## Mixed H2/H∞ Self-Adaptive Fuzzy Algorithm to Control Satellite Attitude

## GUO-SHING HUANG, ZHI-LIANG ZHANG

Department of Electronic Engineering, National Chin-Yi University of Technology 35, Lane 215, Chung-Shan Rd., Sec. 1, Taiping, Taichung, TAIWAN, R. O. C. e-mail: hgs@ncut.edu.tw

Abstract: - The main purpose of this paper is to propose a nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  self-fuzzy algorithm to solve large-angle robust control problem. The attitude control is one of the studied problems in recent years. Under the space environment, there often exists an unpredictable interference which results some deviations of satellite's attitude. Therefore, it needs to develop a controller still to keep the control ability to the system with respect to the uncertainty of the satellite system and unpredictable environment interference in order to achieve the required control goal and performance specification. In this paper, consider one ROCSAT-3 hardware structure, and use selffuzzy fuzzy algorithm to perform the attitude control with the time varying and uncertainty parameters. Then, we combine the nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  control law to reduce the impact of the satellite's attitude system due to external disturbance. Through simulation results, it is shown that the proposed design method can make the ROCSAT-3 system efficiently achieve the desired stability and reject the external interference.

*Key-Words*: - Nonlinear  $H_{\infty}$  control, Nonlinear mixed  $H_2/H_{\infty}$  control, Self-fuzzy algorithm, Attitude control, Time varying parameter

## **1** Introduction

The satellite is a nonlinear time varying system that includes the parameter at the time varying uncertainty and be often influenced by the extraneous interference. In recent years, many documents were proposed successively for example, fuzzy control [1, 2], self-adaptive fuzzy control [3], nonlinear  $H_{\infty}$  control [4, 5] and mixed  $H_2/H_{\infty}$ control [6] to control the spacecraft attitude. In this paper, we combined the self-adaptive fuzzy, a nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  state feedback control theory, developed a nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  self-adaptive fuzzy controller [7, 8], applied to the satellite parameter at the time varying and subjected the influence by the extraneous interference.

At first, the self-adaptive fuzzy control law has been proposed, and held the fuzzy control rule and initial controller parameter setup were sent to the knowledge base. Then, according to the actual response state of the control system, it can be realized by the best adjustment of the self-adaptive parameter, to achieve the desirable satellite attitude using fuzzy reasoning. In fact, the satellite was operated under the complicated space environment, there often exist a lot of external disturbances, such as an interference of atmosphere, the gravity of the earth and magnetic field on the earth, the sun wind, these disturbances result the satellite attitude has some deviation. At this moment, the self-adaptive fuzzy algorithm combined with a nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  control theory to enable the system to resist the interference under an uncertain environment. The nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  control law is to decide a solution of Hamilton-Jacobi inequality in order to solve the nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  controller conveniently.

The main purpose of development nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  self-fuzzy algorithm is the satellite system exist the parameter uncertainty, time

varying and external interference, in order to solve this problem then the controller was developed. The goal of the controller of the satellite system is still able to make the satellite get back to desired attitude under the worst situation.

## 2 Mathematics of the Satellite Movement

In the calculation process of the satellite attitude, it needs to use the coordinate transformations, which includes direction cosine matrix, Euler angles, quaternion, etc. Because the direction cosine matrix must deal with more variables and Euler angles has an angular singularity at  $\pi/2$ , this paper selects the quaternion method to express the attitude and control of ROCSAT-3 due to avoid singularity, simplify the parameter number and perform conveniently numerical operation.

