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Abstract: - Various approximations to the factorial have been proposed in the literature to formulate continuous 
functions in which the argument is a non-negative variable. Most of these approximations are based on the 
classical De-Moivre-Stirling’s or shortly Stirling’s formula. Further approximations have been provided, either 
multiplying the Stirling’s formula to a correction function, or introducing some structural modifications to the 
Stirling’s formula. The characteristics of the various approximations can be pointed out by investigating how the 
correction function or the structurally modified formula can provide a better representation of the factorial for 
natural numbers with respect to the classical Stirling’s formula. This paper starts with a tutorial illustration of 
the characteristics of various approximations to the factorial, and contains the proposal of a novel continuous 
function with relatively simple structure. The proposed function has very low relative approximation errors with 
respect to the factorial; furthermore, the relative approximation error is always positive. These characteristics 
enable the novel function to be used as an upper bound to the factorial. Application examples of the proposed 
formula in the pattern recognition domain are presented, in order to obtain factorial-free formulations for the 
calculation of orthogonal Fourier-Mellin moments and Pseudo-Zernike moments, with some notes on the 
possible computational complexity reduction obtainable by exploiting the proposed formulation with respect to 
the computation of the same moments using the factorials, in analogy to what has been done in the literature by 
using a different type of approximation. 
 
Key-Words: - Factorial, Stirling’s formula, Asymptotic convergence, Correction function, Relative 
approximation error, Orthogonal Fourier-Mellin moments, Pseudo-Zernike moments. 
 
 
1   Introduction 
The factorial n! is defined for the discrete set of 
natural numbers n ∈ ℵ, with the basic properties 
that n! = n (n-1)! and 0! = 1. The factorial is used for 
determining different types of probabilities, such as 
binomial and hypergeometric ones, and multiple 
factorials appear in various applications such as 
pattern recognition and image processing. However, 
direct calculation of the factorial could be 
computationally quite complicate for large values of 
n, and in particular could cause overflows in the 
numerical representation of the outcomes. In 
addition, the discrete definition of the factorial could 
be a limiting aspect when there is a need for taking 
the derivatives with respect to n of terms containing 
the factorial. As such, approximate representations 
of the factorial through continuous functions have 
been defined in various ways. For instance, the 
factorial of a natural number n ∈ ℵ can be written 
by using the Gamma function [1] as ( )1! +Γ= nn  or, 
in the integral form, 
 

∫
∞

−=
0

! dxexn xn  (1) 

 
However, the integral formulation makes 

Equation (1) difficult to handle. Simpler continuous 
explicit functions have then been proposed for an 
easier approximation to the factorial. A typical 
approximation is the well-known De Moivre-
Stirling’s formula, originated by the work of 
Abraham De Moivre [2] and James Stirling [3], 
often called in short Stirling’s formula, as De 
Moivre obtained a formula with an undetermined 
constant, while Stirling found its expression with the 
constant set to π2 . 

Using a natural number n ∈ ℵ, the Stirling’s 
formula is typically expressed as 
 

( ) π22
1

nn
enns −+

=  (2) 
 
or 
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( ) n
e
nns

n

π2⎟
⎠
⎞

⎜
⎝
⎛=  (3) 

 
Another classical representation considers the 

logarithm of n!, formulating the expressions: 
 

( )( ) ( ) nnnnnnnnsn −≅+−=≅ ln2lnlnln)!ln( π
 (4) 
 

Proofs of the asymptotic convergence of the 
Stirling’s formula to n! for n → ∞ and related 
discussions have been presented in several 
references [3]-[15].  

The Stirling’s formula is typically used for 
approximating the factorial n! for very large values 
of n. However, its accuracy for relatively low values 
of n is limited, and can be further improved also for 
high values of n, as remarked below.  

This paper deals with discussing the 
approximations to the factorial leading to lower 
approximation errors than the Stirling’s formula for 
small and large values of n. Different 
approximations are discussed, comparing their 
behavior for high and relatively low values of n. An 
original contribution of this paper is the formulation 
of a continuous formula for approximation to the 
factorial with interesting characteristics of small 
approximation error and unilateral evolution of this 
error for all values of n. The proposed formula is 
included among the comparisons to show its 
effectiveness. 

Section 2 of this paper recalls the formulations of 
a number of functions used to approximate the 
factorial. Section 3 introduces the novel continuous 
function and discusses its characteristics. Section 4 
points out some fields of possible application of the 
approximation to the factorial in the pattern 
recognition field. Section 5 contains the concluding 
remarks. 
 
 
2   Background on the approximations 
to the factorial 
 
2.1 Formulation of different types of 
approximation 
Various types of approximations to the factorial by 
using explicit continuous functions have been 
proposed [16]. A structural categorization of these 
approximations is indicated in the sequel. 
A. One type of approximation can be written by 

taking the Stirling’s formula (2) and multiplying 
it to a correction function ( )nζ , such that  

 
( ) ( ) ( )nsnn ζψ =   (5) 

 
In this case, a common formulation uses as 
correction function the first terms of the 
asymptotic series for the Gamma function [17]-
[19]. For instance, using the first two terms of the 
series, the correction function is written in the 
form 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

nb
nb

11ζ   (6) 

 
where the classical value b = 12 is assumed, to 
approximate with ( )nbζ  the way in which the 
ratio n!/s(n) approaches unity for increasing 
values of n.  
A correction function with more terms is 
indicated in [20], leading to an expansion of the 
type 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛+−−

+++=

543

2

1
2488320

571
51840

139
288

1
12

11

n
O

nn

nn
nbζ

 (7) 

 
indicated by using the classical big-O 
representation accounting for the remaining 
terms. This representation, truncated at the fourth 
term, has been used by Szirtes in [21] to 
overcome the impossibility of direct computation 
of the factorial for large numbers with the 
computing facilities available at the time he 
wrote his paper. 
Another type of approximation uses an 
exponential correction function [5], [9], [22], 
[23], such that: 

