
Efficient implementation of fault-tolerant data structures in embedded
control software

MICHAEL SHORT1, MICHAEL SCHWARZ2 and JOSEF BOERCSOEK2

1Department of Engineering,
University of Leicester,

University Road,
Leicester,

UK

2 Department of Engineering,
Universitat Kassel,

Wilhelmshoeher Allee 73,
34121 Kassel,
GERMANY

michael.short@le.ac.uk, m.schwarz@uni-kassel.de, j.boaercsoek@uni-kassel.de

Abstract: - This paper presents a methodology and small software library which is intended to reduce the
impact of transient data errors that may affect the software executing on commercial-of-the-shelf (COTS)
embedded processors. The methodology involves duplication of data in disparate areas of memory (referred to
as “mirror arrays”), and the complexity of the processing required to manage these areas is hidden by means of
a library exporting new basic data types. Results are reported from three case studies in which the library was
employed (a matrix multiplication program, a list-sorting program and a real-time control application): the
findings obtained suggest that the methodology is highly effective in the presence of memory errors, the code
changes required in order to use the library are very limited, and the impact on code readability is minimal.

Key-Words: - Software Fault Tolerance, Embedded Systems, Critical Systems.

1 Introduction
Modern control systems are almost invariably
implemented using some form of embedded digital
computer system [1]. The dominance of digital
systems in this field is a consequence of the low
cost, increased flexibility, greater ease of use, and
increased performance of digital control algorithms
when compared with equivalent analogue
implementations [2][3].

When such embedded systems are used in
situations where their correct functioning is vital,
special care must be taken to ensure that the system
is both reliable and safe [4][5]. In particular, care
must be taken to ensure that both transient and
permanent memory faults - such as Single Event
Effects (SEE’s) caused by particle strikes - must not
cause the program execution to veer from its desired
trajectory and cause the system to enter potentially
dangerous situations.

Previous research has demonstrated that SEE’s
may manifest themselves in a variety of ways. They
may cause transient disturbances known as Single
Event Upsets (SEU’s) - manifested as random bit-
flips in memory. They may also cause permanent
stuck-at faults over an array of memory, caused by
damage to the read/write circuitry or chip latchup.
Failure rates for SEU’s in ground-based installations
are in the region of 10-9 - 10-8 failures per bit per
hour [6] and permanent (latchup) failures in the
region of 10-8 - 10-6 failures per device per hour [7].

In addition, memory devices may also fail due to
normal electrical breakdown effects – failure rates
for an individual device may be calculated using a
methodology such as [16]. Such electrical or
thermal failures and disturbances in memory devices
may be highly unpredictable, manifesting
themselves as complete device failures or stuck-at
faults over part (or all) of the memory array.
Memory devices are also susceptible to
electromagnetic interference from a variety of
sources. For example in a passenger vehicle,
numerous devices such as electromechanical relays,
alternators and ignition coils are all sources of noise
that are capable of corrupting many electronic
circuits [21][22].

Transient errors such as SEU’s in the data
memory may manifest themselves in a variety of
ways (e.g. [21][22]). For example, they may cause a
illegal jump error, where the program execution
makes an illegal jump inside the program area; they
may cause an incorrect value to be output to a port
or peripheral; and they may cause a further area of
memory to be corrupted by indexing an array out of
its normal bounds.

Many modern Commercial Off The Shelf
(COTS) microprocessor designs now feature on-
chip watchdog timers and exception handling
routines that are specifically designed to detect
erroneous program flow [15][18][23]. Such routines
can detect, for example, stack overflow/underflow,

WSEAS TRANSACTIONS on ELECTRONICS

Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
12

Issue 1, Volume 5, January 2008

illegal operands and illegal memory accesses. When
used correctly, in conjunction with appropriate
Software Based Self Test (SBST) routines for the
CPU and RAM/ROM (e.g. [15][13]), these elements
can give relatively high levels of control flow error
detection and take the appropriate safety action if a
permanent hardware (e.g. register) fault is diagnosed
(e.g. [13][15][19][[22]). However, due to their
nature, SBST techniques are generally not suitable
for detecting and correcting transient errors in data
memory [13][15].

Recent years have also seen the development of
several software-based approaches to implementing
transient fault detection on COTS processors: due to
their low cost requirements, such devices are not
radiation hardened. These techniques are designed
to detect errors caused by transient or permanent
hardware faults by relying on specially crafted
software, without resorting to special-purpose
hardware. Many of these techniques involve
modifications to the application code in order to
detect deviations from the expected program
execution flow (e.g. [8][9][17][23][25]). If any
deviation is detected, program execution is
suspended and an error recovery procedure is called
(this often involves resetting the processor to a
known state: e.g. [25][10]). They are based around
instruction counting [17], instruction/task
duplication [25] and control flow checking using
signatures and/or assertions [8][9]. Although such
techniques are effective at detecting many control
flow errors, systems which incorporate them may
still be vulnerable to transient errors in data memory
(which may not result in control-flow errors).

In order to address this vulnerability, some
researchers have investigated the use of Single-
Program Multiple Data (SPMD) techniques for data
redundancy in both single and multi processor
systems (e.g. [10][20]). However, such approaches
(as with most software-based transient error
detection techniques) are problematic from the point
of view of the embedded system developer for two
main reasons:

1. When data duplication is employed, the
developer may have little control over where the
duplicated copies reside in memory. For
example, when redundant temporary variables
are declared, they may all be placed (by the
compiler) in adjacent locations in the user stack
area: they may then be at risk of a common
failure should the memory chip implementing
the user stack become faulty.

