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Abstract: - This article proposes a numerical filter having an adaptive Wiener filter (AWF) as its main component. It 
presents detailed investigation of the performances of the Savitzky-Golay filter (SGF) and the AWF. As a result, the 
AWF is superior to the SGF in terms of less distortion of the filtered waveform. The desired signal fed to the AWF can 
be selectively generated by using a Butterworth filter, a Savitzky-Golay filter, and a downloaded waveform, 
respectively. User can easily choose filter’s parameters to suit their applications via a user-interface module. The 
proposed filter is simple, rapidly computable, and efficient to suppress noise. An application to the Siam Photon 
Source (Synchrotron Radiation Unit on Thailand) is also described. The filters coded in C are listed in the appendices 
and downloadable from our web site. 
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1  Introduction 
Digital filters have been applied to various engineering 
and scientific researches. This is due to their accuracy, 
flexibility and reusability with minimum modifications. 
Some recent developments include noise reduction in 
biomedical signals via digital filters [1,2]. They compared 
the performances of the Butterworth, elliptic, Chebyshev 
type I and II filters, respectively, and found out that the 
digital elliptic filter outperformed the others in removing 
power line noises and aliasing artifacts. Another 
interesting application is the use of the decision-based 
median filter (DMF), one type of non-linear filter, for the 
removal of impulsive noises in an image [3]. Some 
researchers incorporated an empirical decomposition 
method into a common adaptive filter to gain a very 
effective filter capable of handling multi-frequency 
interference problem occurred in partial discharge 
detection [4]. Cancellation of noise in acoustic signals 
using recursive least square (RLS) algorithm can be found 
in [5]. However, in the field of random noise elimination, 
Wiener filter has been widely applied for optimum 
filtering.  Conventionally, the filter needs the second-order 
covariance for its filtering process. To obtain the 
covariance from direct computing of the Wiener filter is 
quite a computational burden. Thus, an adaptive form 
based on the least mean square algorithm (LMS) has been 
available for many years to overcome this burden [6]. The 
LMS algorithm uses some gradient values to adjust the 
filter’s coefficients while minimum error is assured [7]. 
The filter with the LMS algorithm has been known as the 

adaptive Wiener filter (AWF) whose structure is shown in 
Fig. 1. Due to its simple structure, the computational 
process of filtering is straightforward and does not require 
any statistical parameters of the input signal. The AWF 
adaptively adjusts relevant coefficients according to the 
input signal characteristics. This type of filter is very 
suitable to applications in which signal and noise come 
within the same frequency band. The AWF requires the 
knowledge of a desired signal. As such, this can become a 
serious drawback to some applications. The Savitzky-
Golay filter, introduced in the mid 1960s, has been applied 
for smoothing out noises in data streams [8-12]. The filter 
is best known for its smoothing performance, and thus 
widely used for scientific instruments. Even though the 
Wiener filter has been widely known for its seismographic 
application, recent developments show that its adaptive 
form has become a useful tool for image processing [13-
15], and speech enhancement [16]. With an application in 
mind, our present work investigates carefully the filtering 
performances of the Savitzky-Golay and the adaptive 
Wiener filters (SGF and AWF), respectively, such that the 
better one could be used for removal of noise in beam- 
position-monitor (BPM) signals of an accelerator. The 
BPM signals usually contain random noise, noise from 
power line, and high frequency glitches caused by 
electronic switching devices. 

To overcome the difficulties of desired signal 
generation for the AWF, this work proposes 3 
approaches:  using i) a Butterworth filter, ii) a Savitzky-
Golay filter, and iii) a downloaded waveform, 
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respectively. Each approach can be selected by the user 
of our proposed numerical filter via a user-interface 
module. This paper describes the proposed filter in 
details with an application to the Siam Photon Source. 
  
 
2  Adaptive Wiener filter 
Fig. 1 shows the structure of an adaptive Wiener filter 
(AWF). The filter employs the LMS method to compute 
and update its parameters, and weighting vectors. The error 
signal, ( )e n , can be computed using equation (1). 

 
 

Fig.1 Structure of an adaptive Wiener filter. 
 

ˆ( ) ( ) ( ) ( ) ( )Te n d n d n d n n= − = −w x                    (1) 
 

Equation (2) is used for updating the weighting vectors. 
 

