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Abstract: - This paper presents a methodology and small software library which is intended to reduce the 
impact of transient data errors that may affect the software executing on commercial-of-the-shelf (COTS) 
embedded processors. The methodology involves duplication of data in disparate areas of memory (referred to 
as “mirror arrays”), and the complexity of the processing required to manage these areas is hidden by means of 
a library exporting new basic data types. Results are reported from three case studies in which the library was 
employed (a matrix multiplication program, a list-sorting program and a real-time control application): the 
findings obtained suggest that the methodology is highly effective in the presence of memory errors, the code 
changes required in order to use the library are very limited, and the impact on code readability is minimal. 
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1 Introduction 
Modern control systems are almost invariably 
implemented using some form of embedded digital 
computer system [1]. The dominance of digital 
systems in this field is a consequence of the low 
cost, increased flexibility, greater ease of use, and 
increased performance of digital control algorithms 
when compared with equivalent analogue 
implementations [2][3]. 

When such embedded systems are used in 
situations where their correct functioning is vital, 
special care must be taken to ensure that the system 
is both reliable and safe [4][5]. In particular, care 
must be taken to ensure that both transient and 
permanent memory faults - such as Single Event 
Effects (SEE’s) caused by particle strikes - must not 
cause the program execution to veer from its desired 
trajectory and cause the system to enter potentially 
dangerous situations. 

Previous research has demonstrated that SEE’s 
may manifest themselves in a variety of ways. They 
may cause transient disturbances known as Single 
Event Upsets (SEU’s) - manifested as random bit-
flips in memory. They may also cause permanent 
stuck-at faults over an array of memory, caused by 
damage to the read/write circuitry or chip latchup. 
Failure rates for SEU’s in ground-based installations 
are in the region of 10-9 - 10-8 failures per bit per 
hour [6] and permanent (latchup) failures in the 
region of 10-8 - 10-6 failures per device per hour [7].  

In addition, memory devices may also fail due to 
normal electrical breakdown effects – failure rates 
for an individual device may be calculated using a 
methodology such as [16]. Such electrical or 
thermal failures and disturbances in memory devices 
may be highly unpredictable, manifesting 
themselves as complete device failures or stuck-at 
faults over part (or all) of the memory array. 
Memory devices are also susceptible to 
electromagnetic interference from a variety of 
sources. For example in a passenger vehicle, 
numerous devices such as electromechanical relays, 
alternators and ignition coils are all sources of noise 
that are capable of corrupting many electronic 
circuits [21][22]. 

Transient errors such as SEU’s in the data 
memory may manifest themselves in a variety of 
ways (e.g. [21][22]). For example, they may cause a 
illegal jump error, where the program execution 
makes an illegal jump inside the program area; they 
may cause an incorrect value to be output to a port 
or peripheral; and they may cause a further area of 
memory to be corrupted by indexing an array out of 
its normal bounds. 

Many modern Commercial Off The Shelf 
(COTS) microprocessor designs now feature on-
chip watchdog timers and exception handling 
routines that are specifically designed to detect 
erroneous program flow [15][18][23]. Such routines 
can detect, for example, stack overflow/underflow, 
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illegal operands and illegal memory accesses. When 
used correctly, in conjunction with appropriate 
Software Based Self Test (SBST) routines for the 
CPU and RAM/ROM (e.g. [15][13]), these elements 
can give relatively high levels of control flow error 
detection and take the appropriate safety action if a 
permanent hardware (e.g. register) fault is diagnosed 
(e.g. [13][15][19][[22]). However, due to their 
nature, SBST techniques are generally not suitable 
for detecting and correcting transient errors in data 
memory [13][15]. 

Recent years have also seen the development of 
several software-based approaches to implementing 
transient fault detection on COTS processors: due to 
their low cost requirements, such devices are not 
radiation hardened. These techniques are designed 
to detect errors caused by transient or permanent 
hardware faults by relying on specially crafted 
software, without resorting to special-purpose 
hardware. Many of these techniques involve 
modifications to the application code in order to 
detect deviations from the expected program 
execution flow (e.g. [8][9][17][23][25]). If any 
deviation is detected, program execution is 
suspended and an error recovery procedure is called 
(this often involves resetting the processor to a 
known state: e.g. [25][10]). They are based around 
instruction counting [17], instruction/task 
duplication [25] and control flow checking using 
signatures and/or assertions [8][9]. Although such 
techniques are effective at detecting many control 
flow errors, systems which incorporate them may 
still be vulnerable to transient errors in data memory 
(which may not result in control-flow errors). 

In order to address this vulnerability, some 
researchers have investigated the use of Single-
Program Multiple Data (SPMD) techniques for data 
redundancy in both single and multi processor 
systems (e.g. [10][20]). However, such approaches 
(as with most software-based transient error 
detection techniques) are problematic from the point 
of view of the embedded system developer for two 
main reasons: 

1. When data duplication is employed, the 
developer may have little control over where the 
duplicated copies reside in memory. For 
example, when redundant temporary variables 
are declared, they may all be placed (by the 
compiler) in adjacent locations in the user stack 
area: they may then be at risk of a common 
failure should the memory chip implementing 
the user stack become faulty. 