2. When the techniques are actually applied, the
complexity of the resulting source code can

increase dramatically, and the basic meaning of
the code can become obscured. This may have
an impact on code development and subsequent
code maintenance.

To illustrate this second point, consider the
segment of C code shown in Fig. 1.

01: #define N (10)

02: int i;

03: int a[N],b[N];

04: for(i=0;i<N;i++)

05: {

06: b[i]=a[i];

07: }

Fig. 1: Un-hardened code

For most programmers, this is “self
documenting” code, and the meaning is clear (the
programmer wishes to copy the contents of any
array of ten integers to another array of the same
size). Now, consider the same code, hardened using
the technique suggested by Redaudengo et al. [10].
This is shown in Fig. 2 (note the required checksum
initialization code and the XOR macro CHK have
been omitted for space reasons). The total code
segment, including this initialization (which must be
called before each operation), and the CHK macro,
is in excess of 36 lines in length; the meaning of the
code is also somewhat obscured. In addition, the
variable i in Fig. 2 remains un-hardened; and the
arrays a0, b0, a1 and b1 are likely to be located
alongside each other in the same area of memory. If
the variable i were to be hardened, the meaning of
the code would become further obscured, with the
check-and-correct code for i embedded within the
for loop construct; as more nested variables are
hardened, the problem can soon become difficult to
manage.

In this paper, a software-based methodology to
complement the on-chip error detection facilities
and existing SBST techniques for use with COTS
microprocessors will be proposed. This technique is
an implementation of an SPMD-like architecture to
provide both fault detection and fault tolerance to
both transient and permanent errors in data memory.
This approach differs slightly from other
methodologies in that errors in data memory that
may lead to failures are detected as the program
executes; the manifestation of a data error as a
control flow error is not required for detection. In
this approach, the problems of code complexity,
obscurity and the locating of variables commonly
associated with such a software-based approach to
fault tolerance will attempt to be minimized.

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
13

Issue 1, Volume 5, January 2008

01: #define N (10)

02: int i ;

03: int a0[N], b0[N];

04 int b1[N], b1[N];

05 int c0, c1;

06: for (i=0;i<N;i++)

07: {

08: c0=c0^b0;

09: c1=c1^b1;

10: b0[i]=a0[i];

11: b1[i]=a1[i];

12: c0=c0^b0;

13: c1=c1^b1;

14: if(a0[i]!=a1[i])

15: {

16: if(CHK(a0, b0)==C0)

17: {

18: a1[i]=a0[i];

19: c1=c0;

20: }

21: else

22: {

23: a0[i]=a1[i];

24: c0=c1;

25: }

26: }

27: }

Fig. 2: Hardened code

The paper is organized as follows. Section 2 will
describe the memory architecture of a typical COTS
microcontroller. Section 3 will introduce the
concept of the mirror array. Section 4 will describe
how the redundancy management can be achieved
in C and C++ programs, resulting in code that is
highly readable and maintainable. Section 5
describes preliminary studies performed to asses the
effectiveness of the methodology; following this, an
in-depth case study is presented in Section 6. The
paper is concluded in Section 7.

2 Memory In Embedded Systems
Before describing the methodology in full, the
architecture of a typical embedded processor will
first be described. Many embedded processors
employ either a Harvard architecture – in which the
code and data memory areas employ a different
address space - or Von Neumann architecture, in
which the code and data memory share a common
address space [14][18]. The techniques we describe
are equally applicable to both architectures. It is

common for a processor to have a small amount of
on-chip (internal) RAM, termed the IRAM. It may
or may not have a small amount of on-chip ROM or
FLASH for code storage [11][18].

At the lowest address spaces, there will normally
be an interrupt vector table, implemented in ROM.
The lowest of these contains the reset vector – upon
start/reset, the processor loads this vector from
address 0h and jumps to the appropriate memory
address where program execution commences.
Following this vector table, the IRAM will
commonly be implemented. The system designer is
then free to use the address space following the
IRAM for implementation of external RAM or
ROM. A typical configuration for a Von Neumann
style architecture is shown in Fig. 3; in this case the
architecture of the C167CR microprocessor is
shown [14].

The CPU registers, system stack and Special
Function Registers (SFR’s) are normally
implemented in an area of IRAM; this may even be
within the normal address space. Typically there is
also space for a small amount of user variables in
the IRAM area. Since most embedded systems
utilize a scheduler (a small form of specialized
RTOS [11]), a developer will typically implement
the scheduler data areas in the remaining IRAM to
reduce overheads, as access to this data area is faster
than external RAM (XRAM). The user stack and all
task data will then typically be implemented in
XRAM. This flexibility in assigning areas of
XRAM, possibly even over multiple (physically
separate) memory chips, can thus be exploited to
increase reliability in SPMD architectures. Before
describing how this can be achieved in software, a
number of assumptions that will be used throughout
the remainder of the paper will be stated.

Fig. 3: Typical address space usage

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
14

Issue 1, Volume 5, January 2008

• For the remainder of this paper, the notation

tByte will be used to represent an unsigned 8-
bit value, tWord to represent an unsigned 16-bit
variable and tFloat to represent a floating point
variable.

• It is assumed that the designer wishes to
duplicate data in the user stack and task data
areas, both implemented in XRAM1 .

• The management of this duplicated data should
be as straightforward as possible, with minimal
alterations to the source code.

It is assumed that if an un-correctable data

inconsistency is detected, the processor is forced
into a reset mode to run pre-programmed SBST
routines - other behaviour may be more appropriate
depending on the application.