( 1) ( ) ( ) ( )n n e n nμ+ = +w w x                                 (2) 
 
, where 
 

( ) [ ( ) ( 1) ( 1)]Tn x n x n x n L= − − +x "                 (3) 

1 2( ) [ ( ) ( ) ( )]T
Ln w n w n w n=w "                    (4) 

 
μ  is an adaptive gain that can be selected according to 
equation (5). 

 

max

10 μ
λ

< <                                                      (5) 

 
Fig. 2 shows the flow diagram of the LMS algorithm. It 
starts with initializing the variables ( )w n  and ( )x n . 
Then, it reads the current input ( )x n  and the desired 
signal ( )d n  through ADCs. The input signal is filtered 
through a convolution process between the input ( )x n  
and the AWF coefficients, thus resulting in the filtered 
signal ˆ( )d n . The ˆ( )d n  is compared with the signal 

( )d n , and the term ( )e nμ  is computed afterward. The 
final step is to compute the updated coefficients of the 
AWF. The whole process, except variable initialization, 
is then repeated. Our C-codes for AWF are listed in the 
appendix A (downloadable from http://www.sut.ac.th/ 
engineering/electrical/carg/software/awf.cpp). 

 
 

Fig. 2 Least mean square algorithm (LMS). 
 
 

3  Butterworth filter  
The Butterworth filter (BF) has been widely used and 
best known for its maximally flat characteristic [17]. 
This work uses the low-pass type of which magnitude 
can be computed according to equation (6). 
 

2

2

1
( ) ; 2

1
c cN

c

H j fω ω π
ω
ω

= =

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

         (6) 

 

Fig. 3 illustrates the magnitude responses of the 
low-pass BF having the order N = 1, 3, 5, 10, and 15. 
With a higher order, the filter characteristic moves 
closer to an idealistic one. To obtain a good result for 
our proposed numerical filter, we have used N = 4 as 
discussions presented in section 6. 

 

 
 

Fig. 3 Frequency responses of Butterworth filters. 
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4  Savitzky-Golay filter 
The polynomial fit method for data smoothing and the 
moving window averaging method form the basis of the 
Savitzky-Golay filter (SGF) [8,18]. For simplification, the 
output of a SGF can be represented by ig  in equation (7).  
   

; , 2, 1,0,1, 2,
R

L

K

i L i L
L K

g c f i+
=−

= = − −∑ … …      (7) 

 

The filter’s coefficients, Lc , can take the form of 

0 1 2

M

Ma a i a i a i+ + +" . The coefficient vector, a  
expressed as in equations (8) and (9), respectively.  

 

0 1 2; ( )T
Ma a a a⋅ = = …A a f a                       (8) 

 

 ( )T T⋅ ⋅ = ⋅A A a A f and 1( ) ( )T T−= ⋅ ⋅ ⋅a A A A f   (9) 
 

Since the least mean square approximation results in a 
linear treatment of the data, the function f  in equation 
(9) can be replaced by a unit-vector Le . This yields the 
equation (10) for the coefficient Lc  of the SGF. 
 

{ } { }1 1

0 0
0

( ) ( ) ( )
M

T T T m
L L m

m
c L− −

=
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, where 
 

( ) 1

1

M
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       (11) 

 

2 1 ; L RL K K K K= + = =                               (12) 
 
There are 2 parameters, M and K, affecting the 

frequency response of the SGF. This is illustrated by 
Fig. 4 in which some magnitude ripples can be observed 
at high frequencies [19]. Also, a higher M results in a 
wider pass-band. For M = 0, the SGF acts like an 
averaging filter. M = K results in an all-pass 
characteristic. It can be noticed from Fig. 5 that the noise 
reduction ratios, , (0)M Kh , should be low to obtain an 
effective filter. Hence, M ≤ K-2 is recommended. Our C-
codes for the SGF are listed in the appendix B 
(downloadable from http://www.sut.ac.th/engineering/ 
electrical/carg/software/sgf.cpp). 

 
 

5  The Proposed Numerical Filter 
When the desired signal, ( )d n , is generated by a band-
pass (BP) filter, our proposed filter can be represented by 
the block diagram in Fig. 6. The BP filter in the diagram is 

 
 

Fig. 4 Frequency responses of Savitzky-Golay filters for 
K = 11 and M = 0(1)11 [19]. 
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Fig. 5 Ratios of noise reduction dependence of 
         K with M as a parameter [20]. 