2. When the techniques are actually applied, the 
complexity of the resulting source code can 

increase dramatically, and the basic meaning of 
the code can become obscured. This may have 
an impact on code development and subsequent 
code maintenance. 

To illustrate this second point, consider the 
segment of C code shown in Fig. 1. 
 
01: #define N (10) 

02: int i; 

03: int a[N],b[N]; 

04: for(i=0;i<N;i++) 

05:  { 

06:  b[i]=a[i]; 

07:  } 

Fig. 1: Un-hardened code 
 

For most programmers, this is “self 
documenting” code, and the meaning is clear (the 
programmer wishes to copy the contents of any 
array of ten integers to another array of the same 
size). Now, consider the same code, hardened using 
the technique suggested by Redaudengo et al. [10]. 
This is shown in Fig. 2 (note the required checksum 
initialization code and the XOR macro CHK have 
been omitted for space reasons). The total code 
segment, including this initialization (which must be 
called before each operation), and the CHK macro, 
is in excess of 36 lines in length; the meaning of the 
code is also somewhat obscured. In addition, the 
variable i in Fig. 2 remains un-hardened; and the 
arrays a0, b0, a1 and b1 are likely to be located 
alongside each other in the same area of memory. If 
the variable i were to be hardened, the meaning of 
the code would become further obscured, with the 
check-and-correct code for i embedded within the 
for loop construct; as more nested variables are 
hardened, the problem can soon become difficult to 
manage. 

In this paper, a software-based methodology to 
complement the on-chip error detection facilities 
and existing SBST techniques for use with COTS 
microprocessors will be proposed. This technique is 
an implementation of an SPMD-like architecture to 
provide both fault detection and fault tolerance to 
both transient and permanent errors in data memory. 
This approach differs slightly from other 
methodologies in that errors in data memory that 
may lead to failures are detected as the program 
executes; the manifestation of a data error as a 
control flow error is not required for detection. In 
this approach, the problems of code complexity, 
obscurity and the locating of variables commonly 
associated with such a software-based approach to 
fault tolerance will attempt to be minimized. 
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01: #define N (10) 

02: int i ; 

03: int a0[N], b0[N]; 

04 int b1[N], b1[N]; 

05 int c0, c1; 

06: for (i=0;i<N;i++) 

07:  { 

08:  c0=c0^b0; 

09:  c1=c1^b1; 

10:  b0[i]=a0[i]; 

11:  b1[i]=a1[i]; 

12:  c0=c0^b0; 

13:  c1=c1^b1; 

14:  if(a0[i]!=a1[i]) 

15:   { 

16:   if(CHK(a0, b0)==C0) 

17:    { 

18:    a1[i]=a0[i]; 

19:    c1=c0; 

20:    } 

21:   else 

22:    { 

23:    a0[i]=a1[i]; 

24:    c0=c1; 

25:    } 

26:   } 

27:  } 

Fig. 2: Hardened code 
 

The paper is organized as follows. Section 2 will 
describe the memory architecture of a typical COTS 
microcontroller. Section 3 will introduce the 
concept of the mirror array. Section 4 will describe 
how the redundancy management can be achieved 
in C and C++ programs, resulting in code that is 
highly readable and maintainable. Section 5 
describes preliminary studies performed to asses the 
effectiveness of the methodology; following this, an 
in-depth case study is presented in Section 6. The 
paper is concluded in Section 7. 
 
 
2 Memory In Embedded Systems 
Before describing the methodology in full, the 
architecture of a typical embedded processor will 
first be described. Many embedded processors 
employ either a Harvard architecture – in which the 
code and data memory areas employ a different 
address space - or Von Neumann architecture, in 
which the code and data memory share a common 
address space [14][18]. The techniques we describe 
are equally applicable to both architectures. It is 

common for a processor to have a small amount of 
on-chip (internal) RAM, termed the IRAM. It may 
or may not have a small amount of on-chip ROM or 
FLASH for code storage [11][18]. 

At the lowest address spaces, there will normally 
be an interrupt vector table, implemented in ROM. 
The lowest of these contains the reset vector – upon 
start/reset, the processor loads this vector from 
address 0h and jumps to the appropriate memory 
address where program execution commences. 
Following this vector table, the IRAM will 
commonly be implemented. The system designer is 
then free to use the address space following the 
IRAM for implementation of external RAM or 
ROM. A typical configuration for a Von Neumann 
style architecture is shown in Fig. 3; in this case the 
architecture of the C167CR microprocessor is 
shown [14]. 