3 Mirror Arrays
A “mirror array” is defined as a replicated area of
external memory, shifted from its base address by a
user-defined offset value. The mirror array is
accessed (for read or write operations) every time
the corresponding primary area is accessed. The
advantage of using such an approach is that by
choosing appropriate offset values, the programmer
can specify absolute addresses for these mirrors to
reside in; they can also reside in physically separate
memory devices, from different manufacturers. This
is intended to increase system reliability by avoiding
common-mode failures in memory devices.

Such arrays can be used to provide data
redundancy for global, persistent data, and also
temporary variables and the user stack. Suppose a
designer has created a working (standard) program
which uses 200h bytes of XRAM, at addresses
0x10000 to 0x101FF. The user stack is located in
the first 100h bytes, and the remaining data is global
in scope. The entire contents of this data area can
then be ‘mirrored’ at address space 0x11000 to
0x111FF - assuming the memory is physically
present - shifted by a fixed offset of 1000h. This
process can be repeated at other fixed offsets in
memory, and the required level of data duplication
can be achieved. This is shown in Fig. 4.

1 Hardening of data in the IRAM areas is of course possible, but

cannot be done with a mirror array. This is discussed further in
Section 4.3.

Fig. 4: Mirror array concept

For clarity and simplicity of description, this

paper will primarily describe the duplex
implementation. However, the triplex
implementation has also been considered; this can
be achieved with very little alteration to the
underlying method.

4 Implementation
If the use of mirror arrays is to be effective, some
way to manage this redundancy in the program code
is required. Such an approach is described in this
section.

Please note that the code described in this section
was developed using the Keil C/C++ compiler [12]
for the Infineon C16x family of microcontrollers
[14]. Code for other compiler / processor
combinations may vary slightly.

4.1 User-Defined Data Types
In order to implement the mirror arrays, and make
their use as transparent as possible to the
programmer, three new basic data types were
implemented as C++ classes: duplex_tByte,
duplex_tWord, and duplex_tFloat. The intention is
that variables of these types can be used, from the
programmer’s perspective, in a manner identical to
the basic data types representing byte, word and
float variables. Each class contains a single private
data declaration, Primary_Data, corresponding to
the basic simplex data type. The required read and
write operations on this data were then created by
defining new operator member functions using the
operator keyword. By way of example, the member
functions for both the assignment and reference
operations for the duplex_tByte data type are shown
in Fig. 5. Line 1 of this code defines an offset in

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
15

Issue 1, Volume 5, January 2008

memory of 1000h for the duplicated data. The inline
keyword preceding the function deceleration of Line
2 indicates that the code is intended to be executed
inline, not as a function call (to minimize processing
overheads).

01: #define MEMORY_OFFSET (0x1000)

02: inline void duplex_tByte::operator=(
tByte Value)

03: {

04 IEN=0;

05
Primary_Data=*(&Primary_Data+MEMORY_OFFSET)
=Value;

06 IEN = 1;

07 }

08 inline tByte duplex_tByte::operator
tByte (void)

09 {

10 IEN=0;

11 if(Primary_Data==*(&Primary_Data+

MEMORY_OFFSET))

12 {

13 IEN=1;

14 return(Primary_Data);

15 }

16 else

17 {

18 _trap_(0x00);

19 }

Fig. 5: duplex_tByte operator functions

The remainder of Line 2 indicates that the code
should be executed when an assignment is made to
the class, and passed a value of type tByte.
Variables of other type (e.g. float) that may be
passed are automatically cast to this form by the
compiler. Line 4 features the statement IEN = 0.
This instruction disables interrupts on the
microprocessor until a corresponding IEN = 1
statement is reached (Line 6 in this case). This is
important to maintain data consistency in the
mirrors in pre-emptive systems. In Line 5, the value
passed to the class is written to both the primary
data and the corresponding data in the mirror array.
The function then exits.

Line 8 indicates that the following function code
should be executed, again inline, when the data type
is referenced (in this case it is an explicit reference –
all references are treated by the compiler as tByte
references). In Line 11, the primary data is
compared to the corresponding data in the mirror
array. If the data are consistent, the value is returned
and the function exits. It is this returned value that is
then further manipulated by the compiler. If not, the

statement _trap_(0x00) on Line 18 executes a full
system reset - this is equivalent to a full hardware or
watchdog reset2 in the C167 processor [14]. In the
triplex data type, the assignment and reference
functions are suitably modified to incorporate the
third data area; the reference function additionally
performs a 2 from 3 vote if possible, and executes a
reset if all the data are inconsistent.

Each of the C/C++ operators that explicitly
modify the contents of the duplicated data, such as
++, --, +=, and so on, were implemented in a similar
manner. Thus, in combination, these operators
ensure inter-operability of the new classes both with
each other and with the basic data types; the
implementation (and consistency checking) of the
duplicated data is completely hidden from the
programmer.

4.2 Initializing The Mirror Arrays
Although constructors have been implemented for
each data type to initialize the data in the mirror
areas, it is beneficial to initialize the mirror areas as
part of the initialization code. This can be achieved
either in assembly, as part of the SBST XRAM test,
or directly in C. The _at_ or MARRAY specifiers
can be used with the Keil compiler to specify an
absolute area for direct memory access in C.

4.3 Hardening of IRAM Areas
By definition, the areas of microcontroller IRAM
may not be directly replicated using the mirror array
technique. When data in these areas is to be
replicated – for example to provide tolerance to
corruptions of internal scheduler data – then a
slightly different methodology must be employed.
The same basic framework as used for the duplex
datatypes described above must be adapted to allow
the redundant data fields to sit in adjacent areas of
memory.