 

 
 
Fig. 6 Structure of an AWF using a band-pass filter to 

generate the desired signal, ( )d n . 

 
 

Fig. 7 Structure of an AWF using a downloaded 
waveform for ( )d n . 
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user selective, and can be either the BF or the SGF. With 
a pre-defined, ( )d n , the signal waveform of ( )d n  can 
be downloaded from a library, and the diagram is 
reduced to that in Fig. 7. The computing process of the 
proposed filter is represented by the flow diagram in Fig. 
8. After choosing the BP filter and its associate 
parameters, the user has to specify the parameter μ  for 
the AWF to work on. Then the signal-to-noise ratio (SNR) 
is calculated according to equation (13). 
 

10 1010 log 20 logsignal signal
dB

noise noise

P A
SNR

P A
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       (13) 

 
 

6  Experimental Results 
At first, the SGF and the AWF were tested against the 
Gaussian, chirp and pulse train signals to compare their 
effectiveness. The clean waveforms of such signals are 
shown in Fig. 9 a). To be used as filter inputs, these 
signals are mixed with white noise having SNR = 10 dB, 
and sampling frequency of 1 kHz. Fig. 9 b) shows the 
waveforms of the signals mixed with white noise. Fig. 
10 illustrates the outputs of the SGF when M = 1 and 2, 
respectively, the filtered waveforms confirm the 
smoothing effectiveness of the SGF. However, a 
considerable amount of magnitude reduction in the 
outputs can be observed, particularly in high 
frequencies. This is due to the polynomial-like nature of 
the SGF. Fig. 11 illustrates the filtered waveforms 
obtained from the AWF with different values of μ . 
Smoothing effect is not so good as that obtained from 
the SGF. But, the AWF provides better results in noise 
reduction without degradation in signal magnitudes and 
waveforms. In other words, the AWF well preserves the 
frequency components of the original signals. It requires 
only a short initialization time at the beginning. This 
first step experiments serve to confirm that the main 
structure of our proposed filter should be based on the 
AWF. Its initialization time is not at all a drawback. 
Since the SGF provides very good smoothing results and 
behaves like a BP filter, we also adopt it for generating 
the desired signal ( )d n  for the AWF. 

Next, the effects of the parameters of our proposed 
filter are investigated. Tables 1-3 summarize the results. 
Firstly, the order N of the BF is set to 10, and the cutoff 
frequency cf  = 20, 30, 40, and 50 Hz, respectively. The 
high values of SNR could be expected with cf  between 
30-40 Hz. Afterward, cf = 35 Hz is chosen, and N = 4, 6, 
8, and 10, respectively. As a result, N = 4 and cf  = 35 
Hz can be chosen and expected to provide highly 
satisfactory filtering. Secondly, the parameters M and K 

of the SGF are studied. M is set to 2, and K = 10, 20, 30, 
and 40, respectively. It is found that K between 20-30 
results in high values of SNR. Then, K is fixed to 25, and 
M = 2, 4, 6, and 8, respectively. As a results, M = 4 and 
K = 25 can be chosen, and expected to provide very 
good filtering. In terms of use of the AWF, the 
adaptation gain ( μ ) has to be chosen. For the Gaussian 
signal, μ  = 0.0005 is used, and μ  = 0.01 is used for the 
chirp and the pulse-train signals. Figs. 12 a) and b) 
illustrate the filtered signals when the BF and the SGF 
are used, respectively. 

 

 
 
Fig. 8 Computing process of the proposed numerical filter. 
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                            a) Clean original signals.               b) Mixed with white noise. 

 

Fig. 9 Test signals. 
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                                         a) M = 1                                    b) M = 2 
 

Fig. 10 Experimental results  (SGF).  
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Fig. 11 Experimental results (AWF). 
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Fig. 12 Experimental results (proposed filter). 
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Table 1 SNRs between using BF and SGF: desired signal 
is Gaussian. 

Butterworth filter Savitzky-Golay filter 
N fc (Hz) SNR M K SNR 
10 20 11.9260 2 10 14.7381 
10 30 14.4249 2 20 14.7031 
10 40 14.5629 2 30 14.2349 
10 50 14.4230 2 40 13.1132 
4 35 14.6030 2 25 14.4440 
6 35 14.5342 4 25 14.7288 
8 35 14.4893 6 25 14.7062 
10 35 14.4691 8 25 14.7132 

 

Table 2 SNRs between using BF and SGF: desired 
signal is chirp. 