Suppose *n* is the direction cosine of the Euler axis relative to a reference frame, and the rotated angle is  $\mu$ , the attitude of satellite then can be expressed by quaternion as follows:

$$\underbrace{q}_{-} = \begin{bmatrix} q1\\ q2\\ q3 \end{bmatrix} = n\sin(\frac{\mu}{2}) \text{ and } q_{4} = \cos\frac{\mu}{2}$$

The satellite attitude kinematics equation can be expressed the following:

$$\begin{bmatrix} q \\ - \\ q_4 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} q_4 I + q^* \\ - q^T \\ - \end{bmatrix} \underbrace{\omega}_{-}$$
(1)

Where *I* the unit matrix,  $\omega$  the angle velocity,  $q^{\times}$  is the skew-symmetric matrix defined by

$$q^{\times} = \begin{bmatrix} 0 & -q_3 & q_2 \\ q_3 & 0 & -q_1 \\ -q_2 & q_1 & 0 \end{bmatrix}$$

The satellite attitude dynamics equation expresses as follows:

$$J \stackrel{\cdot}{\omega} = - \stackrel{\cdot}{\omega}^{\times} J \stackrel{\omega}{\omega} + u \tag{2}$$

where J is the moment of inertia matrix, u is the

control input,  $\omega^{\times}$  is the skew-symmetric matrix defined by

$$\boldsymbol{\omega}^{\times} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

### **3** Self-Adaptive Fuzzy Control Design

In the attitude control, due to quaternion value operation convenient, the self-adaptive fuzzy controller design adopt a standard quaternion feedback controller [1, 2, 8, 9]. The controller structure is shown in Fig.1.



Fig.1 The self-adaptive fuzzy controller structure

The purpose of the controller is to find out the fuzzy relation among  $k_1$ ,  $k_2$  two parameters and quaternion errors and angular speed errors. Through a continuous examination of quaternion errors and angular speed errors, the on-line parameters should be revised according to fuzzy control principle, in order to meet the different errors with respect to the different demands of the control parameter, and make the plant have a good movement, and static performance.

The quaternion feedback control method is to feedback both attitude and angular velocity. The controller can be defined as follows:

$$u = -k_1 q_{error} - k_2 \omega_{error} \tag{3}$$

The main advantage of Eq.(3) is only to relate the state measurement, and need not to know the system parameter clearly. Therefore, it is robust to the error model and the uncertainty and time varying parameter. Where  $q_{error}$  and  $w_{error}$  express the quaternion error and angular velocity error of the system, respectively [2]. The  $q_{error}$  and  $w_{error}$  are defined as follows:

$$\cdot q_{error} = q_{command}^{-1} \cdot q_{current} = q_c^{-1} \cdot q$$
(4)

$$\cdot \, \omega_{error} = \omega_{command} - \omega_{current} \tag{5}$$

## 4 Nonlinear State Feedback $H_{\infty}$ Control Theory

Consider the following nonlinear system, suppose all state can be measured:

$$x = f(x) + g_1(x) + g_2(x)u$$
 (6)

$$z = \begin{bmatrix} Q_1(x) \\ u \end{bmatrix}$$
(7)

The adopted state feedback control strategy is to assume as follows:

$$u(q,q_4,\omega) = \delta(x) \tag{8}$$

Where  $\delta(x)$  is the undetermined function, the purpose of the nonlinear  $H_{\infty}$  state feedback control is to find a state feedback control law such that the  $L_2$  gain of the closed-loop system from w to z is less than appointed  $\gamma$ .

$$\frac{\left\|\boldsymbol{z}\right\|_{L_2}}{\left\|\boldsymbol{w}\right\|_{L_2}} \leq \gamma \;, \; \forall \boldsymbol{w} \in L_2$$

.

The purpose of the nonlinear  $H_{\infty}$  state feedback control is, if there exist a  $P(x) \ge 0$  and satisfied Hamilton-Jacobi inequality as the following,

$$H_{\gamma} = P_x^T f + \frac{1}{2} P_x^T \left( \frac{1}{\gamma^2} g_1 g_1^T - g_2 g_2^T \right) P_x + \frac{1}{2} Q_1^T Q_1 < 0$$
(9)

