,
 const VectorT& t, const VectorT& x,
 const VectorT& d, const VectorT& y)
{
 std::ostringstream output;
 for (int n = 0; n < t.size(); n++)
 {
 output << std::setw(25) << std::setprecision(16) <<
std::scientific << t[n] << "\t"
 << std::setw(25) << std::setprecision(16) <<
std::scientific << d[n] << "\t"
 << std::setw(25) << std::setprecision(16) <<
std::scientific << x[n] << "\t"
 << std::setw(25) << std::setprecision(16) <<
std::scientific << y[n] << std::endl;
 }
 // display the data of t, d, x, y
 std::cout << output.str() << std::endl;

 std::ofstream fout(filename.c_str());

 fout << output.str();
 fout.close();

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
48

Issue 2, Volume 5, February 2008

}
//function to calculate SNR
double calc_snr(const VectorT& d, const VectorT& y)
{
 double asignal = 0.0;
 double anoise = 0.0;
 int k;

 for (k = 0; k < d.size(); k++)
 {
 // calculate power of signal without noise
 asignal += pow(fabs(d[k]), 2.0);

 // calculate power of signal with noise

- noise is obtained from the difference between the
reference input and the filtered output

 anoise += pow(fabs(d[k] - y[k]), 2.0);

 }

 // calculate SNR
 double snr = 10.0 * log10(asignal / anoise);
 return snr;
}

int main(void)
{
 VectorT t, x, d, y;

 //load time-data (t), input signal data (x), and desired
 signal (d) from files: ‘gaussian_signal.txt’,‘chirp_signal.txt’,
 ‘pulse_signal.txt’

 load_data("pulse_signal.txt", t, x, d);
 // invoke AWF
 y = adaptive_wiener_filter(t, x, d, 0.005, 32);

 // record output into file ‘output.txt’
 save_data("output.txt", t, x, d, y);
 double SNR = calc_snr(d, y);

 // display SNR
 std::cout << "SNR = " << SNR << std::endl;

 return 0;
}

B. C-codes for SGF (http://www.sut.ac.th/engineering/

electrical/carg/software/sgf.cpp)

// C-Codes for Savitzky-Golay filter (SGF)
// Created by Khuanjai Nachaiyaphum, CARG-SUT, Jan-2008
// School of Electrical engineering, Suranaree University of
Technology, Nakhon Ratchasima, THAILAND

#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>

#include <numeric>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <cassert>
#include <cmath>
typedef std::vector<double> VectorT;
typedef std::vector<VectorT> MatrixT;

/**
 * Display matrix
 */
std::ostream& operator <<(std::ostream& xout, const
MatrixT& mat)
{
 const int row = mat.size();
 const int col = mat[0].size();

 if (row == 0)
 {
 xout << std::endl << std::setw(10) << "[]" << std::endl;
 return xout;
 }

 xout << std::endl;
 for(int i = 0; i < row; i++)
 {
 if (i == 0)
 xout << " [";
 else
 xout << " ";

 for(int j = 0; j < col; j++)
 {
 xout << std::setprecision(6) << std::scientific << mat[i][j];

 if (j != col-1)
 xout << ", ";
 }

 if (i != row-1)
 xout << ";" << std::endl;
 }
 xout << "]" << std::endl;

 return xout;
}

/**
 * QR - Orthogonal-triangular decomposition.
 */
void mat_qr(const MatrixT& a, MatrixT& q, MatrixT& r)
 // function to calculate the QR matrix
{
 const int m = a.size();
 const int n = a[0].size();
 assert(m >= n);

 int i, j, k;

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
49

Issue 2, Volume 5, February 2008

 VectorT rdiag(n);
 MatrixT mat = a;

 for (k = 0; k < n; k++)
 {
 // compute 2-norm of k-th column without
under/overflow
 double norm = 0.0;
 for (i = k; i < m; i++)
 norm = hypot(norm, mat[i][k]);

 if (norm != 0.0)
 {
 // Form k-th Householder vector
 if (mat[k][k] < 0.0)
 norm = -norm;

 for (i = k; i < m; i++)
 mat[i][k] /= norm;

 mat[k][k] += 1.0;