Butterworth filter Savitzky-Golay filter 
N fc (Hz) SNR M K SNR 
10 20 12.0742 2 10 15.6686 
10 30 16.0311 2 20 16.0302 
10 40 16.0533 2 30 16.2126 
10 50 15.9007 2 40 14.9993 
4 35 16.1071 2 25 16.1756 
6 35 16.1287 4 25 15.8100 
8 35 16.1321 6 25 15.6522 
10 35 16.1353 8 25 15.5630 

 
 
 

Table 3 SNRs between using BF and SGF: desired signal  
is pulse-train. 

Butterworth filter Savitzky-Golay filter 
N fc (Hz) SNR M K SNR 
10 20 11.7292 2 10 13.1172 
10 30 12.3873 2 20 13.1200 
10 40 12.6736 2 30 12.5385 
10 50 13.1935 2 40 11.9890 
4 35 12.7746 2 25 12.8503 
6 35 12.6160 4 25 13.1754 
8 35 12.5040 6 25 13.0511 

10 35 12.4058 8 25 12.9269 
 

Another approach of our tests is to use some pre-defined 
waveforms downloaded from the library. Figs. 13-16 
illustrate the test results corresponding to the downloaded 
Gaussian, chirp, pulse-train and sine signals, respectively. 
The best filtered outputs can be obtained for the cases of the 
Gaussian, and the pulse-train signals as shown in the Figs. 
13 and 15, respectively. Fig. 14 shows that the chirp signal 
is the best output corresponding to the same desired signal 
downloaded. However, care must be taken to interpret the 
results as the chirp and the pulse-train signals contain some 
frequency components in the same bands as those of the 
desired signal ( )d n . Fig. 16 illustrates a useful case of 
detecting a signal of certain frequency that might be a 
component as shown by the insets. 

    
             Fig. 13 Detection of Gaussian signal via                 Fig. 14 Detection of chirp signal via 

                                       downloaded waveform.                                           downloaded waveform. 
 

  
                           Fig. 15 Detection of pulse-train signal via                Fig. 16 Detection of sine signal via 

                       downloaded waveform.                                             downloaded waveform.       
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7  Application 
A useful application of our proposed numerical filter is to 
smooth the display of the noisy orbital signals obtained 
from the beam position monitor (BPM) of the Siam Photon 
Source (Synchrotron Radiation Unit on Thailand). Now, it 
operates at 1.2 GeV and is capable of generating the x-ray 
radiation. Fig. 17 depicts the Siam Photon Source model 
consisting of an injection system and a storage ring as the 
main components. The dark arrows in the figure indicate 
the 20 BPMs each of which operates on a sampling rate of 
2.5 kHz. In practice, white noise is found to be the main 
contamination to the BPM’s signals [21-24]. Some noises 
of deterministic nature, such as 50 Hz-noise from main 

supply, 100 Hz-noise or higher from some switching 
circuits, etc., may be found at very low amplitudes. Such 
deterministic noises can be sifted easily by some notch or 
band-stop filters. Our proposed filter is applied to the 
original signal obtained from one BPM as shown in Fig. 18 
a). As a result, the filtered signals shown in Fig. 18 b) and 
c) are obtained from using the BF and the SGF to generate 
the signal ( )d n , respectively. The BF parameters are N = 
10 and cf = 2.5 kHz. Those of the SGF are M = 2 and K = 
10. Both types of filters provide highly satisfactory results. 
Selection of the BP filters is the operator’s choice. 

 

  
Fig. 17 Positions of 20 BPMs around the storage ring. 
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          b) Result using BF to generate the signal ( )d n . 
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         c) Result using SGF to generate the signal ( )d n . 

 

Fig. 18 Experimental results of the proposed filter  
applied to a BPM. 

