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Abstract:A prototype problem in the analysis of steady-state stochastic processes is that of estimating the variance
of the sample mean. A commonly used performance criterion for variance estimators is the mean-squared-error
(mse) — the sum of the variance and the squared bias. In this paper, we attempt to minimize the variance of
an estimator subject to a bias constraint — a goal that differs from that of minimizing mse, in which case there
would be no explicit bias constraint. We propose abias-awaremechanism to achieve our goal. Specifically, we
use linear combinations of estimators based on different batch sizes to approximately satisfy the bias constraint;
and then we minimize the variance by choosing appropriate linear combination weights. We illustrate the use
of this mechanism by presenting bias-aware linear combinations of several variance estimators, including non-
overlapping batch means, overlapping batch means, and standardized time series weighted area estimators. We
also evaluate our mechanism with Monte Carlo examples.

Key–Words:Simulation, Mean-squared-error, Variance Estimation, Non-overlapping Batch Means, Overlapping
Batch Means, Standardized Time Series, Weighted Area Estimator.

1 Introduction

One of the classical problems in the statistical analysis
of a steady-state autocorrelated stochastic process con-
cerns the estimation of process performance measures,
for instance, the expected delay time of a packet in a
network system or the expected bit error rate in a com-
munications system [27, 9].

When undertaking the estimation of a performance
measure, two issues ought to be addressed. First, how
should one obtain a good estimator of the performance
measure? Second, how should one evaluate the qual-
ity of such an estimator? The research in this paper is
motivated by these issues.

To put things on a formal footing, consider
a covariance stationary stochastic processY =
{Y1, Y2, . . . , Yn} with unknown population meanµ, un-
known marginal varianceR0, and unknown weighted
sums of correlationsγj ≡ ∑∞

h=−∞ |h|jρh, j = 0, 1,
whereρh denotes the lag-h correlation of the process,
Corr(Yi, Yi+h), h = 0,±1,±2, . . .. The value of
µ is typically estimated by the sample mean,Ȳn ≡
∑n

i=1 Yi/n; and the variance of sample mean,Var(Ȳn),
is the quality measure of the sample mean, though
some papers use the relatedvariance parameter, σ2 ≡
limn→∞ nVar(Ȳn), where, under fairly general condi-

tions (e.g., Corollary 2 of [1]),σ2 = γ0R0 and

Var(Ȳn) =
σ2

n
− γ1R0

n2
+ o(

1

n2
).

As a practical example, suppose thatYi is the delay
time for packeti at some node in a network. The sample
average delay time for the node,Ȳn, is used to estimate
the population’s mean delay time, and the variance of
the average delay time, Var(Ȳn), is an indicator of the
precision of the average delay time. However, since the
delay time data typically have an unknown correlation
structure — even if we model this type of problem as,
say, a Markovian queueing model [7, 10] — the quantity
Var(Ȳn) will most likely be unknown; and the problem
of providing a good estimator for Var(Ȳn) is difficult. In
fact, the goal of this paper lies in estimatingVar(Ȳn).

Various variance estimators have been proposed in
the simulation literature to estimateVar(Ȳn) [6, 17].
As will be explained in Section 2, many of the popular
estimators incorporate batching, e.g., non-overlapping
batch means (NBM) [8, 20], overlapping batch means
(OBM) [18], and standardized time series area (STS.A)
[22] estimators. In addition, it turns out that many es-
timators are in fact linear combinations of other esti-
mators. For example, OBM can be viewed as a linear
combination of certain NBM estimators.
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In order to evaluate and compare different variance
estimators, a proper statistical analysis dictates that one
should take into account the three performance criteria
of bias, variance, and mean-squared-error (mse) — the
sum of the variance and squared bias. Although mse is
a function of both bias and variance, considering mse
alone is sometimes not enough. For example, an esti-
mator with a small mse may have relatively high bias
yet low variance, leading the user to be “very confident
about the wrong answer.” For simplicity, we use the
termbias-hazardto refer to a scenario in which a small
mse is accompanied by what we regard as an unaccept-
ably large bias. Due to the possibility of bias-hazard, it
is appropriate to consider bias and variance separately.