Each class now requires multiple private data
declarations in internal RAM. For the duplex case
this corresponds to Primary_Data and
Secondary_Data declarations corresponding to
redundant copies of the basic simplex data type. The
code modifications required to implement these

2 This behaviour may not be portable; in many microcontrollers

a software reset may not be equivalent to a full hardware
reset. In this case, it may be more suitable to freeze program
execution and enforce a watchdog reset. Reliable techniques
to enable this are discussed in [23].

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
16

Issue 1, Volume 5, January 2008

changes is minimal; the new classes are given
appropriate names, for example duplex_iByte, and
the compiler must now be instructed that the private
class datatypes must now explicitly declared to
reside in IRAM. The idata keyword can be used
with the Keil compiler to perform this action.
Finally, the overloaded operator functions must now
be modified to act on the redundant copies of data,
as opposed to the mirrored data.

4.4 Reset Mechanisms
On reset, the chip first enters a SBST mode where,
among other things (such as CPU and ROM
checksum tests [15]), the RAM functionality is
verified to detect faults, using a similar method as
outlined in [13] before normal program execution
commences. If a faulty RAM is detected, the system
can attempt enter a safe state, and perform
appropriate external signaling to maintain system
integrity. When used in conjunction with on-chip
exception handling, a watchdog timer and SBST,
the overall approach can be summarized as shown in
Fig. 7.

4.5 Example
In Fig. 6, the code library described in this section is
applied to the code example shown in Fig. 1. From
Fig. 6 it can be seen that the length of the hardened
code is identical to the original and is also highly
readable. Additionally, it is noted that – unlike the
code shown in Fig. 2 - the variable i is also hardened
in this case.

01: #define N (10)

02: duplex_tByte i;

03: duplex_tByte a[N],b[N];

04: for(i=0;i<N;i++)

05: {

06: b[i]=a[i];

07: }

Fig. 6: Hardened code

This library does not require the use of automatic

code generators for its implementation: all that is
required is for the programmer to have a basic
understanding of the meaning of the new data types.
The library also allows a system developer to first
implement the system in a simplex fashion,
determine the memory requirements for the system,
then harden the code when the required memory
offset(s) have been determined.

Fig. 7: Proposed approach to fault tolerance

The hardening procedure can be accomplished

extremely rapidly; all that is required is the
inclusion of the new data types into a project, and
altering the basic data declarations that require
hardening to either their duplex or triplex
counterparts.

4.6 Mixing C and C++ Code
Due to the overheads associated with some features
of the C++ language, many resource-constrained
embedded programs are written only in C [11].
However, many C compilers have built-in support
for a sub-set of C++ features - indeed these features
are often implemented as a built-in pre-processor for
a standard C compiler.

If care is taken in the programming approach,
user tasks and functions (using the new data types)
can be compiled in C++ and exported to other C
programs (for example a scheduler implementation)
using the extern “C” compiler directive, with
little/no processing or memory overheads.

However, care must be taken when mixing C and
C++ in safety-critical software. Although at the
present time several working groups, such as
MISRA [24], are cautious about this practice3,

3 It has been argued that C++ should not be used in UK road

vehicle embedded software until its behaviour has been fully
analyzed from a safety perspective, and which elements of the

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
17

Issue 1, Volume 5, January 2008

software libraries may be used in a project if their
behavior is well-defined and fully tested on a given
platform. Additionally, research is currently
underway to identify a safe subset for C++ which
can be used in such systems. It is envisioned that the
small amount of C++ that has been used in the
creation of the new data types will be compatible
with these findings. Until this can be verified, care
must obviously be taken by designers when using
the library, specifically when integrating and testing
the code to ensure that the software behaves as
expected on a given compiler / processor platform.
Additionally, the library may also be implemented
as a series of macro’s / functions for use with a C
program; however this requires slightly more source
code modifications for implementation.

4.7 Impact Of Permanent Memory Errors
Considering the presence of permanent memory
failures, it is assumed that physically separate
memory devices have been used to implement the
mirrors; it is also assumed that failures of the
memory devices are isolated and do not occur
instantaneously. In the duplex case, the system will
reset upon the first detected memory mismatch in a
memory read operation. This will force a reset and
the subsequent SBST should diagnose the
permanent memory failure.

In the triplex case, the failure of a single memory
device will be tolerated by the voting mechanism;
the system essentially defaults to the duplex case
under these conditions. Upon a second, subsequent
memory failure, the system will again reset on the
first un-correctable memory read, and force the
SBST. Again this should subsequently diagnose the
permanent failure of multiple memory devices.

5 Preliminary Investigations
To assess the effectiveness of the mirror-array
technique and associated code library, several
preliminary fault-injection studies were performed
on an Infineon C167CR microcontroller [14]
executing two different programs: a 4x4 16-bit
matrix multiplication program and a 100-element
16-bit list sorting exercise. The experimental set-up
is shown in Fig. 8.

language produce reliable software. Such work was carried
out for ANSI C, resulting in the publications regarding
MISRA C [24]. Preliminary versions of such guidelines for
C++ were proposed in 2007.

Fig. 8: Experimental setup

During each experiment, transient faults were

injected into the XRAM data area at random times,
performing random bit-flips in all the user data
areas. The injection of faults into the CPU registers
was not considered in this case, and is an area for
future work. The fault injection was performed
using a high-speed serial link and a small monitor
program in the C167. In the matrix multiplication
program (MATRIX), the main program loop first
initializes the source matrices with values hard-
coded into the ROM. The matrix multiplication is
then performed. The values contained in the result
matrix are then compared with values coded into the
program ROM. The process then repeats endlessly.
In the list sorting program (LIST), the 100-element
list is sorted into ascending order from an initial
random assignment. The final list is compared to
values hard coded into program ROM, before
repeating. In both cases, any failures, detected faults
or corrected faults are reported to the host PC via
the serial link.