8  Conclusion 
This paper has presented a numerical filter based on the 
AWF’s structure. Extensive studies of the SGF and the 
AWF performances are detailed. The AWF is superior to 
the SGF in terms of noise cancellation without signal 
magnitude degradation. Generation of the desired signal, 

( )d n , required by the AWF is user selective. Three 
modes of ( )d n  generation are available: using the BF, 
SGF and library of waveforms, respectively. The users 
can also select filter’s parameters to suit their 
applications. An application to the display smoothing of 
a BPM of the Siam Photon Source is described. 
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Notation lists: 

Lc  coefficients of SGF 

( )d n  desired signal 
ˆ( )d n  output signal of AWF  
( )e n     error signal 

cf  cutoff frequency (Hz) 

if  original data 

ig   output signal of SGF 

LK  left datum point of the Lth datum 

RK  right datum point of the Lth datum 
L window width (odd) 
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M polynomial order  
N filter order 
A  design matrix of the fitting problem 
 a  coefficient vector of polynomial 
f  data vector 

, ( )M Kh L    frequency response of SGF 

, (0)M Kh    ratio of the noise reduction 

( )nw  weighting vector of AWF 
( )nx    input vector of AWF 

cω  cutoff frequency 

maxλ  maximum eigenvalue of correlation matrix of  
input signal 

μ   adaptation gain 
  
 
Appendices 
A. C-codes for AWF (http://www.sut.ac.th/engineering/ 

electrical/carg/software/awf.cpp) 
 
// C-Codes for Adaptive Wiener filter (AWF) 
// Created by Khuanjai Nachaiyaphum, CARG-SUT, Jan-2008 
// School of Electrical engineering, Suranaree University of 
Technology, Nakhon Ratchasima, THAILAND 
 
#include <iostream> 
#include <iterator> 
#include <vector> 
#include <algorithm> 
#include <numeric> 
#include <fstream> 
#include <sstream> 
#include <iomanip> 
#include <cmath> 
 
typedef std::vector<double> VectorT; 
 
VectorT adaptive_wiener_filter(const VectorT& t,   // Time (sec) 
        const VectorT& x,   // Input signal  
        const VectorT& d,   // Desired signal  
        const double mu,     // Adaptation gain or step-size parameter 
        const int N)             // Window size 
{ 
    int signal_size = x.size(); 
    VectorT y(signal_size, 0); 
    VectorT h(N, 0); 
    VectorT x1(N, 0); 
    double error; 
 
    for (int n = N; n <= signal_size; n++) 
    { 
        std::reverse_copy(x.begin()+n-N, x.begin()+n, x1.begin()); 
 
        y[n-1] = std::inner_product(h.begin(), h.end(), x1.begin(),  0.0); 
       // errors between desired and filtered signals 
       error = d[n-1] - y[n-1];  

for (int j = 0; j < h.size(); j++) 
      // updating filter’s coefficients 
      h[j] = h[j] + (mu * error * x1[j]);   
    } 
 
    return y; 
} 
//function for downloading waveforms 
void load_data(const std::string& filename,    
VectorT& t, VectorT& x, VectorT& d)   
{ 
    std::ifstream fin(filename.c_str()); 
    if (!fin.is_open()) 
    { 
        std::cerr << "File not found!\n"; 
        exit(1); 
    } 
 
    std::string record_line; 
    double c1, c2, c3; 
    // read every line from the stream 
    while (std::getline(fin, record_line)) 
    { 
        std::istringstream ss(record_line); 
        if (ss >> c1 >> c2 >> c3) 
        { 
            t.push_back(c1); //storing time data in #1 column  
            d.push_back(c2); //storing desired signal data in #2  

column  
            x.push_back(c3); //storing input signal data in #3  

column 
        } 
    } 
 
    fin.close(); 
} 
// function for recording the signals  t, d, x, y 
void save_data(const std::string& filename, 
               const VectorT& t, const VectorT& x, 
               const VectorT& d, const VectorT& y)  
{ 
    std::ostringstream output; 
    for (int n = 0; n < t.size(); n++) 
    { 
        output << std::setw(25) << std::setprecision(16) << 
std::scientific << t[n] << "\t" 
               << std::setw(25) << std::setprecision(16) << 
std::scientific << d[n] << "\t" 
               << std::setw(25) << std::setprecision(16) << 
std::scientific << x[n] << "\t" 
               << std::setw(25) << std::setprecision(16) << 
std::scientific << y[n] << std::endl; 
    } 
    // display the data of  t, d, x, y 
    std::cout << output.str() << std::endl;  
 
    std::ofstream fout(filename.c_str()); 
 
    fout << output.str(); 
    fout.close(); 
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} 
//function to calculate SNR 
double calc_snr(const VectorT& d, const VectorT& y)   
{ 
    double asignal = 0.0; 
    double anoise = 0.0; 
    int k; 
 
    for (k = 0; k < d.size(); k++) 
    { 
        // calculate power of signal without noise 
        asignal += pow(fabs(d[k]), 2.0);   
  