As techniques from this paper such as batching and
linear combinations are applied, the bias-hazard some-
times becomes more severe. For instance, as discussed
in Section 2, the use of batching typically decreases es-
timator variance at the expense of increased estimator
bias. Alternatively, one could decrease estimator bias
by constructing an appropriate linear combination of
basic estimators; but then care must be taken to avoid
a variance increase. In this paper, our approach is to
control the bias and variance by adjusting estimator
operating parameters such as batch sizes and linear-
combination weights. Based on this mechanism, we
present a bias-aware linear combination of estimators
that approximately bounds the bias at a user-defined
value and then minimizes the variance.

The rest of the paper is organized as follows. In
Section 2, we provide background, including several
useful variance estimators and a discussion on linear
combinations of the variance estimators. Section 3 pro-
poses the bias-aware mechanism and demonstrates its
use through a generic linear-combination estimator. To
evaluate the mechanism empirically, Monte Carlo sim-
ulation examples are carried out in Section 4. Section 5
concludes the paper. See [2] for a related formulation.

2 Background
In this section, we present background material on var-
ious batching variance estimators, including the NBM,
OBM, and STS.A estimators and their linear combina-
tions. Throughout the following discussion, we make
the reasonable assumption [1] that

Y is covariance stationary with|ρh| = O(δh)
for h = 1, 2, . . . , whereδ ∈ (0, 1).

}

(1)

2.1 Non-Overlapping Batch Means

The NBM estimator, first discussed in [5] and [8], trans-
forms correlated data into a few approximately inde-
pendent non-overlapped batch means. Specifically, the

NBM method divides then observations intob contigu-
ous, non-overlapping batches, each of which contains
m consecutive observations. The NBM estimator for
Var(Ȳn) with batch sizem is defined as

V̂ N(m) ≡ m

n(b − 1)

b
∑

i=1

(Ȳi,m − Ȳn)2,

where Ȳi,m ≡ ∑m
j=1 Y(i−1)m+j/m is the ith batch

mean, i = 1, 2, . . . , b, and Ȳn is the overall sample
mean. Under Assumption (1), the expected value of
V̂ N(m) [1, 13] is

E[V̂ N(m)] = Var(Ȳn) − γ1R0

mn
+ o(

1

mn
). (2)

Under additional mild conditions, the asymptotic vari-
ance of the NBM estimator [26] is

lim
m→∞

n/m→∞

n3

m
Var[V̂ N(m)] = 2σ4. (3)

2.2 Overlapping Batch Means

The OBM estimator from Meketon and Schmeiser [18]
is a weighted average of NBM estimators. It divides the
n observations inton−m+1 overlapping batches, each
consisting ofm consecutive observations; of course, the
sample means from these batches are highly correlated
since they contain common observations. The OBM es-
timator forVar(Ȳn) with batch sizem is defined as

V̂ O(m) ≡ m

(n − m)(n − m + 1)

n−m+1
∑

i=1

(Ȳ O
i,m − Ȳn)2,

whereȲ O
i,m ≡ ∑m−1

j=0 Yi+j/m, i = 1, 2, . . . , n−m+1.
Under Assumption (1), the expected value of the OBM
estimator [1, 13] is

E[V̂ O(m)] = Var(Ȳn) − γ1R0

mn
+ o(

1

mn
). (4)

Under additional mild conditions, the asymptotic vari-
ance [26] is

lim
m→∞

n/m→∞

n3

m
Var[V̂ O(m)] =

4

3
σ4. (5)

2.3 Batched Weighted Area Estimator
The standardized time series weighted area (STS.A) es-
timator for Var(Ȳn), proposed by Schruben [22], uses
a functional central limit theorem to transform the pro-
cessY into a process that is asymptotically distributed
as a Brownian bridge [4]. Goldsman and Schruben [15]
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proposed the batched version of the STS.A estimator,
which is defined as