 // apply transformation to remaining columns
 for (j = k+1; j < n; j++)
 {
 double s = 0.0;
 for (i = k; i < m; i++)
 s += mat[i][k] * mat[i][j];

 s = -s / mat[k][k];

 for (i = k; i < m; i++)
 mat[i][j] += s * mat[i][k];
 }
 }

 rdiag[k] = -norm;
 }

 // calculate the Q matrix
 q = MatrixT(m, VectorT(n));

 for (k = n-1; k >= 0; k--)
 {
 for (i = 0; i < m; i++)
 q[i][k] = 0.0;

 q[k][k] = 1.0;

 for (j = k; j < n; j++)
 {
 if (mat[k][k] != 0.0)
 {
 double s = 0.0;

 for (i = k; i < m; i++)
 s += mat[i][k] * q[i][j];
 s = -s / mat[k][k];

 for (i = k; i < m; i++)

 q[i][j] += s * mat[i][k];
 }
 }
 }

 // calculate the R matrix
 r = MatrixT(n, VectorT(n));
 for (int t = 0; t < n; t++)
 {
 for (int j = 0; j < n; j++)
 {
 if (t < j)
 r[t][j] = mat[t][j];
 else if (t == j)
 r[t][j] = rdiag[t];
 else
 r[t][j] = 0.0;
 }
 }
}

/**
 * Matrix multiplication
 */
MatrixT mat_multiply(const MatrixT& a, const MatrixT& b)
{
 const int l_row = a.size();
 const int l_col = a[0].size();
 const int r_row = b.size();
 const int r_col = b[0].size();

 // check matrix multiply rule.
 assert(l_col == r_row);

 MatrixT ret_mat(l_row, VectorT(r_col));

 for(int i = 0; i < l_row; i++)
 {
 for(int j = 0; j < r_col; j++)
 {
 double sum = 0.0;

 for (int k = 0; k < l_col; k++)
 sum += a[i][k] * b[k][j];

 ret_mat[i][j] = sum;
 }
 }

 return ret_mat;
}
VectorT filter(const VectorT& _b, const VectorT& _a, const
VectorT& x) // calculate signal convolution

{
 assert(_b.size() != 0 &&
 _a.size() != 0 &&
 x.size() != 0);

 assert(_a[0] != 0.0);

 int n, nb, na;

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
50

Issue 2, Volume 5, February 2008

 VectorT b = _b;
 VectorT a = _a;
 VectorT y(x.size());

// If a[0] is not equal to 1, the filter coeffcients are
normalized by a[0]

 if (a[0] != 1.0)
 {
 for (nb = 0; nb < b.size(); nb++)
 b[nb] /= a[0];

 for (na = 0; na < a.size(); na++)
 a[na] /= a[0];
 }
 VectorT outputs(a.size());
 VectorT inputs(b.size());
 for (n = 0; n < x.size(); n++)
 {
 outputs[0] = 0.0;
 inputs[0] = x[n];

 for (nb = b.size()-1; nb > 0; nb--)
 {
 outputs[0] += b[nb] * inputs[nb];
 inputs[nb] = inputs[nb-1];
 }
 outputs[0] += b[0] * inputs[0];

 for (na = a.size()-1; na > 0; na--)
 {
 outputs[0] += -a[na] * outputs[na];
 outputs[nb] = outputs[nb-1];
 }

 y[n] = outputs[0];
 }

 return y;
}

/**
 * Savitzky Golay filter
 *
 *
 * PARAMETERS:
 * M : Cut-off frequency (between 0 to 6)
 *
 * K : Noise reduction factor
 * M = 0; 2 <= K <= 15
 * M = 1; 3 <= K <= 25
 * M = 2; 4 <= K <= 35
 * M = 3; 5 <= K <= 55
 * M = 4; 6 <= K <= 65
 * M = 5; 7 <= K <= 38
 * M = 6; 8 <= K <= 20
 */
VectorT savitzky_golay_filter(const VectorT& t, // Time (sec)
 const VectorT& x, // Input signal
 const int M, // Cut-off frequency

 const int K) // Noise reduction
factor
{
 int i, j;
 int npoints = x.size();
 VectorT y;
 MatrixT q, r;
 VectorT c(2*K+1);