Three different implementations of both
programs were considered; the un-hardened
(simplex) case, and two hardened versions (duplex
and triplex) of the programs. Since the application
of any such technique has an impact on the required
system resources, the resulting code size, memory
requirements and execution times of each iteration
of the programs are described. The MATRIX
program requirements are shown in table I, and the
LIST program requirements are shown in table II.

Table I: Required system resources for MATRIX

Resource Simplex Duplex Triplex
Code Size (b) 1956 2044 2232

Memory Size (b) 204 408 612
Exec. Time (ms) 0.918 2.16 2.61

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
18

Issue 1, Volume 5, January 2008

Table II: Required system resources for LIST

Resource Simplex Duplex Triplex
Code Size (b) 2290 2392 2540

Memory Size (b) 464 928 1392
Exec. Time (ms) 13.65 29.57 42.84

In table III, the recorded results for the fault

injection experiments for the MATRIX program are
summarized. Similar results are shown for the LIST
program in table IV. In the duplex and triplex cases,
the number of faults injected was increased to
reflect the increased size of the program data areas.
Fault effects are classified into one of four
categories, as follows:

• Effect-less: the fault does not result in a

computation failure.
• Detected: the fault is detected but cannot be

corrected – the iteration is restarted after
processor reset.

• Detected and corrected: the fault is detected
and has been corrected.

• Failure: the fault is not detected or corrected
and results in an invalid computation output.

Table III: Fault injection results for MATRIX

 Simplex Duplex Triplex

Injected 10000 20000 30000
Effect-less 1289 2448 3744
Detected 0 17552 0
Corrected 0 0 26256
Failures 8711 0 0

Table IV: Fault injection results for LIST

 Simplex Duplex Triplex

Injected 10000 20000 30000
Effect-less 279 493 988
Detected 0 19507 0
Corrected 0 0 29012
Failures 9721 0 0

From table I, an increase of approximately 4.5%

and 14.1% in the code size for the duplex and
triplex case respectively, 100% and 200% increase
in data memory, and a 135.3% and 184.3% increase
in execution time can be seen. From table II, an
increase of 4.45% and 10.9% for the code size,
100% and 200% increase in data memory size, and

116.6% and 213.8% increase in execution times by
the application of the duplex and triplex techniques
can be seen.

In terms of data memory increase, the duplex and
triplex case invariably causes a doubling or trebling
of each of the hardened variables, plus the user stack
space. The code size increases in both these cases
are small; despite the use of inline function calls. As
can be seen the increase in execution time is more
than doubled and almost tripled by the application
of the technique to the MATRIX program; the
increase is slightly worse for the LIST program.

An increase such as this is however to be
expected, as each hardened variable uses instruction
replication and a comparison or voting mechanism.
These results indicate that the increase in code size
and execution time is highly dependant on the
application; the more memory read and write
operations a program contains before hardening, the
larger the impact of applying the technique. Due to
the nature of the technique, the increase in data
memory, however, is more predictable, with a
doubling and trebling of used memory areas.

Now considering table III, it can be seen that for
the MATRIX program approximately 12% of each
of the injected faults was effect less. In the simplex
system, the remaining faults all caused failures. In
the duplex system, all remaining faults were
detected; no failures occurred. In the triplex system,
all remaining failures were detected and corrected;
the system is fully fault-tolerant to the types of
faults considered in the benchmark. A similar
pattern may be observed for the LIST results shown
in table IV. In the simplex case, 2.8% of faults were
effect less; the remaining all caused failures. A total
of 2.5% of injected faults were effect less in the
duplex case, with all the remaining being detected.
Finally in the triplex case 3.3% of faults were effect
less, with the remaining being detected and
corrected.

When compared to similar SPMD techniques
such as [10][20], these results suggest that both the
duplex and triplex mirror techniques are comparable
in terms of memory size increase, and favorable in
terms of both code segment increase and CPU
overhead increase (although comparison between
CPU overhead increases is difficult to judge
between the single processor and multiprocessor
cases). In the next section, these preliminary results
are expanded upon, and a case study – based around
a real-time cruise control system for a passenger
vehicle - is presented that illustrates the effect of the
methodology in a real-time control application.

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
19

Issue 1, Volume 5, January 2008

6 Case Study
Whilst the results in the previous section favorably
demonstrate the behavior of the technique, the
simple applications that were considered may not –
in themselves - be fully representative of the real
world applications in which the technique is most
likely to be applied. With this in mind, in this
section a representative case study is described. The
case study employed hardware-in-the-loop (HIL)
testing techniques to gauge the effectiveness of the
methodology in a vehicle cruise control system
(CCS) application.
 The principle of HIL simulation is shown in Fig.
9. The simulator is currently set up to represent the
dynamics of a passenger vehicle in real-time,
iterated at a rate of 1 kHz on a desktop PC. The
nature of the testbed itself, and the dynamic models
used to represent the vehicle have been described
elsewhere [26][27]; we provide only a brief
summary here.