V̂ A(f ;m) ≡ 1

b

b
∑

i=1

V̂ A
i (f ;m),

where the weighted area estimator computed from batch
i is defined as

V̂ A
i (f ;m) ≡

[

1

m
√

n

m
∑

k=1

f(
k

m
)σTi,m(

k

m
)

]2

for i = 1, 2, . . . , b.
In addition, the standardized time series from batch

i, Ti,m(t), is defined as

Ti,m(t) ≡
⌊mt⌋(Ȳi,m − Ȳi,⌊mt⌋)

σ
√

m

for 0 ≤ t ≤ 1 and i = 1, 2, . . . , b, where⌊·⌋ is the
greatest integer function and̄Yi,j ≡

∑j
k=1 Y(i−1)m+k/j

for i = 1, 2, . . . , b, andj = 1, 2, . . . ,m. The weight-
ing functionf(t) is continuous on[0, 1], and is chosen
to satisfy

∫ 1
0

∫ 1
0 f(s)f(t)(min(s, t) − st) ds dt = 1 (a

normalizing constraint). In the current paper we shall
exclusively use the weighting functionf0(t) ≡

√
12,

which was the original weight proposed in [22]. Other
viable choices off(t) can be found in [11, 14, 16].
Under Assumption (1), the expected value of STS.A
[11, 14] is

E[V̂ A(f ;m)] = Var(Ȳn)

− [(F (1) − F̄ (1))2 + F̄ (1)2]γ1R0

2mn
+ o(

1

mn
),

(6)

whereF (t) ≡
∫ t
0 f(s) ds andF̄ (t) ≡

∫ t
0 F (s) ds, 0 ≤

t ≤ 1. Under additional mild conditions, the asymptotic
variance ofV̂ A(f ;m) [26] is

lim
m→∞

n/m→∞

n3

m
Var[V̂ A(f ;m)] = 2σ4. (7)

2.4 Linear Combinations of Variance Estimators

In this section, we review the idea of using linear
combinations of variance estimators to produce a bet-
ter estimator forVar(Ȳn). We refer to the estimators
used to form the linear combinations ascomponent

estimators. Suppose the generic variance estimators
V̂ (m1), V̂ (m2), . . . , V̂ (mw) are selected as the com-
ponent estimators, where themi’s represent different
batch sizes andall estimators use the same overall sam-
ple sizen. For simplicity, we henceforth assume that
the V̂ ’s are either allV̂ N’s, all V̂ O’s or all V̂ A’s. A

linear combinationV̂ C of these component estimators
with coefficientsc1, c2, . . . , cw is

V̂ C ≡
w

∑

i=1

ciV̂ (mi).

In terms of better statistical properties (e.g., small bias,
variance, and mse), the estimatorV̂ C could provide bet-
ter performance than any individual component estima-
tor for estimatingVar(Ȳn) — at least if we choose ap-
propriate weights,c1, c2, . . . , cw. For example, OBM
estimators can be viewed as a linear combination of
many NBM estimators [18]. Other examples in the
context of OBM and standardized time series include
[3, 12, 19, 22].

Song and Schmeiser [24] derived the mse-optimal-
linear combination weightsc1 and c2 for two compo-
nent estimatorŝV (m1) andV̂ (m2) as follows:

c1 ≡ Var(Ȳn)(e1τ
2
2 − e2τ12)

e2
1τ

2
2 + e2

2τ
2
1 + τ2

1 τ2
2 − 2e1e2τ12 − τ2

12

,

and

c2 ≡ Var(Ȳn)(e2τ
2
1 − e1τ12)

e2
1τ

2
2 + e2

2τ
2
1 + τ2

1 τ2
2 − 2e1e2τ12 − τ2

12

,

whereei ≡ E[V̂ (mi)] andτ2
i ≡ Var[V̂ (mi)], for i =

1, 2, andτ12 ≡ Cov[V̂ (m1), V̂ (m2)]. Due to the fact
that these quantities are unknown and difficult to esti-
mate, the mse-optimal-linear combination weights pro-
posed by Song and Schmeiser [24] can not easily be
implemented in practice.