Then there exists a control law  $u(\underline{q}, q_4, \underline{\omega})$  such that the nonlinear system is stable and from *w* to z  $L_2$  gain is less than  $\gamma$ . Suppose if  $P(\underline{x}) > 0$  is found, then  $u(\underline{q}, q_4, \underline{\omega})$  can be written as follows:

$$u(q, q_4, \omega) = -g_1^T P_x \tag{10}$$

We can make the nonlinear system equation rearrange as follows:

$$\begin{bmatrix} \cdot \\ q \\ q_{4} \\ \cdot \\ \omega \\ - \end{bmatrix} = f\left(\begin{array}{c} q, q_{4}, \omega \\ - \end{array}\right) + gu + gw$$
(11)  
$$z = \begin{bmatrix} \sqrt{\rho_{1} \omega^{T} J \omega + \rho_{2} q^{2}(q_{4})} \\ - & - \\ u \end{bmatrix}$$
(12)

Suggest the following candidate function [4, 9, 10] in order to satisfy Eq.(9),

$$P(\underline{x}) = \frac{1}{2} \begin{bmatrix} q^{T} & 1 - q_{4} & w^{T} \\ - & & - \end{bmatrix} \begin{bmatrix} a_{1}J & 0 & a_{3}J \\ 0 & a_{1} & 0 \\ a_{3}J & 0 & a_{2}J \end{bmatrix} \begin{bmatrix} q \\ - \\ 1 - q_{4} \\ w \\ - \end{bmatrix}$$
$$= a_{1}(1 - q_{4}) + \frac{a_{2}}{2} & w^{T}J & w + a_{3} & w^{T}Jq \qquad (13)$$

Where  $a_1$ ,  $a_2$  and  $a_3$  of Eq.(13) are the undetermined coefficients, and make (11), (12) and (13) substitution Hamilton-Jacobi inequality, can obtain

$$a_{2} \geq \sqrt{\frac{\pi^{2} \gamma^{2} \rho_{2}}{\gamma^{2} - 1}}, a_{1} \geq \sqrt{\frac{(3b + \frac{\rho_{1}}{2})\gamma^{2} \|J\|}{\gamma^{2} - 1}}$$

If  $a_1$ ,  $a_2$  satisfies above Equations, then it can guarantee that  $H_{\gamma} \le 0$ , and obtains the control law,

$$u(q, q_4, \omega) = -(P_x g)^T$$
$$= -a_1 \omega - a_2 q \qquad (14)$$

The nonlinear  $H_{\infty}$  control theory can raise the robustness and stability performance of the satellite system and restrain the influence of the external interference to the system, but it cannot achieve the optimization efficiency. Next section will propose the mixed  $H_2/H_{\infty}$  control theory to make the overall system be a robust, stable and optimal efficiency.

ISSN: 1109-9445

# **5** Nonlinear State Feedback Mixed $H_2/H_{\infty}$ Control Theory

We consider the following nonlinear system equation, suppose all states can be measured:

$$\begin{bmatrix} \frac{1}{q} \\ -\frac{1}{2}q^{*}w + \frac{1}{2}q_{4}w \\ -\frac{1}{2}q^{T}w \\ -J^{-1}w^{*}Jw \\ -J^{-1}w^{*}Jw \\ -W \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ J^{-1} \end{bmatrix} w + \begin{bmatrix} 0 \\ 0 \\ J^{-1} \end{bmatrix} u \quad (15)$$
$$z = \begin{bmatrix} \sqrt{\rho_{1}q^{2}(q_{4}) + \rho_{2}\omega^{T}J\omega} \\ \rho_{u}u \end{bmatrix} \Delta \begin{bmatrix} Q_{1}(x) \\ \rho_{u}u \end{bmatrix} \quad (16)$$

Fist, we define two cost functions [10]:

$$J_{1}(u, w) = \int_{0}^{T} \left( \gamma_{1}^{2} \|w\|^{2} - \left( \|Q_{1}\|^{2} + \|\rho_{u}u\|^{2} \right) \right) dt$$
$$J_{2}(u, w) = \int_{0}^{T} \left( \|Q_{1}\|^{2} + \|\rho_{u}u\|^{2} - \gamma_{2}^{2} \right) dt$$