Fig. 9: HIL principle

6.1 Test Facility Description
Although the dynamic model of the vehicle is non-
linear, it can be approximated in the operating range
of the CCS by the following transfer function:

115
02.0

)(
)(

+
=

ssF
sv

(1)

 … where v(s) is the velocity of the vehicle in
meters per second, and F is the accelerating force
(which is dependant on the accelerator setting,
engine RPM and wheel slip conditions).
 The main requirement of the CCS, which is
implemented by the embedded system under test, is
to provide the vehicle driver with an option of
maintaining the vehicle at a desired speed without
further intervention, by automatically controlling the

vehicle throttle setting. It performs this function by
measuring the current vehicle speed from a sensor
and performing a PID calculation to determine the
throttle setting. The classical form of the PID
algorithm employed in this study is as follows:

dt
tdeTKdtte

T
KteKtu dc

t

i

c
c

)()()()(
0

++= ∫

(2)

 … where u(t) is the commanded throttle setting,
e(t) is the error between reference (desired) speed
and actual (measured) speed, and Kc, Ki and Kd are
the system gains, chosen to give the desired closed
loop performance [1][2][3]. Additionally, the
module is required to indicate the current speed of
the vehicle and the status of the control system to
the driver, via a serial interface to an LCD. It also
must interface to a number of switches to receive
commands from the driver (“CCS enable”, “CCS
disable”, “Speed up”, etc).
 Again, the C167 microprocessor was employed in
this study to implement the CCS. Fault injection
was implemented using similar techniques to those
outlined in Section 5. Overall, the CCS testbed
summarized here was chosen as a representative
system as it can be considered to be a critical
application [28], and previous studies have shown
that (amongst other things) transient effects and
processor faults – such as data errors - can be a
major contributory cause to potential dangerous
system failures [29].

6.2 CCS Design
The CCS was implemented as a set of six software
tasks for the C167 microprocessor, which were then
scheduled non-preemptively using the scheduler
described by Pont [11]. The tasks, along with their
periods (P) and execution times (E) are summarized
in table V.

Table V: Task parameters

Name Task ID P (ms) E (ms)
Sensor T1 20 0.5
Control T2 20 1.2
Actuator T3 20 0.5
Status T4 100 9
Display T5 20 5
Safety T6 100 0.1

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
20

Issue 1, Volume 5, January 2008

 A scheduler tick interval of 20 ms was chosen for
this implementation. The sensor task (T1) sampled
the vehicle speed (as a voltage) through an analog-
to-digital (ADC) port, re-scaled the voltage to the
required speed range and performed range and
range-rate sanity checks. The control task (T2)
performed the PID calculation; a digitized version
of (2):

)(1
0

−
=

−++= ∑ jjd

j

m
mijPj eeKeKeKu

(3)

… where uj is the commanded throttle setting at
sample j, and ej is the error at sample j. The three
system gains were chosen (manually) to give the
desired closed loop performance; a critically
damped 95% settling-time of approximately 6
seconds. The actuation task (T3) performed a further
sanity check on the resulting throttle command and
translated this output to a parallel port of the C167,
to control a throttle servo actuator. These three
tasks were scheduled to execute sequentially with a
period of 20 ms, giving an overall sampling rate of
50 Hz.
 A status-update task (T4) was executed once every
100 ms. This task monitored and “de-bounced” the
“cruise enable” and “resume” switches. It also
monitored switches on both the accelerator and
brake pedals: if either of the pedal switches was
depressed, the cruise control was disengaged. In
addition, a display update task (T5) was also
executed every 20 ms to control the LCD.
 The final system task was the safety task (T6),
also executed every 100 ms. This task serviced the
watchdog timer, and also verified the system
configuration (such as timer reload value, I/O
configuration and interrupt settings). Additionally,
the general approach to software fault tolerance, as
depicted in Fig. 7, was build into the application.
Throughout the software development process, good
programming techniques (such as those discussed in
[5][30][31]) were observed at all times.

6.3 Experimental Methodology
A total of two experiments were performed using
this test facility. In the first, a basic version of the
CCS implementation as described above was tested
under fault injection conditions. In the second, the
software was additionally augmented with duplex
datatypes, and the experiment repeated. The

following critical variables were hardened:

• Sensor / setpoint data: 16-bit representations of

actual and desired vehicle speed;
• Control data: three internal 16-bit dynamic

states of the PID controller;
• Output data: two 16-bit variables used to apply

final throttle control;
• Status data: four 8-bit status flags used to store

system information;
• Scheduler data areas: the internal data

structures of the task scheduler (32 bits / task).

 In each of the two experiments performed in this
case study, the vehicle cruise control was initially
enabled at 50 MPH (80.5 KPH). The ‘driver’ then
commanded periodic speed changes from 50 MPH
to 40 MPH (64.4 KPH), and vice versa, every 10
seconds. One second prior to this commanded speed
change, a fault was injected into the XRAM of the
system under test by the simulation PC. It should be
noted that although the memory requirements of the
two implementations was slightly different, as
described in the following section, faults were
injected into an equally large area of memory to
enable a fair comparison.
 After the injection of each fault, the resulting
system behavior was automatically classified using
a simple model-based performance monitor to gauge
the operation of the system in real-time. The
performance monitor compares the real system
behavior with the desired system behavior to detect
deviations from the specification that are indicative
of a system failure (e.g. sluggish / oscillatory
performance, out of range or ‘stuck at’ errors). After
each resulting fault had been classified, the results
were logged into a text file by the PC for later
analysis. The overall testing strategy that was
employed in this study is as shown in Fig. 10.