3 Bias-Aware Mechanism
The goal of this paper is to find the optimal linear com-
bination of parameterized variance estimators in terms
of minimizing variance, subject to a constraint on the
magnitude of the bias. The simplest case (w = 2) is
to chooseV̂ (m1) and V̂ (m2) with batch sizesm1 and
m2 and coefficientsc and (1 − c) to form the linear-
combination estimator

V̂ C ≡ cV̂ (m1) + (1 − c)V̂ (m2)

such thatV̂ C satisfies

minimize Var(V̂ C)

subject to: |Bias(V̂ C) | < a,
(8)

wherea is a constant determined by the user. Practi-
cally, the valuea could be set to be relatively small
compared withV̂ C, say0.1E[V̂ C] or 0.05E[V̂ C]. Of
course,E[V̂ C] will likely be unknown in practice, but
the user may skirt the issue by conducting a preliminary
Monte Carlo study to estimate the quantity.
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3.1 Determination of Weights
We discuss properties of linear-combination estimators
with w = 2, parameterized by batch sizesm and⌊rm⌋,
with 0 < r < 1. First of all, consider the bias results
for estimatorŝV N, V̂ O, andV̂ A, stated in Equations (2),
(4), and (6), respectively. We will show that the bias can
be reduced by choosing certain linear-combination co-
efficientsc and (1− c) so that theO(1/(mn)) bias term
vanishes; and consequently the bias is reduced substan-
tially when the sample sizen is large. The optimal coef-
ficients for the NBM, OBM, and STS.A estimators are
stated below (see also [1, 3, 12]).

Theorem 1. Let V̂ C(m, ⌊rm⌋) be the linear combina-
tion of two estimatorŝV (m) and V̂ (⌊rm⌋) (both using
the same overall sample sizen) with coefficientsc and
1 − c, wherec = 1/(1 − r) and0 < r < 1. That is,

V̂ C(m, ⌊rm⌋) ≡ V̂ (m)

1 − r
− rV̂ (⌊rm⌋)

1 − r
.

The expected value of̂V C(m, ⌊rm⌋) is

E[V̂ C(m, ⌊rm⌋)] = Var(Ȳn) + o(
1

mn
). (9)

Equation (9) forV̂ = V̂ N, V̂ O, and V̂ A can be
derived based on the results in Equations (2), (4), and
(6), respectively.

3.2 Determination of Parameters
We can argue heuristically that certain values ofm tend
to result in lower bias. For instance, from Equation (9),
we see that if the total number of observationsn is fixed,
then |Bias[V̂ C(m, ⌊rm⌋)]| = o(1/(mn)) tends to de-
crease as a function of the batch sizem — at least for
those variance estimators under study herein.

Meanwhile, Equations (3), (5), and (7) imply
that for the variance estimators under consideration,
Var[V̂ (m)] tends to increase as the batch sizem in-
creases (with fixedn) — which makes sense since
larger m corresponds to a smaller number of batches
n/m. Thus, the first two terms in the following expres-
sion for the variance of the linear-combination estima-
tor,

Var[V̂ C(m, ⌊rm⌋)]

=
Var[V̂ (m)]

(1 − r)2
+

r2Var[V̂ (⌊rm⌋)]
(1 − r)2

−2rCov[V̂ (m), V̂ (⌊rm⌋)]
(1 − r)2

, (10)

tend to increase as the batch sizem increases; and so we
might expect thatVar[V̂ C(m, ⌊rm⌋)] will increase inm

(with fixedn) as well. Equation (10) as well as the work
in Goldsman et al. [12] also suggest that the variance of
the linear-combination estimator tends to increase asr
becomes larger,0 < r < 1.

