
The Design and Evaluation of a Java-Based Software Tool
for Teaching Page Replacement Algorithms

SUKANYA SURANAUWARAT

Graduate School of Applied Statistics
National Institute of Development Administration

118 Seri Thai Rd., Bangkapi, Bangkok 10240
THAILAND

sukanya@as.nida.ac.th http://as.nida.ac.th/~sukanya

Abstract: - Page replacement algorithms are one of the most important aspects of a page-based virtual memory
system. In this paper, a tool implemented as a Java application and designed as an aid to the study of page
replacement algorithms is presented. This tool uses graphical animation to convey the concepts of various
page replacement algorithms including Optimal, First-In-First-Out (FIFO), Least Recently Used (LRU), Most
Recently Used (MRU), Clock, Enhanced Clock, Least Frequently Used (LFU), and Most Frequently Used
(MFU) replacement algorithms. The tool is unique in a number of respects. First, it differentiates the read-
access pages from the write-access ones, since the cost of replacing a page that has been modified is greater
than for one that has not. Second, it allows the user to practice and test his understanding of the concepts he
has learnt through a very easy-to-use graphical user interface. Third, it allows the user to compare the
performance of two different algorithms or that of the same algorithm with different conditions in an easy
manner. The tool has been used in an operating system course and has demonstrated effectiveness in assisting
student learning in a statistically significant way.

Key-Words: - Educational Software, Animation Tool, Computer Science Education, Page Replacement
Algorithms, Virtual Memory, and Operating System

1 Introduction
Most modern general-purpose operating systems use
paging for virtual memory management. In a page-
based system, the virtual address space of each
process is divided up into equal-sized chunks called
pages and can be assigned to the corresponding units
in physical memory called frames or page frames.
When a process references a page that is mapped
into its address space but not loaded into physical
memory, a page fault is said to occur and the process
is suspended until the missing page is brought into
memory. However, if all the page frames are in use,
a page replacement algorithm must then decide
which page currently in memory will be replaced.
Page replacement algorithms are one of the most
important memory management policies in a page-
based virtual memory system [1]. Many page
replacement algorithms have been developed over
the years which have as their objective that the page
to be replaced should be the page least likely to be
referenced in the near future. Therefore, an
important measure of goodness for a page
replacement algorithm is the number of page faults
generated for a particular reference string (i.e., a
sequence of page numbers referenced by a process
during its execution) and number of frames. The

better the algorithm is the lower the number of page
faults that are generated.
 As an aid to the study of page replacement
algorithms, the author has developed an interactive
Java-based simulator that uses graphical animation
to convey the concepts of various page replacement
algorithms. The simulator is unique in a number of
respects. First, in addition to the number of page
faults, the simulator also evaluates the performance
of a page replacement algorithm in terms of the cost
of replacing pages, since the cost of replacing a page
that has been modified is greater than for one that
has not. This is because the former must be written
back out to disk before the new page can be read in.
The second unique feature of the simulator is that it
allows the user to practice and test his understanding
of the concepts he has learnt through a very easy-to-
use graphical user interface. The third unique
feature of the simulator is that it allows the user to
compare the performance of two different
algorithms or that of the same algorithm with
different conditions. By using this feature of the
simulator, the user can explore under what
conditions a page replacement algorithm performs
well and under what conditions it is better than
another algorithm.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 120 Issue 4, Volume 8, October 2011

 The simulator was used in an operating systems
course at the author’s institute and its impact on
student learning was evaluated. Evaluating the data
using t test to compare means indicated that using
the simulator does increase student performance in a
statistically significant way.
 The remainder of this paper is organized as
follows: section 2 is a brief overview of the page
replacement algorithms used in the simulator,
section 3 gives a description of the simulator,
section 4 discusses the evaluation results of the
simulator, section 5 discusses related work, and
section 6 draws some conclusions.

2 Overview
There are various page replacement algorithms. The
simulator uses the algorithms listed below (which
are discussed in [2][3][4][5]).

 Optimal: replaces the page that will either
never be needed again, or will not be used for
the longest period of time. This “unrealizable”
algorithm is usually used only as a benchmark
by which other algorithms can be judged.

 First-In-First-Out (FIFO): replaces the page
that has been in memory the longest. FIFO
incurs low overhead but generally does not
predict future page usage accurately.