 MatrixT a(2*K+1, VectorT(M+1, 1.0));
 // function to calculation the A matrix

 VectorT kk;
 for (i = -K; i <= K; i++)
 kk.push_back(i);

 for (j = M-1; j >= 0; j--)
 {
 for (i = 0; i < 2*K+1; i++)
 a[i][j] = kk[i] * a[i][j+1];
 }

 mat_qr(a, q, r); // function to
calculate the QR matrix

 for (i = 0; i < 2*K+1; i++)
 c[i] = q[i][M] / r[M][M]; // calculate the
filter’s coefficients from the QR matrix

 std::reverse(c.begin(), c.end()); // c(2*K+1:-1:1)
 y = filter(c, VectorT(1, 1.0), x); // calculate
signal convolution
 for (i = 0; i < npoints; i++)
 {
 if (i < K)
 y[i] = x[i];
 else if (i < npoints-K)
 y[i] = y[i+K];
 else
 y[i] = x[i];
 }

 return y;
}

void load_data(const std::string& filename,
 VectorT& t, VectorT& d, VectorT& x)
 // function to download signal data of t, x, d
{
 std::ifstream fin(filename.c_str());
 if (!fin.is_open())
 {
 std::cerr << "File not found!\n";
 exit(1);
 }

 std::string record_line;
 double c1, c2, c3;
 // read every line from the stream
 while (std::getline(fin, record_line))

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
51

Issue 2, Volume 5, February 2008

 {
 std::istringstream ss(record_line);
 if (ss >> c1 >> c2 >> c3)
 {
 t.push_back(c1); // store time data in #1 column
 d.push_back(c2); // store desired signal data in #2

column
x.push_back(c3); // store input signal data in #3

column
 }
 }

 fin.close();
}

void save_data(const std::string& filename,
 const VectorT& t, const VectorT& d,
 const VectorT& x, const VectorT& y) // function to
record the data: t, d, x, y
{
 std::ostringstream output;
 for (int n = 0; n < t.size(); n++)
 {
 output << std::setw(25) << std::setprecision(16) <<
std::scientific << t[n] << "\t"
 << std::setw(25) << std::setprecision(16) <<
std::scientific << d[n] << "\t"
 << std::setw(25) << std::setprecision(16) <<
std::scientific << x[n] << "\t"
 << std::setw(25) << std::setprecision(16) <<
std::scientific << y[n] << std::endl;
 }
// std::cout << output.str() << std::endl; // display the data t, x, y, d

 std::ofstream fout(filename.c_str());

 fout << output.str();
 fout.close();

}
// calculate SNR
double calc_snr(const VectorT& d, const VectorT& y)
{
 double asignal = 0.0;

 double anoise = 0.0;
 int k;

 for (k = 0; k < d.size(); k++)
 {
 // calculate power of signal without noise
 asignal += pow(fabs(d[k]), 2.0);

 // calculate power of signal with noise – noise is obtained
from the difference between the reference and the
filtered signals

 anoise += pow(fabs(d[k] - y[k]), 2.0);
 }

 double snr = 10.0 * log10(asignal / anoise); // calculate SNR

 return snr;
}

int main(void)
{
 VectorT t, d, x, y;

 load_data("pulse_signal.txt", t, d, x); // load signal data
from file: 'pulse_signal.txt’

 y = savitzky_golay_filter(t, x, 2, 30); // invoke SGF
 save_data("output.txt", t, d, x, y); // record outputs
into file

 double SNR = calc_snr(d, y); // calculate SNR
 std::cout << "SNR = " << SNR << std::endl; // display SNR

 return 0;

}

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
52

Issue 2, Volume 5, February 2008