Based on the above heuristic discussion, we will at-
tempt to find the smallest estimator parametersm and
r subject to the batch sizem being large enough to sat-
isfy the bias constraint. We describe the parameter de-
termination algorithm as follows. In the first step, we
initialize the values ofr and m; in particular, we set
r = 0.5 (as described in Goldsman et al. [12]) and es-
timatem using an existing optimal-mse batch-size es-
timator (e.g., from Song [23]). Then, we can obtain
V̂ C(m, ⌊rm⌋) by combiningV̂ (m) andV̂ (⌊rm⌋). The
next step is to try to decrease the values ofr and m
while satisfying the bias constraint. We start from the
initial parametersr and m, and then decreasem but
fix r until the bias constraint is violated. After this,
we decreaser, but now fixm until the bias constraint
is violated. The process is depicted in Fig. 1. Since
we decreaser in fixed decrements, and we decreasem
by factors of 2 (and since bothr andm are obviously
bounded from below by 0 and 1, respectively), the algo-
rithm will eventually stop.

m

r

(m, r)(m∗, r)

(m∗, r∗)

· · ·
...

Figure 1: Initial parameters(m, r) and optimal param-
eters(m∗, r∗)

Parameter Determination Algorithm:
Step 1. Initialization.

Setkr = 0, km = 0, r = 0.5, and determine
the batch size.

Step 2. Obtain̂V C(m, ⌊rm⌋), which is a linear
combination ofV̂ (m) andV̂ (⌊rm⌋).

Step 3. Check the validity of the bias constraint.
If m satisfies the bias-constrained function
Bias(V̂ C(m, ⌊rm⌋)) < a, go to (3.1),
else go to (3.2).
(3.1) Check indexkr. If kr = 0, go to (3.1.1),

else go to (3.1.2).
(3.1.1) Setm∗ = m. Updatem = 0.5m,

km = km + 1, and go to Step 2.
(3.1.2) Setr∗ = r. Updater = r − 0.1,

kr = kr + 1, and go to Step 2.
(3.2) Check indexkm. If km = 0, go to (3.2.1),

else go to (3.2.2).
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(3.2.1) Updatem = 2m. If m ≥ n, stop with
no solution, else setkm = km + 1
and go to Step 2.

(3.2.2) Check indexkr. If kr = 0, go to
(3.1.2), else obtain
V̂ C(m∗, ⌊r∗m∗⌋) and stop.

4 Simulation Experiments
In this section we present Monte Carlo examples illus-
trating the performance of the bias-aware variance esti-
mators. Our examples involve a steady-state first-order
autoregressive (AR(1)) process and a symmetric two-
state Markov chain (S2MC). The AR(1) process is de-
fined asYi+1 = φYi + ǫi+1, i = 1, 2, . . . , n, where the
ǫi’s are independent and identically normal distributed
with mean 0 and variance(1 − φ2)R0. The S2MC is
defined as a two-state dependent symmetric Bernoulli
processYi, i = 1, 2, . . . , n, with state space{d1, d2}
and transition matrix

P ≡
[

1
2(1 + ρ) 1

2(1 − ρ)
1
2(1 − ρ) 1

2(1 + ρ)

]

,

where|ρ| ≤ 1, d1 = µ − R
1/2
0 , andd2 = µ + R

1/2
0 .

For both stochastic processes, the sample sizesn
considered are 512, 1024, and 2048. Our experiments’
parameters are selected as follows: the meanµ = 0; the
variance of the sample mean Var(Ȳn) = 1; the sum of
correlationsγ0 =

∑∞
i=−∞ Corr(Y1, Y1+i) = 10, which

is regarded as amoderatecorrelation structure. (See
[25] for more insight on this experimental set up.) We
set the bias constraint as|Bias(V̂ )| < 0.1V̂ . In this
paper, we test the ideal cases in whichE[V̂ ] is known
for the AR(1) and S2MC cases.