 Least Recently Used (LRU): replaces the page
in memory that has not been referenced for the
longest time. LRU generally predicts future
page usage well but incurs significant
overhead.

 Most Recently Used (MRU): replaces the
page in memory that has most recently been
used.

 Clock (or Second Chance): is a modified form
of the FIFO algorithm. It treats the page table
as a circular list of pages, and uses the
reference bit associated with each entry in the
page table and a pointer (the “clock hand”) into
the page table. The reference bit is set
whenever a page is referenced. When a page
must be replaced, the algorithm checks the
page table entry pointed to by the clock hand.
If the referenced bit for that page is set, it is
cleared and the clock hand is advanced. It
continues in this manner until it finds an entry
whose reference bit is off, and in that case it
selects that page for replacement.

 Enhanced Clock (or Third Chance): makes
the Clock algorithm more powerful by
increasing the number of bits that it employs.
That is, it makes page replacement decisions

using two bits: the reference and modify bits.
Whenever a page is referenced, the reference
bit is set; whenever modified, the modify bit is
set. When a page must be replaced, the
algorithm begins with the page table entry
pointed to by the clock hand. If the reference
and modify bits for that page are set, the
reference bit is cleared and the clock hand is
advanced; if the reference bit is set but the
modify bit is not, the reference bit is cleared
and the clock hand is advanced; if the reference
bit is clear but the modify bit is set, the modify
bit is cleared (and the algorithm notes that the
page must be copied out before being replaced)
and the clock hand is advanced; if both the
reference and modify bits are clear, the page in
that frame is replaced.

 Least Frequently Used (LFU): selects a page
for replacement if the page has not been used
often in the past. This algorithm keeps a
counter of the number of references that have
been made to each page. Pages with the lowest
counts are replaced while pages with higher
counts remain in primary memory.

 Most Frequently Used (MFU): replaces the
page with the largest count. This algorithm is
based on the argument that the page with the
smallest count was probably just brought in
and has yet to be used.

3 Description of the Simulator
The simulator is written using Java 6. It has three
operating modes: simulation, practice, and
comparison modes. In simulation mode, the user
can watch virtually step-by-step how an algorithm
works or watch it run straight through from the
beginning until the end. In practice mode, the user
can decide which page replacement algorithm he
wants to test his understanding of, and then he can
try to select the pages that will be replaced by
himself through a very easy-to-use graphical user
interface; after that he can check whether his
answers are correct or not with the simulator. In
comparison mode, the user can compare the
performance of two different algorithms or that of
the same algorithm with different number of frames
in an easy manner. Each mode is described below.

3.1 Simulation Mode
Fig. 1 shows a snapshot of the simulator during a
simulation in simulation mode. The top panel of the
screen allows the user to control the simulator as he

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 121 Issue 4, Volume 8, October 2011

desires; specifically, the user can select which
algorithm to animate through a drop-down list box
located at the top of the panel. When the user
selects the algorithm, the user can also specify his
own reference string and the number of page frames,
or he can use the default values.
 The reference string can be specified by the user
by typing the string into the reference string text box
or alternatively, the user can have one randomly
generated for him by a single click on the “Random”
button. If a more specific random reference string is
desired, then the user needs to double-click on the
“Random” button. This will cause a pop-up window
to appear. Through this window, the user can input
values for the possible length of the reference string
and the possible page numbers that can be in the
reference string. By default, the pages in the
reference string are read accesses. The user can

specify that the pages are write accesses by typing
“*” next to the page numbers. The simulator also
allows the user to save any reference strings for later
use by clicking on the “Save this reference string”
checkbox. Otherwise, the reference string will be
lost when the user exits the program. Above the
“Random” button is the “Concept” button, when this
button is clicked, a pop-up window appears with a
description of the currently selected algorithm.
 Along the bottom of the top panel, there are
buttons that allow the user to control the animation.
The user can start and stop the animation whenever
he wishes by clicking on the “Start” and “Stop”
buttons. Alternatively, the user can choose to watch
the algorithm step-by-step by repeatedly clicking the
“Next” button. Also, the speed of the animation can
be changed using the slider.