The CPU registers, system stack and Special 
Function Registers (SFR’s) are normally 
implemented in an area of IRAM; this may even be 
within the normal address space. Typically there is 
also space for a small amount of user variables in 
the IRAM area. Since most embedded systems 
utilize a scheduler (a small form of specialized 
RTOS [11]), a developer will typically implement 
the scheduler data areas in the remaining IRAM to 
reduce overheads, as access to this data area is faster 
than external RAM (XRAM). The user stack and all 
task data will then typically be implemented in 
XRAM. This flexibility in assigning areas of 
XRAM, possibly even over multiple (physically 
separate) memory chips, can thus be exploited to 
increase reliability in SPMD architectures. Before 
describing how this can be achieved in software, a 
number of assumptions that will be used throughout 
the remainder of the paper will be stated. 

 

 
 

Fig. 3: Typical address space usage 
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• For the remainder of this paper, the notation 

tByte will be used to represent an unsigned 8-
bit value, tWord to represent an unsigned 16-bit 
variable and tFloat to represent a floating point 
variable. 

• It is assumed that the designer wishes to 
duplicate data in the user stack and task data 
areas, both implemented in XRAM1 . 

• The management of this duplicated data should 
be as straightforward as possible, with minimal 
alterations to the source code. 

 
It is assumed that if an un-correctable data 

inconsistency is detected, the processor is forced 
into a reset mode to run pre-programmed SBST 
routines - other behaviour may be more appropriate 
depending on the application. 
 
 
3 Mirror Arrays 
A “mirror array” is defined as a replicated area of 
external memory, shifted from its base address by a 
user-defined offset value. The mirror array is 
accessed (for read or write operations) every time 
the corresponding primary area is accessed. The 
advantage of using such an approach is that by 
choosing appropriate offset values, the programmer 
can specify absolute addresses for these mirrors to 
reside in; they can also reside in physically separate 
memory devices, from different manufacturers. This 
is intended to increase system reliability by avoiding 
common-mode failures in memory devices. 

Such arrays can be used to provide data 
redundancy for global, persistent data, and also 
temporary variables and the user stack. Suppose a 
designer has created a working (standard) program 
which uses 200h bytes of XRAM, at addresses 
0x10000 to 0x101FF. The user stack is located in 
the first 100h bytes, and the remaining data is global 
in scope. The entire contents of this data area can 
then be ‘mirrored’ at address space 0x11000 to 
0x111FF - assuming the memory is physically 
present - shifted by a fixed offset of 1000h. This 
process can be repeated at other fixed offsets in 
memory, and the required level of data duplication 
can be achieved. This is shown in Fig. 4. 

                                                 
1  Hardening of data in the IRAM areas is of course possible, but 

cannot be done with a mirror array. This is discussed further in 
Section 4.3. 

 
Fig. 4: Mirror array concept 

 
For clarity and simplicity of description, this 

paper will primarily describe the duplex 
implementation. However, the triplex 
implementation has also been considered; this can 
be achieved with very little alteration to the 
underlying method. 
 
 
4 Implementation 
If the use of mirror arrays is to be effective, some 
way to manage this redundancy in the program code 
is required. Such an approach is described in this 
section.  

Please note that the code described in this section 
was developed using the Keil C/C++ compiler [12] 
for the Infineon C16x family of microcontrollers 
[14]. Code for other compiler / processor 
combinations may vary slightly. 

 
 

4.1 User-Defined Data Types 
In order to implement the mirror arrays, and make 
their use as transparent as possible to the 
programmer, three new basic data types were 
implemented as C++ classes: duplex_tByte, 
duplex_tWord, and duplex_tFloat. The intention is 
that variables of these types can be used, from the 
programmer’s perspective, in a manner identical to 
the basic data types representing byte, word and 
float variables. Each class contains a single private 
data declaration, Primary_Data, corresponding to 
the basic simplex data type. The required read and 
write operations on this data were then created by 
defining new operator member functions using the 
operator keyword. By way of example, the member 
functions for both the assignment and reference 
operations for the duplex_tByte data type are shown 
in Fig. 5. Line 1 of this code defines an offset in 
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memory of 1000h for the duplicated data. The inline 
keyword preceding the function deceleration of Line 
2 indicates that the code is intended to be executed 
inline, not as a function call (to minimize processing 
overheads). 
 
01: #define MEMORY_OFFSET (0x1000) 

02: inline void duplex_tByte::operator=( 
tByte Value) 

03:  { 

04  IEN=0; 

05  
Primary_Data=*(&Primary_Data+MEMORY_OFFSET)
=Value; 

06  IEN = 1; 

07  } 

08 inline tByte duplex_tByte::operator 
tByte (void) 

09  { 

10  IEN=0; 

11  if(Primary_Data==*(&Primary_Data+ 

MEMORY_OFFSET)) 

12   { 

13   IEN=1; 

14   return(Primary_Data); 

15   } 

16  else 

17   { 

18   _trap_(0x00); 

19   } 

Fig. 5: duplex_tByte operator functions 
 

The remainder of Line 2 indicates that the code 
should be executed when an assignment is made to 
the class, and passed a value of type tByte. 
Variables of other type (e.g. float) that may be 
passed are automatically cast to this form by the 
compiler. Line 4 features the statement IEN = 0. 
This instruction disables interrupts on the 
microprocessor until a corresponding IEN = 1 
statement is reached (Line 6 in this case). This is 
important to maintain data consistency in the 
mirrors in pre-emptive systems. In Line 5, the value 
passed to the class is written to both the primary 
data and the corresponding data in the mirror array. 
The function then exits. 