        // calculate power of signal with noise  

- noise is obtained from the difference between the 
reference input and the filtered output  

       anoise += pow(fabs(d[k] - y[k]), 2.0);  
 
    } 
 
    // calculate SNR 
   double snr = 10.0 * log10(asignal / anoise);   
    return snr; 
} 
 
int main(void) 
{ 
    VectorT t, x, d, y; 
 
    //load time-data (t), input signal data (x), and desired 
   signal (d) from files: ‘gaussian_signal.txt’,‘chirp_signal.txt’, 
   ‘pulse_signal.txt’ 
 
    load_data("pulse_signal.txt", t, x, d); 
    // invoke AWF 
    y = adaptive_wiener_filter(t, x, d, 0.005, 32);   
     
    // record output into file ‘output.txt’ 
    save_data("output.txt", t, x, d, y);    
    double SNR = calc_snr(d, y);   

     
    // display SNR 
    std::cout << "SNR = " << SNR << std::endl; 
  
    return 0; 
} 
 
 
B. C-codes for SGF (http://www.sut.ac.th/engineering/ 

electrical/carg/software/sgf.cpp) 
 
// C-Codes for Savitzky-Golay filter (SGF)  
// Created by Khuanjai Nachaiyaphum, CARG-SUT, Jan-2008 
// School of Electrical engineering, Suranaree University of 
Technology, Nakhon Ratchasima, THAILAND 
 
#include <iostream> 
#include <iterator> 
#include <vector> 
#include <algorithm> 

#include <numeric> 
#include <fstream> 
#include <sstream> 
#include <iomanip> 
#include <cassert> 
#include <cmath> 
typedef std::vector<double> VectorT; 
typedef std::vector<VectorT> MatrixT; 
 
 
/** 
 * Display matrix 
 */ 
std::ostream& operator <<(std::ostream& xout, const 
MatrixT& mat) 
{ 
    const int row = mat.size(); 
    const int col = mat[0].size(); 
 
    if (row == 0) 
    { 
        xout << std::endl << std::setw(10) << "[ ]" << std::endl; 
        return xout; 
    } 
 
    xout << std::endl; 
    for(int i = 0; i < row; i++) 
    { 
        if (i == 0) 
            xout << "  ["; 
        else 
            xout << "   "; 
 
        for(int j = 0; j < col; j++) 
        { 
            xout << std::setprecision(6) << std::scientific << mat[i][j]; 
 
            if (j != col-1) 
                xout << ", "; 
        } 
 
        if (i != row-1) 
            xout << ";" << std::endl; 
    } 
    xout << "]" << std::endl; 
 
    return xout; 
} 
 
/** 
 * QR - Orthogonal-triangular decomposition. 
 */ 
void mat_qr(const MatrixT& a, MatrixT& q, MatrixT& r)
 // function to calculate the QR matrix 
{ 
    const int m = a.size(); 
    const int n = a[0].size(); 
    assert(m >= n); 
 
    int i, j, k; 
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    VectorT rdiag(n); 
    MatrixT mat = a; 
 
    for (k = 0; k < n; k++) 
    { 
        // compute 2-norm of k-th column without 
under/overflow 
        double norm = 0.0; 
        for (i = k; i < m; i++) 
            norm = hypot(norm, mat[i][k]); 
 
        if (norm != 0.0) 
        { 
            // Form k-th Householder vector 
            if (mat[k][k] < 0.0) 
                norm = -norm; 
 
            for (i = k; i < m; i++) 
                mat[i][k] /= norm; 
 
            mat[k][k] += 1.0; 
 