Fig. 1: A snapshot of the simulator during a simulation using the Optimal algorithm

 In Fig. 1, the state of the simulator at virtual time
3 is shown during a simulation using the Optimal
algorithm with the reference string of: ‘7* 0 1* 2 0 3
0 4* 2* 3 0 3 2 1 2 0 1 7 0 1’ and the number of
frames is set to 3. The virtual time of a process
represents the progress the process makes as it
executes. In other words, the virtual time is
advanced each time the process makes a memory

reference. The simulator uses the blue highlight to
indicate which page is currently referenced. As
shown in the middle panel of the screen, page 2 is
referenced at virtual time 3. Since page 2 is
referenced for the first time and all of the frames –
three frames, in this example – are occupied, it is
necessary to replace one of the current three frame
pages, the victim page, with page 2. When this

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 122 Issue 4, Volume 8, October 2011

happens, the message “A page fault has occurred”
followed by a second message “Selecting a victim
page” are displayed. Then the animation shows how
a victim page is selected to be replaced under the
Optimal page replacement algorithm. That is, it
scans the rest of the reference string starting from
the page referenced during the next virtual time (i.e.,
virtual time 4) until it determines which page is
referenced latest or never; that one is selected as the
victim page. The scanning process is shown by a
moving arrow above the reference string. During
the scan, it found that pages 0, 1, and 7 are
referenced again at virtual time 4, 13, and 17,
respectively, as shown by the green highlights.
After finding the next reference for each page, it
ends the scanning process at virtual time 17
concluding that page 7 is the victim page. Once the
victim page is determined, the frame in the middle
panel that has that page will be highlighted in red
and will blink a couple times to draw the user’s
attention. After that, the simulator will replace the
victim page with the new page and then display the
message “The page fault cost is 2”. At this point,
the table in the bottom panel will be updated with
the data from virtual time 3. Then virtual time will
increment to virtual time 4. Note that the page fault
cost is calculated based on whether the victim page
had been modified or not. If the victim page is
modified, the total cost of a page fault is 2 I/O
transfers, while the cost of an unmodified victim
page is 1 I/O transfer. The cost of replacing a page
that has been modified is greater than for one that
has not, because the former must be written back out
to disk before the new page can be read in.
 The main feature of the bottom panel is a table.
The table has a row for the request and a row for
each frame, as well as, a column for each virtual
time t. A table entry at Frame i and column j shows
the page loaded at time t in Frame i after rj (which is
the number of the page referenced by the process at
its virtual time j) has been referenced. If the entry is
highlighted with a different color, the page shown in
the entry was loaded as a result of the missing page
fault. Each column heading is a virtual time; under
the headings, there are pages from the reference
string. Below the table, the total number of page
faults and the total cost of page faults that have
occurred so far are displayed. Note that, only page
faults occurring after the frame allocation is initially
filled are counted.
 The next algorithm to be discussed is the LRU
algorithm. When the LRU algorithm gets to virtual
time 3 with the same reference string that was used
with the Optimal algorithm shown in Fig. 1, instead

of looking ahead the algorithm looks back to
determine which page will be the victim page. This
is animated by the simulator in the same way as
described for the Optimal algorithm, except it
highlights the prior occurrence of each page before
the current virtual time instead of the future
occurrence of the page. Once the least recently used
page is determined, it becomes the victim page
which is replaced by the current reference string
page. After that, the table in the bottom panel will
be updated with the data from virtual time 3. Then
virtual time will increment to virtual time 4.
 The MRU algorithm is also animated by the
simulator in a similar way to the LRU algorithm
except that it highlights only the most recently
occurrence of the page prior to the current virtual
time.
 The rest of the algorithms, which are the
Enhanced Clock, the Clock, the FIFO, the LFU, and
the MFU algorithms, are very similar in their
simulation. For the Enhanced Clock algorithm, the
page in each frame is associated with a reference bit
(R bit) and a modify bit (M bit); and the pointer
(arrow) is set to the oldest page, as shown Fig. 2.
When the Enhanced Clock algorithm gets to virtual
time 3 with the same reference string that was used
with the Optimal algorithm shown in Fig. 1, a page
fault occurs. It then scans R and M bits of the page
in each frame to find a page that has both R and M
bits set to zero (i.e., R and M bits are off); this is
simulated with a moving highlighted region as in
Fig. 3. During the scan, each time it encounters a
page that does not have both R and M bits set to
zero, it turns off one of these two bits according to
the rule described in section 2 and continues on.
Once it encounters the oldest page with both R and
M bits set to zero – page 0 in this example – the
frame in the middle panel that has that page will be
highlighted in red and will blink a couple times to
draw the user’s attention. After that, the simulator
will replace the victim page with the new page
following the same process described early for the
Optimal algorithm. Note that the numbers displayed
after “/” in the table at the bottom panel of Figs. 2
and 3 represent the reference or modify bit value of
each page and the symbol “<” in the same table
represents the current position of the pointer.
 The Clock algorithm is also animated by the
simulator in a similar way to the Enhanced Clock
algorithm except that it uses single-bit reference
information to make page replacement decisions.
Hence, the second column of the table in the middle
panel displays only the R bit of each page.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 123 Issue 4, Volume 8, October 2011