Line 8 indicates that the following function code 
should be executed, again inline, when the data type 
is referenced (in this case it is an explicit reference – 
all references are treated by the compiler as tByte 
references). In Line 11, the primary data is 
compared to the corresponding data in the mirror 
array. If the data are consistent, the value is returned 
and the function exits. It is this returned value that is 
then further manipulated by the compiler. If not, the 

statement _trap_( 0x00 ) on Line 18 executes a full 
system reset - this is equivalent to a full hardware or 
watchdog reset2 in the C167 processor [14]. In the 
triplex data type, the assignment and reference 
functions are suitably modified to incorporate the 
third data area; the reference function additionally 
performs a 2 from 3 vote if possible, and executes a 
reset if all the data are inconsistent. 

Each of the C/C++ operators that explicitly 
modify the contents of the duplicated data, such as 
++, --, +=, and so on, were implemented in a similar 
manner. Thus, in combination, these operators 
ensure inter-operability of the new classes both with 
each other and with the basic data types; the 
implementation (and consistency checking) of the 
duplicated data is completely hidden from the 
programmer. 
 
 
4.2 Initializing The Mirror Arrays 
Although constructors have been implemented for 
each data type to initialize the data in the mirror 
areas, it is beneficial to initialize the mirror areas as 
part of the initialization code. This can be achieved 
either in assembly, as part of the SBST XRAM test, 
or directly in C. The _at_ or MARRAY specifiers 
can be used with the Keil compiler to specify an 
absolute area for direct memory access in C. 
 
 
4.3 Hardening of IRAM Areas 
By definition, the areas of microcontroller IRAM 
may not be directly replicated using the mirror array 
technique. When data in these areas is to be 
replicated – for example to provide tolerance to 
corruptions of internal scheduler data – then a 
slightly different methodology must be employed. 
The same basic framework as used for the duplex 
datatypes described above must be adapted to allow 
the redundant data fields to sit in adjacent areas of 
memory.  

Each class now requires multiple private data 
declarations in internal RAM. For the duplex case 
this corresponds to Primary_Data and 
Secondary_Data declarations corresponding to 
redundant copies of the basic simplex data type. The 
code modifications required to implement these 

                                                 
2  This behaviour may not be portable; in many microcontrollers 

a software reset may not be equivalent to a full hardware 
reset. In this case, it may be more suitable to freeze program 
execution and enforce a watchdog reset. Reliable techniques 
to enable this are discussed in [23]. 
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changes is minimal; the new classes are given 
appropriate names, for example duplex_iByte, and 
the compiler must now be instructed that the private 
class datatypes must now explicitly declared to 
reside in IRAM. The idata keyword can be used 
with the Keil compiler to perform this action. 
Finally, the overloaded operator functions must now 
be modified to act on the redundant copies of data, 
as opposed to the mirrored data. 
 
 
4.4 Reset Mechanisms 
On reset, the chip first enters a SBST mode where, 
among other things (such as CPU and ROM 
checksum tests [15]), the RAM functionality is 
verified to detect faults, using a similar method as 
outlined in [13] before normal program execution 
commences. If a faulty RAM is detected, the system 
can attempt enter a safe state, and perform 
appropriate external signaling to maintain system 
integrity. When used in conjunction with on-chip 
exception handling, a watchdog timer and SBST, 
the overall approach can be summarized as shown in 
Fig. 7. 
 
 
4.5 Example 
In Fig. 6, the code library described in this section is 
applied to the code example shown in Fig. 1. From 
Fig. 6 it can be seen that the length of the hardened 
code is identical to the original and is also highly 
readable. Additionally, it is noted that – unlike the 
code shown in Fig. 2 - the variable i is also hardened 
in this case.  
 
01: #define N (10) 

02: duplex_tByte i; 

03: duplex_tByte a[N],b[N]; 

04: for(i=0;i<N;i++) 

05:  { 

06:  b[i]=a[i]; 

07:  } 

Fig. 6: Hardened code 
 
This library does not require the use of automatic 

code generators for its implementation: all that is 
required is for the programmer to have a basic 
understanding of the meaning of the new data types. 
The library also allows a system developer to first 
implement the system in a simplex fashion, 
determine the memory requirements for the system, 
then harden the code when the required memory 
offset(s) have been determined.  
 