Fig. 10: Experimental methodology

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
21

Issue 1, Volume 5, January 2008

6.4 Experimental Results
We begin this section with a comparative analysis of
the code size, RAM usage and CPU utilization of
the simplex and duplex CCS designs, as shown in
table VI. From this table it can be seen that the
increases in code size and CPU utilization measures
are effectively negligible (≅ 2.5% and 1.6%
respectively) , and the RAM usage has – as expected
– increased directly in proportion to the number of
hardened variables, a total of 42 bytes.

Table VI: Required system resources for CCS

Resource Simplex Duplex
Code Size (b) 1956 2004

Memory Size (b) 204 246
CPU Utilization (%) 45.4 46.1

 Considering now the recorded failure behavior, it
can be seen from table VII that the method has a
large positive impact on the number of recorded
failures in the system. It must be noted that in this
case, the effects of the faults were classified purely
on their functional effects on the system; as such,
many of the effect-less failures in the duplex system
were classified as such purely because they were
detected before they could cause a functional
failure, allowing the system to return to a known
(healthy) state.
 It can be seen that while a small number of
failures occurred in the duplex system, the simplex
system sees an almost 19-fold increase in the
number of recorded dangerous failures. This can be
directly attributed to the fact that critical control
variables (such as the speed setpoint) and scheduler
data areas (such as storage of task periods) have
now been protected from disturbances. Such
disturbances, if left undetected, can obviously have
a hugely detrimental impact on the operation of the
system.

Table VII: Recorded failure rates for CCS

 Simplex Duplex
Faults Injected 10000 10000

Effect Less 7729 9880
System Failures 2271 120

 Additionally, this fault injection information may
be used to estimate the failure rates of the two
systems due to transient effects. As mentioned in
Section 1, the failure rate for SEU’s in a ground
based installation such as the CCS may be estimated

to be in the region of 10-8 / bit / hr. The transient
failure rate λT may therefore be calculated as
follows:

fT PB ⋅⋅= −810λ
(4)

 Where B is the numbers of bits in RAM that may
be affected by a transient and pf is the probability
that such an upset will lead to failure. Using the
information from tables VI and VII, the values of pf
for the two implementations may be calculated as
0.2271 and 0.012 for the simplex and duplex case
respectively. Applying (4) yields the following
result:

7

6

1036.2)(

1071.3)(
−

−

×=

×=

Duplex

Simplex

T

T

λ

λ

(5)

 As can be clearly seen from this result, although
the methodology results in a (slightly increased)
usage of system RAM, the resulting reduction in the
transient failure rate is significant, and in this case is
enough to encompass an entire safety integrity level
(SIL) [4][5].

7 Conclusions And Further Work
In this paper, a novel approach to software
implemented fault-tolerance has been presented.
The approach, based on an SPMD architecture, can
be used to compliment on-chip error detection
mechanisms and existing SBST techniques for
COTS processors used in embedded system designs.
 The approach we have described relies on both
data and instruction duplication. It has been
described how the required data types can be
implemented as C++ classes and exported into C
programs. It has been shown that the method is
easily applied, results in readable code, and is able
to tolerate 100% of the injected faults in both of the
preliminary benchmarks described. In addition, the
methodology was shown to perform extremely well
in a real-time control application, reducing the
observer number of system failures by a factor of
19. Since such a factor can be enough to encompass
an entire SIL, such a result should be of interest to
prospective developers of safety critical embedded
systems.

Whilst the application of the techniques clearly
provides high levels of fault detection and tolerance,
there is obviously a trade-off with increases in the

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
22

Issue 1, Volume 5, January 2008

code and data size and task execution time.
Prospective designers must obviously also take
these factors into account when considering the
techniques. The investigations that have been
carried out in this paper reveal that, whilst the
impact of the techniques is mostly application
dependant, in most cases they can be tolerated with
ease.

Additionally, the techniques we have described
in this paper can be applied without the need for
automatic code generators, and the impact on source
code readability and maintainability is negligible. It
is also noted that the technique is portable and can
be applied with ease to any program structure.
Again these points are of note from the perspective
of the safety critical system developer.

With the availability of low-cost, high-
performance 32-bit microprocessors, the impact of
increased CPU overheads may be somewhat
diminished over the results described in this study.
Further work in this area can explore this
possibility, along with possible techniques aimed at
providing similar levels of redundancy for the CPU
registers.

8 Acknowledgements
The work described in this paper was supported by
the Leverhulme Trust (Grant F/00 212/D). The first
author is also grateful to Michael J. Pont of the
embedded systems laboratory for his suggestions
and advice during the preparation of the paper.

An early version of this paper was presented at a
Special Session on Safety-Critical Systems at the 6th
International Conference on Computational
Intelligence, Man-Machine Systems and
Cybernetics (CIMMACS), Tenerife, Spain,
December, 2007.

References:

[1] C.T. Kilian, Modern control technology:

components and systems, Delmar Thomson
Learning, 2000.

[2] K. Astrom, B. Wittenmark, Computer
Controlled Systems: Theory And Design,
Prentice Hall.

[3] G.S. Virk, Digital computer control systems,
McGraw-Hill, 1991.

[4] N. Storey, Safety Critical Computer Systems,
Addison Wesley Publishing, 1996.

[5] N.G. Levenson, Safeware: System Safety and
Computers, Reading, M.A., Addison-Wesley,
1995.

[6] E. Normand, Single Event Effects in Avionics,
IEEE Trans. on Nuclear Science, Vol. 43, No.
2, 1996.

[7] P. Dodd, L. Massengill, Basic Mechanisms and
Modeling of Single Event Upset in Digital
Microelectronics, IEEE Trans. on Nuclear
Science, Vol. 50, No. 3, 2003.