Fig. 2: A snapshot of the simulator during a simulation using the Enhanced Clock algorithm before a page
fault

Fig. 3: A snapshot of the simulator during a simulation using the Enhanced Clock algorithm after a page fault

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 124 Issue 4, Volume 8, October 2011

 The rest of the algorithms, the FIFO, the LFU
and the MFU algorithm, run in a similar way to the
Enhanced Clock algorithm except that there is no
pointer set to the oldest page and the information in
the second column of the table is different. In the
case of the FIFO algorithm, the second column is
the time each page is loaded and in the case of the
other two algorithms, LFU and MFU, the second
column of the table is a counter (i.e., a counter of the
number of references that have been made to each
page). When a page fault occurs, the FIFO
algorithm will scan for the page with the oldest
loaded time; whereas the LFU and the MFU
algorithm will scan for the page with the smallest
and the largest counts, respectively.

3.2 Practice Mode
In Figs. 4 through 7, different snapshots of the
simulator in practice mode are shown. As in the
simulation mode, the user needs to specify which
page replacement algorithm will be used, as well as
a reference string, and the number of page frames;
otherwise, the default values will be used. In
practice mode, there are two ways of practicing:
One-step-at-a-time and All-at-once. By clicking on

the corresponding radio button located under the
“Random” button, the user can choose which way to
practice. Both ways of practicing are described in
detail below.
 Fig. 4 shows a snapshot at virtual time 3; at this
point, the simulator is waiting for the user input
about virtual time 3. The graphic in the middle
indicates the user input for virtual time 2 was
correct; if the user input was incorrect then the
graphic would say it was wrong as well as
highlighting the incorrect answers in the right table.
Note that a correct answer for the Clock algorithm
includes the reference bit value, and for the
Enhanced Clock algorithm includes both reference
and modify bit values. Also, for the sake of
convenience, the user does not need to type the “*”
that is used to indicate that the pages are write
accesses. After indicating if the answer is correct
the data in the left table is updated to reflect the
correct data. In the table at the bottom of the panel
the current virtual time is highlighted in green and
the page faults are highlighted in red. In Fig. 5, the
user has inputted data for virtual time 3 in the left
table and clicked the “Submit” button; the simulator
has acknowledged the answers are correct and the
data in the tables is updated.

Fig. 4: A snapshot of the simulator at virtual time 3 in One-step-at-a-time practice mode

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 125 Issue 4, Volume 8, October 2011

Fig. 5: A snapshot of the simulator at virtual time 4 in One-step-at-a-time practice mode

 Fig. 6 is a screen shot of the simulator in All-at-
once practice mode. In All-at-once practice, the
user is expected to enter all the data into the practice
table at the bottom for all virtual time. Once the
user has input as much data as desired, clicking the
“Submit” button will cause the simulator to
highlight any incorrect answers and enable the
“Display Answer” button. When the user clicks the
“Display Answer” button, the correct answers will
be displayed in the practice table as shown in Fig. 7.