 
Fig. 7: Proposed approach to fault tolerance 

 
The hardening procedure can be accomplished 

extremely rapidly; all that is required is the 
inclusion of the new data types into a project, and 
altering the basic data declarations that require 
hardening to either their duplex or triplex 
counterparts. 

 
 
4.6 Mixing C and C++ Code 
Due to the overheads associated with some features 
of the C++ language, many resource-constrained 
embedded programs are written only in C [11]. 
However, many C compilers have built-in support 
for a sub-set of C++ features - indeed these features 
are often implemented as a built-in pre-processor for 
a standard C compiler.  

If care is taken in the programming approach, 
user tasks and functions (using the new data types) 
can be compiled in C++ and exported to other C 
programs (for example a scheduler implementation) 
using the extern “C” compiler directive, with 
little/no processing or memory overheads.  

However, care must be taken when mixing C and 
C++ in safety-critical software. Although at the 
present time several working groups, such as 
MISRA [24], are cautious about this practice3, 

                                                 
3 It has been argued that C++ should not be used in UK road 

vehicle embedded software until its behaviour has been fully 
analyzed from a safety perspective, and which elements of the 
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software libraries may be used in a project if their 
behavior is well-defined and fully tested on a given 
platform. Additionally, research is currently 
underway to identify a safe subset for C++ which 
can be used in such systems. It is envisioned that the 
small amount of C++ that has been used in the 
creation of the new data types will be compatible 
with these findings. Until this can be verified, care 
must obviously be taken by designers when using 
the library, specifically when integrating and testing 
the code to ensure that the software behaves as 
expected on a given compiler / processor platform. 
Additionally, the library may also be implemented 
as a series of macro’s / functions for use with a C 
program; however this requires slightly more source 
code modifications for implementation. 

 
 

4.7 Impact Of Permanent Memory Errors 
Considering the presence of permanent memory 
failures, it is assumed that physically separate 
memory devices have been used to implement the 
mirrors; it is also assumed that failures of the 
memory devices are isolated and do not occur 
instantaneously. In the duplex case, the system will 
reset upon the first detected memory mismatch in a 
memory read operation. This will force a reset and 
the subsequent SBST should diagnose the 
permanent memory failure.  

In the triplex case, the failure of a single memory 
device will be tolerated by the voting mechanism; 
the system essentially defaults to the duplex case 
under these conditions. Upon a second, subsequent 
memory failure, the system will again reset on the 
first un-correctable memory read, and force the 
SBST. Again this should subsequently diagnose the 
permanent failure of multiple memory devices. 
 
 
5 Preliminary Investigations 
To assess the effectiveness of the mirror-array 
technique and associated code library, several 
preliminary fault-injection studies were performed 
on an Infineon C167CR microcontroller [14] 
executing two different programs: a 4x4 16-bit 
matrix multiplication program and a 100-element 
16-bit list sorting exercise. The experimental set-up 
is shown in Fig. 8. 

                                                                               
language produce reliable software. Such work was carried 
out for ANSI C, resulting in the publications regarding 
MISRA C [24]. Preliminary versions of such guidelines for 
C++ were proposed in 2007. 

 
Fig. 8: Experimental setup 

 
During each experiment, transient faults were 

injected into the XRAM data area at random times, 
performing random bit-flips in all the user data 
areas. The injection of faults into the CPU registers 
was not considered in this case, and is an area for 
future work. The fault injection was performed 
using a high-speed serial link and a small monitor 
program in the C167. In the matrix multiplication 
program (MATRIX), the main program loop first 
initializes the source matrices with values hard-
coded into the ROM. The matrix multiplication is 
then performed. The values contained in the result 
matrix are then compared with values coded into the 
program ROM. The process then repeats endlessly. 
In the list sorting program (LIST), the 100-element 
list is sorted into ascending order from an initial 
random assignment. The final list is compared to 
values hard coded into program ROM, before 
repeating. In both cases, any failures, detected faults 
or corrected faults are reported to the host PC via 
the serial link. 

Three different implementations of both 
programs were considered; the un-hardened 
(simplex) case, and two hardened versions (duplex 
and triplex) of the programs. Since the application 
of any such technique has an impact on the required 
system resources, the resulting code size, memory 
requirements and execution times of each iteration 
of the programs are described. The MATRIX 
program requirements are shown in table I, and the 
LIST program requirements are shown in table II. 
  

Table I: Required system resources for MATRIX 
 

Resource Simplex Duplex Triplex 
Code Size (b) 1956 2044 2232 

Memory Size (b) 204 408 612 
Exec. Time (ms) 0.918 2.16 2.61 
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Table II: Required system resources for LIST 
 

Resource Simplex Duplex Triplex 
Code Size (b) 2290 2392 2540 

Memory Size (b) 464 928 1392 
Exec. Time (ms) 13.65 29.57 42.84 

 
In table III, the recorded results for the fault 

injection experiments for the MATRIX program are 
summarized. Similar results are shown for the LIST 
program in table IV. In the duplex and triplex cases, 
the number of faults injected was increased to 
reflect the increased size of the program data areas. 
Fault effects are classified into one of four 
categories, as follows: 

 
• Effect-less: the fault does not result in a 

computation failure. 
• Detected: the fault is detected but cannot be 

corrected – the iteration is restarted after 
processor reset. 