The purpose of mixed  $H_2/H_{\infty}$  control is to decide the optimal control law  $u^*$  and the worst perturbation  $w^*$  and make

$$J_{1}(u^{*}, w^{*}) \leq J_{1}(u^{*}, w), \forall w$$
$$J_{2}(u^{*}, w^{*}) \leq J_{2}(u, w^{*}), \forall u$$

Where it should be proved that  $u^*$ ,  $w^*$  can be obtained as,

$$w^{*} = \frac{1}{\gamma_{1}^{2}} g_{1}^{T}(x) T_{x}$$
(17)

$$u^* = -\frac{1}{\rho_u^2} g_2^T(x) P_x$$
(18)

Where equations  $T_x < 0$ ,  $P_x > 0$  need satisfy a pair Hamilton-Jacobi-Isaacs (HJI) equations [10]

$$T_{x}^{T}(f(x)+g_{1}(x)w^{*}+g_{2}(x)u^{*})-\gamma_{1}^{2}\left\|w^{*}(x)\right\|^{2}+\left\|Q_{1}(x)\right\|^{2}+\left\|\rho_{u}u^{*}\right\|^{2}<0$$

$$P_{x}^{T}(f(x)+g_{1}(x)w^{*}+g_{2}(x)u^{*})+\left\|Q_{1}(x)\right\|^{2}+\left\|\rho_{u}u^{*}\right\|^{2}-\frac{\gamma_{2}^{2}}{T}<0$$

Consider the following Lyapunov function to solve a pair of HJI equations,

$$T(x) = -a_1(1 - q_4) - \frac{a_2}{2} w^T J w - a_3 w^T J q$$
(19)

$$P(x) = a_4(1 - q_4) + \frac{a_5}{2} w^T J w + a_6 w^T J q$$
(20)

Where  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ ,  $a_5$  and  $a_6$  are the undetermined coefficients at Eq.(19) and Eq.(20), and substitute  $T(\underline{x})$ ,  $P(\underline{x})$  into one pair HJI, then obtain

$$a_6 \ge \sqrt{\gamma_1^2 \pi^2 \rho_1}, a_5 \ge \sqrt{(\frac{1}{2}\rho_2 - \frac{1}{2}a_6)\gamma_1^2} \|J\|$$

If  $a_5$ ,  $a_6$  satisfy above equations, then it can be guaranteed that HJI < 0, and the control law is

$$u^{*}(q, q_{4}, \omega) = -\frac{1}{\rho_{u}^{2}}(a_{5} + a_{6} q)$$
(21)

## 6 Nonlinear $H_{\infty}$ and Mixed $H_2/H_{\infty}$ Self-Fuzzy Control Law

Once satellite system uses only the self-adaptive fuzzy algorithm while it meets an additional interference, simulation results show a relatively serious oscillation. Therefore, we consider select the self-adaptive fuzzy algorithms and combine with a nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  control theory, and then obtain a nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  self-adaptive fuzzy control law.

This control law is to make use of errors online to adjust  $a_1$  and  $a_2$  two parameters. At this moment the control law can still make the satellite attitude maintain balance position when the parameters have a time varying, uncertainty and interfering environment. The interference causes a drift will be rejected. The structure of the overall satellite system is shown in Fig. 2.



Fig.2 Nonlinear robust self-adaptive fuzzy controller structure

## 7 Simulation Results

This paper is to propose a control law to emulate ROCSAT-3 attitude measurement successfully. The simulation process includes the time varying inertia external interference parameter and an environment in the space. The initial condition of satellite simulation is design to  $q(0) = \begin{bmatrix} 0.1705 & 0.5688 & 0.1688 & 0.7868 \end{bmatrix}^T$  and  $\alpha(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ From simulation results, we can find the nonlinear  $H_{\infty}$  control with the fast response and a good stability to weaken extraneous interference. In order to achieve an accurate satellite attitude control, we developed a nonlinear  $H_2/H_{\infty}$  controller that has combined  $H_2$  optimization performance and  $H_{\infty}$  robust characteristic, better than  $H_{\infty}$  controller had stability robustness to weaken extraneous interference.