3.3 Comparison Mode
A page replacement algorithm can be evaluated by
running it on a particular reference string, and
computing the number of page faults and the page

fault cost. The fewer the number of page faults and
the lower the page fault cost, the better the
performance is, and the better the replacement
algorithm is. In comparison mode, the user can
compare the performance of two different
algorithms. The user can also compare the
performance of the same algorithm with different
number of page frames as shown in Fig. 8, which is
an example of Belady’s anomaly, the phenomenon
where adding more page frames does not reduce the
number of page faults. Moreover, the user can use
this mode to explore the effect of a pattern of page
accesses on different algorithms. For example, the
user can explore which pattern of page accesses for
which MRU performs better than LRU, or vice
versus.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 126 Issue 4, Volume 8, October 2011

Fig. 6: A snapshot of the simulator in All-at-once practice mode

Fig. 7: A snapshot of the simulator in All-at-once practice mode after the “Display Answer” button is clicked

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 127 Issue 4, Volume 8, October 2011

Fig. 8: A snapshot of the simulator in comparison mode

4 Evaluation
The true usefulness of the simulator designed as a
supplement to an operating systems course is in its
effectiveness in aiding students in learning the
concepts of page replacement algorithms. The
simulator was used in an operating systems course
in the fall of 2009. The sample for the effectiveness
study consisted of twenty-two students enrolled in
the operating systems course. Prior to the study
students’ prior knowledge of page replacement
algorithms was tested. All students scored zero for
prior knowledge so each student was randomly
assigned to one of three groups. The first group
(group 1) learned page replacement only from the
text (N = 8). The second group (group 2) learned
page replacement through using the simulation
mode of the simulator and reading the text (N = 7).
The third group (group 3) learned page replacement
through using the simulation and the practice modes
of the simulator and through reading the text (N =
7). The students in groups 2 and 3 received written
instructions about how to use the simulator, but they
were not forced to view the animation of any
particular set of algorithm, reference string, and
number of page frames. Rather, they were allowed
to interact with the animation in any manner they

desired in order to avoid unfairly favoring the
animation groups. The null hypothesis is that each
group will perform the same. In other words, using
the simulator will not affect student performance.
 Fig. 9 shows a sample question used in the
pretest. The questions in the posttest were different
but had the same structure as the one shown in
Fig. 9.

Fig. 9: A sample pretest question

 The results are shown in Fig. 10 and are
displayed in three boxplots. Even before calculating
p-values it is apparent that groups 2 and 3 did much
better than group 1 and that group 3 also
outperformed group 2.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 128 Issue 4, Volume 8, October 2011

Fig. 10: Boxplots of the three groups of student
scores

 The result when group 1 and group 2 were
compared using a t test was that group 2 learned the
content better than group 1 (t(12.4) = -1.946, p =
0.037). This shows (at α = 0.05 level) that group 1
did not learn as well as group 2 and thus that
students who use the simulator even just in
simulation mode performed better than students who
only read about page replacement.
 The result when group 1 and group 3 were
compared using a t test was that group 3 learned the
content better than group 1 (t(11.9) = -3.776, p =
0.0013). This shows (at α = 0.05 level) that group 1
did not learn as well as group 3 and thus that
students who use the page replacement software in
simulation and practice modes performed much
better than students who only read about page
replacement.
 The result when group 2 and group 3 were
compared using a t test was that group 3 learned the
content better than group 2 (t(11.9) = -1.821, p =
0.047). This shows (at α = 0.05 level) that group 2
did not learn as well as group 3 and thus that
students who use the page replacement software in
both simulation and practice modes performed better
than students who only used simulation mode.
 The results show that using the simulator
increases student performance especially when
students use both simulation and practice modes.
One possible reason is that students retain more
content when they are actively engage in learning
activities that use the content knowledge. As a
growing body of literature shows, learners who are
actively engaged with visualization technology have
consistently outperformed learners who passively
view graphics [6][7][8]. For example, Byrne et al.
[6] conducted an experiment in which viewers were
forced to make predictions about what they would
see. These viewers scored significantly better on a

posttest than others who merely watched identical
animation without predicting what they would
watch.
 The students’ opinions on the simulator were
collected. Some comments from the students are:
“The simulator is easy to use”; “I understand the
concept better when using the simulator”, and “The
simulator is more appealing than the textbook”.
Overall, the simulator is very satisfactory as a
learning aid to the students.
 Finally, former students’ performance on the
topic of page replacement algorithms in their
comprehensive exams that were took place in 2011
show that students who had access to the simulator
(i.e., students who enrolled in the operating systems
course in the fall of 2009) scored significantly better
than the rest of the students. To be more specific,
the means of this group of students is 27.21 while
the mean of the rest of the students is 16.16.