• Detected and corrected: the fault is detected 
and has been corrected. 

• Failure: the fault is not detected or corrected 
and results in an invalid computation output. 

 
Table III: Fault injection results for MATRIX 

 
  Simplex Duplex Triplex 

Injected 10000 20000 30000 
Effect-less 1289 2448 3744 
Detected 0 17552 0 
Corrected 0 0 26256 
Failures 8711 0 0 

 
Table IV: Fault injection results for LIST 

 
  Simplex Duplex Triplex 

Injected 10000 20000 30000 
Effect-less 279 493 988 
Detected 0 19507 0 
Corrected 0 0 29012 
Failures 9721 0 0 

 
From table I, an increase of approximately 4.5% 

and 14.1% in the code size for the duplex and 
triplex case respectively, 100% and 200% increase 
in data memory, and a 135.3% and 184.3% increase 
in execution time can be seen. From table II, an 
increase of 4.45% and 10.9% for the code size, 
100% and 200% increase in data memory size, and 

116.6% and 213.8% increase in execution times by 
the application of the duplex and triplex techniques 
can be seen. 

In terms of data memory increase, the duplex and 
triplex case invariably causes a doubling or trebling 
of each of the hardened variables, plus the user stack 
space. The code size increases in both these cases 
are small; despite the use of inline function calls. As 
can be seen the increase in execution time is more 
than doubled and almost tripled by the application 
of the technique to the MATRIX program; the 
increase is slightly worse for the LIST program. 

An increase such as this is however to be 
expected, as each hardened variable uses instruction 
replication and a comparison or voting mechanism. 
These results indicate that the increase in code size 
and execution time is highly dependant on the 
application; the more memory read and write 
operations a program contains before hardening, the 
larger the impact of applying the technique. Due to 
the nature of the technique, the increase in data 
memory, however, is more predictable, with a 
doubling and trebling of used memory areas. 

Now considering table III, it can be seen that for 
the MATRIX program approximately 12% of each 
of the injected faults was effect less. In the simplex 
system, the remaining faults all caused failures. In 
the duplex system, all remaining faults were 
detected; no failures occurred. In the triplex system, 
all remaining failures were detected and corrected; 
the system is fully fault-tolerant to the types of 
faults considered in the benchmark. A similar 
pattern may be observed for the LIST results shown 
in table IV. In the simplex case, 2.8% of faults were 
effect less; the remaining all caused failures. A total 
of 2.5% of injected faults were effect less in the 
duplex case, with all the remaining being detected. 
Finally in the triplex case 3.3% of faults were effect 
less, with the remaining being detected and 
corrected. 

When compared to similar SPMD techniques 
such as [10][20], these results suggest that both the 
duplex and triplex mirror techniques are comparable 
in terms of memory size increase, and favorable in 
terms of both code segment increase and CPU 
overhead increase (although comparison between 
CPU overhead increases is difficult to judge 
between the single processor and multiprocessor 
cases). In the next section, these preliminary results 
are expanded upon, and a case study – based around 
a real-time cruise control system for a passenger 
vehicle - is presented that illustrates the effect of the 
methodology in a real-time control application. 
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6 Case Study 
Whilst the results in the previous section favorably 
demonstrate the behavior of the technique, the 
simple applications that were considered may not – 
in themselves - be fully representative of the real 
world applications in which the technique is most 
likely to be applied. With this in mind, in this 
section a representative case study is described. The 
case study employed hardware-in-the-loop (HIL) 
testing techniques to gauge the effectiveness of the 
methodology in a vehicle cruise control system 
(CCS) application. 
   The principle of HIL simulation is shown in Fig. 
9. The simulator is currently set up to represent the 
dynamics of a passenger vehicle in real-time, 
iterated at a rate of 1 kHz on a desktop PC. The 
nature of the testbed itself, and the dynamic models 
used to represent the vehicle have been described 
elsewhere [26][27]; we provide only a brief 
summary here. 
 