For a particular variance estimator̂V and sample
sizen, let m⋆ denote the batch size that minimizes the
mse. Similarly, letm⋆

B denote the variance-optimal
batch size under the bias constraint; and let(m⋆

c1,m
⋆
c2)

denote the variance-optimal batch sizes for a linear-
combination estimator under the bias constraint.

We examine the empirical performance ofV̂ N(m),
V̂ O(m), andV̂ A(f0,m) for batch sizesm⋆ andm⋆

B, as
well as the linear-combination estimators (using the ob-
vious notation)V̂ NC(m⋆

c1 ,m
⋆
c2), V̂ OC(m⋆

c1,m
⋆
c2), and

V̂ AC(f0;m
⋆
c1,m

⋆
c2). The numerical results for optimal

batch size, bias, variance, and mse are shown in Ta-
bles 1–3. Table 1 summarizes results using the batch
size m⋆ that minimizes the mse (under no additional
constraints). We see from the table that for all of the
estimators under consideration, the bias2 and variance
terms are within an order of magnitude of each other.

Table 1: Min-mse Batch Size (m⋆) and Performance
Results

AR(1)
n Estimator Bias Variance MSE

V̂ N(22) 0.221 0.058 0.106
512 V̂ O(26) 0.200 0.061 0.101

V̂ A(f0; 43) 0.273 0.103 0.177
V̂ N(27) 0.167 0.040 0.068

1024 V̂ O(32) 0.158 0.039 0.064
V̂ A(f0; 57) 0.207 0.077 0.120
V̂ N(36) 0.125 0.029 0.044

2048 V̂ O(42) 0.118 0.026 0.040
V̂ A(f0; 75) 0.163 0.054 0.081

S2MC
n Estimator Bias Variance MSE

V̂ N(25) 0.173 0.038 0.068
512 V̂ O(25) 0.195 0.027 0.064

V̂ A(f0; 47) 0.231 0.081 0.135
V̂ N(27) 0.165 0.022 0.049

1024 V̂ O(35) 0.139 0.024 0.043
V̂ A(f0; 54) 0.221 0.047 0.096
V̂ N(38) 0.116 0.019 0.033

2048 V̂ O(42) 0.117 0.015 0.029
V̂ A(f0; 76) 0.159 0.041 0.066

However, all of the bias values violate the constraint
|Bias(V̂ )| < 0.1E[V̂ ] = 0.1. Table 2 gives perfor-
mance results using variance-optimal batch sizes(m⋆

B),
where all of the estimators satisfy the bias constraint;
that is, the bias values in the third column are all un-
der 0.1. Comparing Tables 1 and 2, we immediately see
that for both the AR(1) and S2MC processes, satisfying
the bias constraint is achieved at a substantial increase
in the variance and mse. Table 3 gives performance
results using variance-optimal batch sizes(m⋆

c1,m
⋆
c2)

under the bias constraint for the linear-combination esti-
mators. Like Table 2, the bias values in the third column
in Table 3 are all under 0.1, thus satisfying the bias con-
straint. Unlike Table 2, almost all of the mse values in
Table 3 are also smaller than the corresponding mse val-
ues in Table 1 for both the AR(1) and S2MC processes.
This shows that the linear-combination estimators pre-
serve comparatively low mse, while satisfying the bias
constraint.

Tables 4 and 5 compare results from Tables 2 and 3
(both satisfying the bias constraint) in terms of the vari-
ance and mse reductions, respectively. We observe that
the variance reduction ranges from 20% to 50% for the
AR(1) process and from 20% to 76% for the S2MC pro-
cess. We also observe the mse reduction ranges from
17% to 39% for the AR(1) process and from 26% to
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Table 2: Variance-Optimal Batch Size (m⋆
B) and Perfor-