            // apply transformation to remaining columns 
            for (j = k+1; j < n; j++) 
            { 
                double s = 0.0; 
                for (i = k; i < m; i++) 
                    s += mat[i][k] * mat[i][j]; 
 
                s = -s / mat[k][k]; 
 
                for (i = k; i < m; i++) 
                    mat[i][j] += s * mat[i][k]; 
            } 
        } 
 
        rdiag[k] = -norm; 
    } 
     
    // calculate the Q matrix 
    q = MatrixT(m, VectorT(n));     
 
    for (k = n-1; k >= 0; k--) 
    { 
        for (i = 0; i < m; i++) 
            q[i][k] = 0.0; 
 
        q[k][k] = 1.0; 
 
        for (j = k; j < n; j++) 
        { 
            if (mat[k][k] != 0.0) 
            { 
                double s = 0.0; 

 
                for (i = k; i < m; i++) 
                    s += mat[i][k] * q[i][j]; 
                s = -s / mat[k][k]; 
 
                for (i = k; i < m; i++) 

                    q[i][j] += s * mat[i][k]; 
            } 
        } 
    } 
 
    // calculate the R matrix 
    r = MatrixT(n, VectorT(n));     
    for (int t = 0; t < n; t++) 
    { 
        for (int j = 0; j < n; j++) 
        { 
            if (t < j) 
                r[t][j] = mat[t][j]; 
            else if (t == j) 
                r[t][j] = rdiag[t]; 
            else 
                r[t][j] = 0.0; 
        } 
    } 
} 
 
/** 
 * Matrix multiplication 
 */ 
MatrixT mat_multiply(const MatrixT& a, const MatrixT& b) 
{ 
    const int l_row = a.size(); 
    const int l_col = a[0].size(); 
    const int r_row = b.size(); 
    const int r_col = b[0].size(); 
 
    // check matrix multiply rule. 
    assert(l_col == r_row);      
 
    MatrixT ret_mat(l_row, VectorT(r_col)); 
 
    for(int i = 0; i < l_row; i++) 
    { 
        for(int j = 0; j < r_col; j++) 
        { 
            double sum = 0.0; 
 
            for (int k = 0; k < l_col; k++) 
                sum += a[i][k] * b[k][j]; 
 
            ret_mat[i][j] = sum; 
        } 
    } 
 
    return ret_mat; 
} 
VectorT filter(const VectorT& _b, const VectorT& _a, const 
VectorT& x)  // calculate signal convolution 

{    
    assert(_b.size() != 0 && 
           _a.size() != 0 && 
           x.size() != 0); 

    assert(_a[0] != 0.0); 
 
    int n, nb, na; 
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    VectorT b = _b; 
    VectorT a = _a; 
    VectorT y(x.size()); 
 

// If a[0] is not equal to 1, the filter coeffcients are 
normalized by a[0] 

    if (a[0] != 1.0) 
    { 
        for (nb = 0; nb < b.size(); nb++) 
            b[nb] /= a[0]; 
 
        for (na = 0; na < a.size(); na++) 
            a[na] /= a[0]; 
    } 
    VectorT outputs(a.size()); 
    VectorT inputs(b.size()); 
    for (n = 0; n < x.size(); n++) 
    { 
        outputs[0] = 0.0; 
        inputs[0] = x[n]; 
 
        for (nb = b.size()-1; nb > 0; nb--) 
        { 
            outputs[0] += b[nb] * inputs[nb]; 
            inputs[nb] = inputs[nb-1]; 
        } 
        outputs[0] += b[0] * inputs[0]; 
 
        for (na = a.size()-1; na > 0; na--) 
        { 
            outputs[0] += -a[na] * outputs[na]; 
            outputs[nb] = outputs[nb-1]; 
        } 
 
        y[n] = outputs[0]; 
    } 
 
    return y; 
} 
 
/** 
 * Savitzky Golay filter 
 * 
 * 
 * PARAMETERS: 
 *  M : Cut-off frequency (between 0 to 6) 
 * 
 *  K : Noise reduction factor 
 *          M = 0;  2 <= K <= 15 
 *          M = 1;  3 <= K <= 25 
 *          M = 2;  4 <= K <= 35 
 *          M = 3;  5 <= K <= 55 
 *          M = 4;  6 <= K <= 65 
 *          M = 5;  7 <= K <= 38 
 *          M = 6;  8 <= K <= 20 
 */ 
VectorT savitzky_golay_filter(const VectorT& t, // Time (sec) 
                   const VectorT& x,   // Input signal 
                   const int M,             // Cut-off frequency 

                   const int K)          // Noise reduction 
factor 
{ 
    int i, j; 
    int npoints = x.size(); 
    VectorT y; 
    MatrixT q, r; 
    VectorT c(2*K+1); 
 