[8] N. Oh, P.P Shivani, E.J. McCluskey, Control
Flow Checking by Software Signature, IEEE
Trans. On Reliability, September 2001.

[9] A. Benso, S. di Carlo, G. di Natale, P. Prinetto,
L. Tagliaferri, Control-Flow Checking Via
Regular Expressions, in Proc. IEEE Asian Test
Symposium, pp. 299-303, 2001.

[10] M. Rebaudengo, M. Sonza Reorda, M.
Violante, A new approach to software-
implemented fault tolerance, in Proc. IEEE
Latin American Test Workshop, 2002.

[11] M.J. Pont. Patterns for time-triggered
embedded systems: Building reliable
applications with the 8051 family of
microcontrollers, ACM Press / Addison-
Wesley Publishing, 2001.

[12] Keil, XC16x/C16x/ST10 Product Overview,
http://www.keil.com/c166/.

[13] Cascaval, P., Silion, R. “March Test for 3-
Coupling Faults in Random-Access Memories:
A Built-in Self-Testing Logic Design,”
WSEAS Trans. Computers, 2(6), pp. 215-221,
February 2007.

[14] Phytec, phyCORE 167CS Hardware Manual,
Phytec, April 2003.

[15] J. Sosnowski, Software-based self-testing of
microprocessors, Journal of Systems
Architecture, Vol. 52, pp. 257-271, 2006.

[16] MIL-HDBK-217F, Military Handbook of
Reliability Prediction of Electronic Equipment,
December 1991.

[17] A. Rajabzadeh, S.G. Miremadi, Transient
detection in COTS processors using software
approach, Microelectronics Reliability, Vol. 46,
pp. 124-133, 2006.

[18] S.A. Jankovic, D.M. Maksimovic, Power
saving modes in modern microcontroller
design, diagnostics and reliability,
Microelectronics Reliability, Vol. 43, pp. 319-
326, 2003.

[19] J.S. Lee, M.C. Kim, P.H. Seong, H.G. Kang,
S.C. Jang, Evaluation of error detection
coverage and fault tolerance of digital plant
protection system in nuclear power plants,
Annals of Nuclear Energy, Vol. 33, pp. 544-
554, 2006.

[20] C. Gong, R. Melhem, R. Gupta, On-line error
detection through data duplication in

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
23

Issue 1, Volume 5, January 2008

distributed memory systems, Microprocessors
and Microsystems, Vol. 21, pp. 197-209, 1997.

[21] Ong, H.L.R and Pont, M.J. (2002) “The impact
of instruction pointer corruption on program
flow: a computational modelling study”,
Microprocessors and Microsystems, 25: 409-
419.

[22] Ong, H.L.R, Pont, M.J. and Peasgood, W.
(2001) “A comparison of software-based
techniques intended to increase the reliability
of embedded applications in the presence of
EMI” Microprocessors and Microsystems, 24
(10): 481-491.

[23] Pont, M.J. and Ong, H.L.R. (2003) “Using
watchdog timers to improve the reliability of
TTCS embedded systems”, in Hruby, P. and
Soressen, K. E. [Eds.] Proceedings of the First
Nordic Conference on Pattern Languages of
Programs, September, 2002 (“VikingPloP
2002”), pp.159-200. Published by Microsoft
Business Solutions. ISBN: 87-7849-769-8.

[24] MISRA, “Development guidelines for vehicle-
based software,” Motor Industry Software
Reliability Report, October 2004.

[25] H. Kopetz, H. Kantz, G. Grunsteidl, P.
Puschner and J. Reisinger, “Tolerating transient
faults in MARS”, in Proc 20th Int. Symp. on
Fault Tolerant Computing, pp. 466-473,
Newcastle upon Tyne, UK, June 1990.

[26] Ayavoo, D., Pont, M. J., Fang, J., Short, M.,
and Parker, S. A ‘Hardware-in-the Loop’
testbed representing the operation of a cruise-
control system in a passenger car. In:
Proceedings of the Second UK Embedded
Forum (Birmingham, UK, October 2005), pp.
60-90, 2005. Published by University of
Newcastle upon Tyne [ISBN: 0-7017-0191-9].

[27] Short, M. J. and Pont, M. J. Hardware in the
loop simulation of embedded automotive
control systems. In: Proceedings of the 8th
IEEE International Conference on Intelligent
Transportation Systems (IEEE ITSC 2005)
held in Vienna, Austria, pp. 226-231, 2005.

[28] Castelli, J., Nash, C., Ditlow, C. and Pecht, M.
Sudden acceleration – the myth of driver error.
University of Maryland, CALCE EPSC Press,
ISBN 0-9707174-5-8.

[29] Mauser, H. and Thurner, E. Electronic Throttle
Control – A Dependability Case Study. Journal
of Universal Computer Science, Vol. 5, No. 10,
pp. 730 – 741, 1999.

[30] de Almeida Jr, G.,J., Melnikov, S.S.S., de
Camargo Jr, J.B., Jose de Sousa, B. “Defensive
Programming for Safety-Critical Systems,”

WSEAS Trans. Systems, 2(2), pp. 307-312,
April 2002.

[31] Short, M. “Development Guidelines for
Dependable Real-Time Embedded Systems,”
In: Proceedings of the 6th IEEE/ACS
International Conference on Computer Systems
and Applications (AICCSA 2008), Doha,
Qatar, April 2008.

WSEAS TRANSACTIONS on ELECTRONICS Michael Short, Michael Schwarz and Josef Boercsoek

ISSN: 1109-9445
24

Issue 1, Volume 5, January 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