mance Results Under the Bias Constraint

AR(1)
n Estimator Bias Variance MSE

V̂ N(37) 0.083 0.143 0.150
512 V̂ O(57) 0.096 0.163 0.173

V̂ A(f0; 74) 0.078 0.285 0.292
V̂ N(41) 0.087 0.074 0.082

1024 V̂ O(52) 0.099 0.069 0.079
V̂ A(f0; 86) 0.100 0.150 0.160
V̂ N(46) 0.099 0.039 0.049

2048 V̂ O(51) 0.099 0.033 0.042
V̂ A(f0; 108) 0.088 0.094 0.102

S2MC
n Estimator Bias Variance MSE

V̂ N(37) 0.077 0.093 0.099
512 V̂ O(52) 0.095 0.103 0.112

V̂ A(f0; 74) 0.068 0.222 0.227
V̂ N(38) 0.093 0.043 0.052

1024 V̂ O(50) 0.096 0.044 0.053
V̂ A(f0; 86) 0.099 0.115 0.125
V̂ N(46) 0.098 0.027 0.036

2048 V̂ O(50) 0.098 0.021 0.030
V̂ A(f0; 103) 0.098 0.069 0.078

77% for the S2MC process. In summary, in terms of
variance and mse when the bias is bounded, the pro-
posed linear-combination estimator is superior to the
existing optimal estimators.

5 Conclusion
Estimation of the mean and variance parameter (or, al-
most equivalently, the variance of the sample mean) is
an important problem in the context of steady-state sim-
ulation output analysis. Motivated by the problem that
minimizing mse might lead users to be confident about
the wrong answer, we have proposed the bias-aware
linear-combination variance estimator, along with an al-
gorithm to construct it. Our initial simulation analysis
shows that the proposed estimator not only bounds the
bias (at least in our idealized examples), but also re-
duces the variance and mse in many cases.

In order to make the estimator more-useable on
real-life examples, we still need to rigorously incorpo-
rate into our algorithm better estimators for the bias of
a particular estimator (used in Step 3 of our algorithm),
as well as better estimators for the optimal batch size
(used in the initialization step of the algorithm). These
are topics of ongoing study.

Table 3: Variance-Optimal Batch Sizes(m⋆
c1 ,m

⋆
c2) and

Performance Results Under the Bias Constraint for the
Linear-Combination Estimators

AR(1)
n Estimator Bias Variance MSE

V̂ NC(32,3) 0.099 0.113 0.123
512 V̂ OC(32,6) 0.088 0.113 0.117

V̂ AC(f0; 64, 6) 0.098 0.186 0.209
V̂ NC(32,3) 0.092 0.056 0.065

1024 V̂ OC(32,3) 0.093 0.047 0.055
V̂ AC(f0; 64, 12) 0.091 0.110 0.128
V̂ NC(16,8) 0.100 0.019 0.029

2048 V̂ OC(32,3) 0.089 0.023 0.030
V̂ AC(f0; 64, 12) 0.089 0.060 0.068

S2MC
n Estimator Bias Variance MSE

V̂ NC(15,7) 0.090 0.035 0.043
512 V̂ OC(15,7) 0.096 0.024 0.033

V̂ AC(f0; 35, 17) 0.082 0.152 0.159
V̂ NC(15,7) 0.092 0.017 0.025

1024 V̂ OC(15,7) 0.096 0.011 0.021
V̂ AC(f0; 38, 17) 0.091 0.096 0.105
V̂ NC(15,7) 0.090 0.008 0.016

2048 V̂ OC(15,7) 0.095 0.006 0.014
V̂ AC(f0; 41, 20) 0.092 0.049 0.057

Table 4: Variance Reduction Using Linear-
Combination Estimators (Table 3 vs. Table 2)

AR(1) S2MC
m 512 1024 2048 512 1024 2048

NBM 20% 24% 50% 62% 61% 69%
OBM 30% 32% 29% 76% 73% 73%
STS.A 34% 20% 36% 69% 73% 20%

Table 5: Mse Reduction Using Linear-Combination Es-
timators (Table 3 vs. Table 2)

AR(1) S2MC
m 512 1024 2048 512 1024 2048

NBM 17% 20% 39% 56% 51% 55%
OBM 32% 30% 27% 70% 61% 52%
STS.A 28% 20% 33% 33% 16% 26%
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