    MatrixT a(2*K+1, VectorT(M+1, 1.0)); 
 // function to calculation the A matrix  
 
    VectorT kk; 
    for (i = -K; i <= K; i++) 
        kk.push_back(i); 
 
    for (j = M-1; j >= 0; j--) 
    { 
        for (i = 0; i < 2*K+1; i++) 
            a[i][j] = kk[i] * a[i][j+1]; 
    } 
 
    mat_qr(a, q, r);   // function to 
calculate the QR matrix  
 
    for (i = 0; i < 2*K+1; i++) 
        c[i] = q[i][M] / r[M][M]; // calculate the 
filter’s coefficients from the QR matrix  
 
    std::reverse(c.begin(), c.end());   // c(2*K+1:-1:1) 
    y = filter(c, VectorT(1, 1.0), x); // calculate 
signal convolution  
    for (i = 0; i < npoints; i++) 
    { 
        if (i < K) 
            y[i] = x[i]; 
        else if (i < npoints-K) 
            y[i] = y[i+K]; 
        else 
            y[i] = x[i]; 
    } 
 
    return y; 
} 
 
void load_data(const std::string& filename, 
               VectorT& t, VectorT& d, VectorT& x)
 // function to download signal data of t, x, d 
{ 
    std::ifstream fin(filename.c_str()); 
    if (!fin.is_open()) 
    { 
        std::cerr << "File not found!\n"; 
        exit(1); 
    } 
 
    std::string record_line; 
    double c1, c2, c3; 
    // read every line from the stream 
    while (std::getline(fin, record_line)) 

WSEAS TRANSACTIONS on ELECTRONICS Khuanjai Nachaiyaphum, Sarawut Sujitjorn
and Supakorn Rugmai

ISSN: 1109-9445
51

Issue 2, Volume 5, February 2008



 

    { 
        std::istringstream ss(record_line); 
        if (ss >> c1 >> c2 >> c3) 
        { 
            t.push_back(c1); // store time data in #1 column  
            d.push_back(c2); // store desired signal data in #2 

column  
x.push_back(c3); // store input signal data in #3 

column  
        } 
    } 
 
    fin.close(); 
} 
 
void save_data(const std::string& filename, 
               const VectorT& t, const VectorT& d, 
               const VectorT& x, const VectorT& y) // function to 
record the data: t, d, x, y  
{ 
    std::ostringstream output; 
    for (int n = 0; n < t.size(); n++) 
    { 
        output << std::setw(25) << std::setprecision(16) << 
std::scientific << t[n] << "\t" 
               << std::setw(25) << std::setprecision(16) << 
std::scientific << d[n] << "\t" 
               << std::setw(25) << std::setprecision(16) << 
std::scientific << x[n] << "\t" 
               << std::setw(25) << std::setprecision(16) << 
std::scientific << y[n] << std::endl; 
    } 
// std::cout << output.str() << std::endl; // display the data t, x, y, d 
 
    std::ofstream fout(filename.c_str()); 
 
    fout << output.str(); 
    fout.close(); 
 
} 
// calculate SNR 
double calc_snr(const VectorT& d, const VectorT& y)   
{ 
    double asignal = 0.0; 

    double anoise = 0.0; 
    int k; 
 
    for (k = 0; k < d.size(); k++) 
    { 
        // calculate power of signal without noise 
        asignal += pow(fabs(d[k]), 2.0);

  
         

        // calculate power of signal with noise – noise is obtained 
from the difference between the reference and the 
filtered signals   

        anoise += pow(fabs(d[k] - y[k]), 2.0);   
    } 
 
    double snr = 10.0 * log10(asignal / anoise); // calculate SNR 

 
    return snr; 
} 
 
int main(void) 
{ 
    VectorT t, d, x, y; 
 
    load_data("pulse_signal.txt", t, d, x); // load signal data 
from file: 'pulse_signal.txt’ 
 
    y = savitzky_golay_filter(t, x, 2, 30); // invoke SGF  
    save_data("output.txt", t, d, x, y);  // record outputs 
into file  
  
    double SNR = calc_snr(d, y);  // calculate SNR  
    std::cout << "SNR = " << SNR << std::endl; // display SNR  
 
    return 0; 
 
} 
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