5 Related Work
In the past two decades, a number of visualization
and animation tools have been developed and used
in many areas of computer science and engineering
education [9]-[16]. While the achievement of
learning outcomes as a result of using visualizations
and animations has been mixed, there is evidence
indicating that carefully designed visualizations and
animations can have beneficial learning effects. For
example, engagement of the learners attention
[6][7][8] and the ability to control the pace of the
visualization [17] appear to be key factors in
building effective visualization and animation tools.
 Not many visualization and animation tools have
been developed for learning page replacement
algorithms. Several animations were developed and
used by English and Rainwater [18] as part of their
lecture in an operating systems course. Among
these animations, three of them are used in teaching
Optimal, FIFO, and LRU page replacement
algorithms. While these animations can enhance the
teacher’s lecture, they do not teach the concepts of
the algorithms. They simply show the window
sliding left to right to illustrate the contents of the
current pages in memory; if a page fault occurs, a
large red X is placed beneath the windows for that
page request. The animations are also accessible
through the web [19] for anyone to use. However,
they do not allow the users to interact with them that
much; only one data set is used, and the same
animation plays over and over again.
 PAGE [20] is an interactive visualization tool
that demonstrates how each algorithm works based

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 129 Issue 4, Volume 8, October 2011

on how the operating system implements the
algorithm. For example, PAGE visualizes FIFO
algorithm as a queue, with the oldest page at the
head of the queue and places the most recent arrival
at the tail of the queue. When a page must be
replaced, PAGE removes the page at the head of the
queue, and adds the new page at the tail of the
queue. Another example is the Clock algorithm
which is visualized as a circular list of pages in
memory, with the clock hand pointing to the oldest
page in the list. When a page fault occurs and no
empty frames exist, then the R bit is inspected at the
hand’s location. If R is 0, the new page is put in
place of the page the clock hand points to;
otherwise, the R bit is cleared. Then, the clock hand
is incremented and the process is repeated until a
page is replaced. This tool supports FIFO, Clock,
and LRU page replacement algorithms and its
variant versions. Although the user can specify his
own reference string, the number of page frames,
which is visualized as the length of the queue in the
case of FIFO or as the length of the circular list in
the case of Clock, is fixed. To fully benefit from
this tool, users should read the textbook written by
Tanenbaum [21], since this tool was designed to be
closely aligned with its content.
 Considering the existing tools, neither provides
any function that is similar to the practice and the
comparison modes of the author’s simulator. Also,
they do not distinguish whether the pages in the
reference string are read or write accesses, so they
do not calculate the page fault cost and do not
support the Enhanced Clock algorithm, which uses
information about pages being referenced or
modified in order to make page replacement
decisions.

5 Conclusion
This paper presents an interactive Java-based
simulator that demonstrates the concepts of various
page replacement algorithms through animation.
There are three operating modes for the simulator;
the first is simulation mode, the second is practice
mode, and the third is comparison mode. In
simulation mode, the user can start and stop the
simulation whenever he wishes, and watch the
simulation straight through from the beginning until
the end, or watch it step-by-step. In practice mode,
the user can test his understanding in two ways:
One-step-at-a-time and All-at-once. In comparison
mode, the user can experience Belady’s anomaly
and can explore under what conditions a page

replacement algorithm is better than another
algorithm.
 The simulator was used in an operating systems
course in the fall of 2009. Pretest and posttest were
given to three groups of students – the group (group
1) that learned page replacement only from the text,
the group (group 2) that learned page replacement
from the text and through using the simulation mode
of the simulator, and the group (group 3) that
learned page replacement from the text and through
using the simulation and the practice modes of the
simulator. The evaluation results show that groups 2
and 3 did much better than group 1 and that group 3
also outperformed group 2. Therefore, the simulator
is effective in aiding students in learning page
replacement algorithms, especially when its practice
mode is used, since this mode of the simulator
requires the users to be actively engaged with it
more.
 The simulator is available to anyone who
requests it.
 Future work will include developing new
animation tools for learning other operating system
concepts

References:
[1] P. J. Denning, "Virtual Memory", Computing

Surveys, Vol. 2, No. 3, 1970, pp. 153-189.
[2] A. Silberschatz, P. Galvin, and G. Gagne,

Operating System Concepts, 8th ed., John Wiley
& Sons, 2010.