 
 

Fig. 9: HIL principle 
 
 
6.1 Test Facility Description 
Although the dynamic model of the vehicle is non-
linear, it can be approximated in the operating range 
of the CCS by the following transfer function: 
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   … where v(s) is the velocity of the vehicle in 
meters per second, and F is the accelerating force 
(which is dependant on the accelerator setting, 
engine RPM and wheel slip conditions). 
   The main requirement of the CCS, which is 
implemented by the embedded system under test, is 
to provide the vehicle driver with an option of 
maintaining the vehicle at a desired speed without 
further intervention, by automatically controlling the 

vehicle throttle setting. It performs this function by 
measuring the current vehicle speed from a sensor 
and performing a PID calculation to determine the 
throttle setting. The classical form of the PID 
algorithm employed in this study is as follows: 
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   … where u(t) is the commanded throttle setting, 
e(t) is the error between reference (desired) speed 
and actual (measured) speed, and Kc, Ki and Kd are 
the system gains, chosen to give the desired closed 
loop performance [1][2][3]. Additionally, the 
module is required to indicate the current speed of 
the vehicle and the status of the control system to 
the driver, via a serial interface to an LCD. It also 
must interface to a number of switches to receive 
commands from the driver (“CCS enable”, “CCS 
disable”, “Speed up”, etc). 
   Again, the C167 microprocessor was employed in 
this study to implement the CCS. Fault injection 
was implemented using similar techniques to those 
outlined in Section 5. Overall, the CCS testbed 
summarized here was chosen as a representative 
system as it can be considered to be a critical 
application [28], and previous studies have shown 
that (amongst other things) transient effects and 
processor faults – such as data errors - can be a 
major contributory cause to potential dangerous 
system failures [29]. 
 
 
6.2 CCS Design 
The CCS was implemented as a set of six software 
tasks for the C167 microprocessor, which were then 
scheduled non-preemptively using the scheduler 
described by Pont [11]. The tasks, along with their 
periods (P) and execution times (E) are summarized 
in table V. 

Table V: Task parameters 
 

Name  Task ID P (ms) E (ms) 
Sensor T1 20 0.5 
Control T2 20 1.2 
Actuator T3 20 0.5 
Status T4 100 9 
Display T5 20 5 
Safety T6 100 0.1 
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   A scheduler tick interval of 20 ms was chosen for 
this implementation. The sensor task (T1) sampled 
the vehicle speed (as a voltage) through an analog-
to-digital (ADC) port, re-scaled the voltage to the 
required speed range and performed range and 
range-rate sanity checks. The control task (T2) 
performed the PID calculation; a digitized version 
of (2): 
 

)( 1
0

−
=

−++= ∑ jjd

j

m
mijPj eeKeKeKu  

(3) 
    
… where uj is the commanded throttle setting at 
sample j, and ej is the error at sample j.  The three 
system gains were chosen (manually) to give the 
desired closed loop performance; a critically 
damped 95% settling-time of approximately 6 
seconds. The actuation task (T3) performed a further 
sanity check on the resulting throttle command and 
translated this output to a parallel port of the C167, 
to control a throttle servo actuator.  These three 
tasks were scheduled to execute sequentially with a 
period of 20 ms, giving an overall sampling rate of 
50 Hz. 
   A status-update task (T4) was executed once every 
100 ms.  This task monitored and “de-bounced” the 
“cruise enable” and “resume” switches. It also 
monitored switches on both the accelerator and 
brake pedals: if either of the pedal switches was 
depressed, the cruise control was disengaged.  In 
addition, a display update task (T5) was also 
executed every 20 ms to control the LCD. 
   The final system task was the safety task (T6), 
also executed every 100 ms. This task serviced the 
watchdog timer, and also verified the system 
configuration (such as timer reload value, I/O 
configuration and interrupt settings). Additionally, 
the general approach to software fault tolerance, as 
depicted in Fig. 7, was build into the application. 
Throughout the software development process, good 
programming techniques (such as those discussed in 
[5][30][31]) were observed at all times. 
 
 
6.3 Experimental Methodology 
A total of two experiments were performed using 
this test facility. In the first, a basic version of the 
CCS implementation as described above was tested 
under fault injection conditions. In the second, the 
software was additionally augmented with duplex 
datatypes, and the experiment repeated. The 

following critical variables were hardened: 
 
• Sensor / setpoint data: 16-bit representations of 

actual and desired vehicle speed; 
• Control data: three internal 16-bit dynamic 

states of the PID controller; 
• Output data: two 16-bit variables used to apply 

final throttle control; 
• Status data: four 8-bit status flags used to store 

system information; 
• Scheduler data areas: the internal data 

structures of the task scheduler (32 bits / task). 
 
   In each of the two experiments performed in this 
case study, the vehicle cruise control was initially 
enabled at 50 MPH (80.5 KPH). The ‘driver’ then 
commanded periodic speed changes from 50 MPH 
to 40 MPH (64.4 KPH), and vice versa, every 10 
seconds. One second prior to this commanded speed 
change, a fault was injected into the XRAM of the 
system under test by the simulation PC. It should be 
noted that although the memory requirements of the 
two implementations was slightly different, as 
described in the following section, faults were 
injected into an equally large area of memory to 
enable a fair comparison.  
   After the injection of each fault, the resulting 
system behavior was automatically classified using 
a simple model-based performance monitor to gauge 
the operation of the system in real-time. The 
performance monitor compares the real system 
behavior with the desired system behavior to detect 
deviations from the specification that are indicative 
of a system failure (e.g. sluggish / oscillatory 
performance, out of range or ‘stuck at’ errors). After 
each resulting fault had been classified, the results 
were logged into a text file by the PC for later 
analysis. The overall testing strategy that was 
employed in this study is as shown in Fig. 10. 
 