Fig.3 to Fig.6 show the response of satellite system quaternion and Fig.7 to Fig.9 show the response of angular velocity. The response of control torque is shown in Fig.10 to Fig.12. From the above simulations, we can understand that the mixed  $H_2/H_{\infty}$  has more high performance attitude control than  $H_{\infty}$  does under the worst condition.



Fig. 3 Time response of quaternion1



Fig. 4 Time response of quaternion2



Fig. 5 Time response of quaternion3



Fig. 6 Time response of quaternion4



Fig. 7 Time response of angle velocity w1



Fig. 8 Time response of angle velocity w2



Fig. 9 Time response of angle velocity w3



Fig. 10 Time response of control torque u1



Fig. 11 Time response of control torque u2



Fig. 12 Time response of control torque u3

## 8 Conclusions

This paper has succeeded to propose a nonlinear  $H_{\infty}$  and mixed  $H_2/H_{\infty}$  self-adaptive fuzzy algorithm to simulate the attitude response of ROCSAT-3 system. Through the simulation results, it is shown that the satellite's attitude can be back to desired position efficiently and the external perturbation will reduce the impact with respect to output and achieve the purpose of stable attitude.

Hence, the proposed control law can demonstrate the ideal control capability and robustness under an external interference environment to make ROCSAT-3 system have an accurate control attitude during performing the mission.

#### References:

- [1] Kevinj. Walchako, "Development of a Generic Fuzzy Logic MIMO Controller for Satellite Attitude Control," Mechanical Engineering University of Florida, 1999.
- [2] Kevinj. Walchako and Dr. Paul C. Mason "Development of a Fuzzy Sliding Mode Controller for Satellite Attitude Control," Mechanical Engineering University of Florida, 2000.
- [3] Long-Life Show Jyh-Ching Juang, and Ciann-Dong Yang, "Nonlinear  $H_{\infty}$  Robust Control for Satellite Large Angle Attitude Control," Proceedings of the America Control Conference Arlington, VA June 25-27, 2001.
- [4] Long-Life Show and Jyh-Ching Juang, "Satellite Large Angle Tracking Control Design: Thruster Control Approach," American Control Conference, 2003. Proceedings of the 2003, Vol.2, 2003, pp.1098 - 1103.
- [5] Trebi-Ollennu A. and White, B. A., "Robust Output Tracking for MIMO Nonlinear Systems: an Adaptive Fuzzy Systems Approach," Control Theory and Applications, IEE Proceedings, Vol.144, 1997, pp. 537 – 544.
- [6] Trebi-Ollennu A. and White, B. A., "Robust Output Tracking for MIMO Nonlinear Systems," Decision and Control, 1995., Proceedings of the 34th IEEE Conference, Vol.1, 1995, pp 273 - 278.
- [7] Joshi, S.M, Ikar, A. G. and J. T.-Y, "Robust Attitude Stabilization of Spacecraft using

Nonlinear Quaternion Feedback, "Automatic Control, IEEE Transactions, Vol. 40, 1995.

- [8] Jianbo Lu and Wie, B, "Nonlinear Quaternion Feedback Control for Spacecraft via Angular Velocity Shaping," American Control Conference, Vol. 40, 1994, pp. 632 – 636.
- [9] Morten Dalsmo and Olav Egeland, "State Feedback H∞ Control of a Rigid Spacecraft," Proceedings of the 34th Conference on Decision and Control New Orleans, LA Dec. 1995.
- [10] Long-Life Show, "Spacecraft Attitude Control: a Nonlinear Robust Control Approach," Department of Electronic Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C. Dissertation for Doctor of Philosophy June, 2002.