[3] W. Stallings, Operating Systems: Internals and
Design Principles, 7th ed., Prentice Hall, 2012.

[4] G. Nutt, Operating Systems, 3rd ed., Addison
Wesley, 2004.

[5] L. F. Bic and A. C. Shaw, Operating Systems
Principles, 1st ed., Prentice Hall, 2003.

[6] M. Byrne, R. Catrambone, and J. Stasko,
"Evaluating Animations as Student Aids in
Learning Computer Algorithms", Computers &
Education, Vol. 33, No. 4, 1999, pp. 253-278.

[7] C. Hundhausen, S. Douglas, and J. Stasko, "A
Meta-Study of Algorithm Visualization
Effectiveness", Journal of Visual Languages and
Computing, Vol. 13, No. 3, 2002, pp. 259-290.

[8] S. Grissom, M. McNally, and T. Naps,
"Algorithm Visualization in CS Education:
Comparing Levels of Student Engagement",
Proceedings of the 2003 ACM Symposium on
Software Visualization, 2003, pp. 87-94.

[9] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M.
Akbar, M. Stewart, S. Ponce, and S. H. Edwards,
"Algorithm Visualization: The State of the

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 130 Issue 4, Volume 8, October 2011

Field", ACM Transactions on Computing
Education, Vol. 10, No. 3, Article 9, 2010.

[10] W. S. Gilley, "Animations and Interactive
Material for Improving the Effectiveness of
Learning the Fundamentals of Computer
Science, Master’s Thesis, Department of
Computer Science, Virginia Polytechnic Institute
and State University, 2001.

[11] D. Schweitzer and W. Brown, "Using
Visualization to Teach Security", Journal of
Computing Sciences in Colleges, Vol. 24, No. 5,
2009, pp. 143-150.

[12] S. H. Rodger, E. Wiebe, K. M. Lee, C. Morgan,
K. Omar, and J. Su, "Increasing Engagement in
Automata Theory with JFLAP", Proceedings of
the 40th SIGCSE Technical Symposium on
Computer Science Education, 2009, pp. 403-407.

[13] P. Bauer, J. Leuchter, V. Steklý, "Simulation
and Animation of Power Electronics in Modern
Education", Proceedings of the 4th WSEAS
International Conference on Applications of
Electrical Engineering, 2005, pp. 48-52.

[14] P. Marambeas, P. Stergiopoulos, S.
Papathanasiou, P. Bauer, and S. Manias,
"Interactive Multimedia Material for an
Electrical Power Quality Course", WSEAS
Transactions on Advances in Engineering
Education, Issue 7, Vol. 4, 2007, pp. 141-146.

[15] M. G. Sánchez-Torrubia, M. A. Sastre-Rosa, V.
Giménez-Martínez, C. Escribano-Iglesias,
"Visualization on Learning Mathematics
Concepts for Engineering Education",
Proceedings of the 4th WSEAS / IASME
International Conference on Engineering
Education, 2007, pp. 232-235.

[16] M. G. Sánchez-Torrubia, C. Torres–Blanc, and
S. Krishnankutty, "Mamdani’s Fuzzy Inference
eMathTeacher: a Tutorial for Active Learning",
WSEAS Transactions on Computers, Issue 5,
Vol. 7, 2008, pp. 363-374.

[17] P. Saraiya, C. Shaffer, D. Mccrickard, and C.
North, "Effective Features of Algorithm
Visualizations", Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science
Education, 2004, pp. 382-386.

[18] B. M. English and S. B. Rainwater, "The
Effectiveness of Animations in an Undergraduate
Operating Systems Course", Journal of
Computing Sciences in Colleges, Vol. 26, No. 5,
2006, pp. 53-59.

[19] COSC 3355 Animations, http://cs.uttyler.edu/
Faculty/Rainwater/COSC3355/Animations/index.
htm

[20] S. Khuri and H. Hsu, "Visualizing the CPU
Scheduler and Page Replacement Algorithms",
Proceedings of the 30th SIGCSE Technical
Symposium on Computer Science Education,
1999, pp. 227-231.

[21] A. Tanenbaum, Modern Operating Systems, 3rd
ed., Prentice Hall, 2009.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sukanya Suranauwarat

ISSN: 1790-1979 131 Issue 4, Volume 8, October 2011