 
 

Fig. 10: Experimental methodology 
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6.4 Experimental Results 
We begin this section with a comparative analysis of 
the code size, RAM usage and CPU utilization of 
the simplex and duplex CCS designs, as shown in 
table VI. From this table it can be seen that the 
increases in code size and CPU utilization measures 
are effectively negligible (≅ 2.5% and 1.6% 
respectively) , and the RAM usage has – as expected 
– increased directly in proportion to the number of 
hardened variables, a total of 42 bytes. 
 

Table VI: Required system resources for CCS 
 

Resource Simplex Duplex 
Code Size (b) 1956 2004 

Memory Size (b) 204 246 
CPU Utilization (%) 45.4 46.1 

 
   Considering now the recorded failure behavior, it 
can be seen from table VII that the method has a 
large positive impact on the number of recorded 
failures in the system. It must be noted that in this 
case, the effects of the faults were classified purely 
on their functional effects on the system; as such, 
many of the effect-less failures in the duplex system 
were classified as such purely because they were 
detected before they could cause a functional 
failure, allowing the system to return to a known 
(healthy) state.  
   It can be seen that while a small number of 
failures occurred in the duplex system, the simplex 
system sees an almost 19-fold increase in the 
number of recorded dangerous failures. This can be 
directly attributed to the fact that critical control 
variables (such as the speed setpoint) and scheduler 
data areas (such as storage of task periods) have 
now been protected from disturbances. Such 
disturbances, if left undetected, can obviously have 
a hugely detrimental impact on the operation of the 
system. 
    

Table VII: Recorded failure rates for CCS 
 

 Simplex Duplex 
Faults Injected 10000 10000 

Effect Less 7729 9880 
System Failures 2271 120 

 
   Additionally, this fault injection information may 
be used to estimate the failure rates of the two 
systems due to transient effects. As mentioned in 
Section 1, the failure rate for SEU’s in a ground 
based installation such as the CCS may be estimated 

to be in the region of 10-8 / bit / hr. The transient 
failure rate λT may therefore be calculated as 
follows: 
 

fT PB ⋅⋅= −810λ  
(4) 

 
   Where B is the numbers of bits in RAM that may 
be affected by a transient and pf is the probability 
that such an upset will lead to failure. Using the 
information from tables VI and VII, the values of pf 
for the two implementations may be calculated as 
0.2271 and 0.012 for the simplex and duplex case 
respectively. Applying (4) yields the following 
result: 
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   As can be clearly seen from this result, although 
the methodology results in a (slightly increased) 
usage of system RAM, the resulting reduction in the 
transient failure rate is significant, and in this case is 
enough to encompass an entire safety integrity level 
(SIL) [4][5]. 
 
 
7 Conclusions And Further Work 
In this paper, a novel approach to software 
implemented fault-tolerance has been presented. 
The approach, based on an SPMD architecture, can 
be used to compliment on-chip error detection 
mechanisms and existing SBST techniques for 
COTS processors used in embedded system designs.  
   The approach we have described relies on both 
data and instruction duplication. It has been 
described how the required data types can be 
implemented as C++ classes and exported into C 
programs. It has been shown that the method is 
easily applied, results in readable code, and is able 
to tolerate 100% of the injected faults in both of the 
preliminary benchmarks described. In addition, the 
methodology was shown to perform extremely well 
in a real-time control application, reducing the 
observer number of system failures by a factor of 
19. Since such a factor can be enough to encompass 
an entire SIL, such a result should be of interest to 
prospective developers of safety critical embedded 
systems. 

Whilst the application of the techniques clearly 
provides high levels of fault detection and tolerance, 
there is obviously a trade-off with increases in the 
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code and data size and task execution time. 
Prospective designers must obviously also take 
these factors into account when considering the 
techniques. The investigations that have been 
carried out in this paper reveal that, whilst the 
impact of the techniques is mostly application 
dependant, in most cases they can be tolerated with 
ease. 

Additionally, the techniques we have described 
in this paper can be applied without the need for 
automatic code generators, and the impact on source 
code readability and maintainability is negligible. It 
is also noted that the technique is portable and can 
be applied with ease to any program structure. 
Again these points are of note from the perspective 
of the safety critical system developer. 

With the availability of low-cost, high-
performance 32-bit microprocessors, the impact of 
increased CPU overheads may be somewhat 
diminished over the results described in this study. 
Further work in this area can explore this 
possibility, along with possible techniques aimed at 
providing similar levels of redundancy for the CPU 
registers. 
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