 
( ) ( )n

e en τζ =  (8) 
 

The exponential correction function has been 
exploited by Robbins [5] to introduce suitable 
expressions to be used as lower and upper bounds 
to the factorial, by respectively considering 

( )
112

1
+

=
n

nlτ  and ( )
n

nu 12
1

=τ , such that: 

 
( ) ( ) ( ) ( )nnsnnns ul ττ << !  (9) 

 
Variants to the lower boundary have been 
successively proposed by Nanjundiah [22]: 
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( ) 3360
1

12
1

nn
nl −=′τ  (10) 

 
and by Maria [23]: 
 

( )

( )122
312

1

+
+

=′′′

n
n

nlτ  (11) 

 
Furthermore, Whittaker and Watson [16], 
provided an asymptotic series that, despite not 
converging for any n, can be used in its first 
terms: 
 

( )

...
1188

1
1680

1
1260

1
360

1
12

1

975

3

++−+

+−=′′

nnn

nn
nlτ

 (12) 

 
B. A further type of approximation is built by 

modifying the structure of the Stirling’s formula. 
An example is 

 
( ) qnenng nn += − π2  (13) 

 
corresponding for q = π/3 to the Gosper’s 
approximation reported in [24]. 

 
Of course, all the representations recalled above 

can be used to write the factorial approximations in 
logarithmic terms. 
 
 
2.2 Relative approximation error 
In order to evaluate the accuracy of the 
approximation to the factorial by using a function 
( )nψ , let us define the relative approximation error 

(RAE), expressed in percent as 
 

( )( ) ( )
!

!100,
n

nnnnRAE −
=

ψψ  (14) 

 
With respect to the RAE, one of the properties of 

the asymptotic series (12) is that taking more terms 
of the series the absolute RAE becomes 
progressively smaller [16]. 

Fig. 1 shows the RAE values reached by using the 
Stirling’s formula and other approximations 
introduced through Equations (5)-(6), Equation (8) 
with upper bound from [5] and lower bounds from 
[5], [22] and [23], and Equation (13) with q = π/3. 

The entries in the legenda of Fig. 1 show the 
functions in decreasing order of RAE (positive 
values first, up to the negative values). The list of 
approximations is explicitly reported below in the 
same order. 
 Exponential correction (upper bound from 

Robbins [5]): 
 

( ) n
e
nen

n
n πψ 212

1

⎟
⎠
⎞

⎜
⎝
⎛=  (15) 

 
 Exponential correction from Whittaker and 

Watson [16], truncated at the fifth term: 
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 Exponential correction (lower bound from 
Nanjundiah [22]): 

 

( ) n
e
nen

n
nn πψ 2

3360

1
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1

⎟
⎠
⎞
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⎝

⎛
−

 (17) 

 
 Extended Stirling’s formula from [20], 

neglecting the big-O terms: 
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 Exponential correction (lower bound from Maria 

[23]): 
 

( ) ( ) n
e
nen

n
n

n
πψ 2122

312

1

⎟
⎠
⎞

⎜
⎝
⎛= +

+

 (19) 

 
 Approximation Eq. (6) with b = 12: 

 

( ) n
e
n

n
n

n

πψ 2
12

11 ⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=  (20) 

 
 Exponential correction (lower bound from 

Robbins [5]): 
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( ) n
e
nen

n
n πψ 2112
1

⎟
⎠
⎞

⎜
⎝
⎛= +  (21) 

 
 Gosper’s approximation [24]): 

 

( )
3

2 ππψ +⎟
⎠
⎞

⎜
⎝
⎛= n

e
nn

n

 (22) 

 
The last entry is the Stirling’s formula (2). The 

results indicated in Fig. 1 provide a clear 
confirmation that the approximated formulas exhibit 
much better characteristics and lower RAE than the 
Stirling’s formula, especially for low values of n. 
However, in all these cases the maximum RAE 
occurs for n = 1 and is significantly higher than the 
errors reached for higher values of n. 

Starting from these bases, the following section 
introduces and illustrates the characteristics of a 
novel continuous formula that improves the 
approximation accuracy in terms of limiting the 
maximum RAE to a very low value over the entire 
range of numbers n ∈ ℵ. 
 
 
3   A novel continuous approximation 
to the factorial 
The general formulation of the approximations 
adopting the correction function as in (3) is 
particularly interesting because of the simplicity of 
its representation. In particular, let us consider 
Equation (6) and write the corresponding 
approximation function as 
 

( ) ( ) ( )nsnn bb ζψ =  (23) 
 

A parametric study has been carried out by 
changing the (real) value of the parameter b, 
stepping beyond the classical value b = 12. The 
results have shown that the RAE is very sensitive to 
the value of b. Fig. 2 indicates some results. It can 
be seen that in part of the cases the higher absolute 
value of RAE occurs for n = 1, then the absolute 
RAE decreases by increasing n. However, this 
monotonically changing behavior occurring for both 
positive and negative values of RAE is not found for 
any value of b (otherwise there would be the best 
situation with RAE identically null for a given value 
of b). In some cases (as for b = b' = 11.855) the RAE 
has no monotonic behavior, but it has not always the 
same sign (with two initial negative values for n = 1 
and n = 2, and successive positive values). 

On the basis of the above concepts, it is possible 
to find a particular situation in which the RAE is null 
for n = 1. By elaborating the calculations using 
Equation (6), the condition RAE = 0 is satisfied for 
the value  
 

b = b* =
π

π
2

2
−e

 = 11.843 (24) 

 
In these conditions, the maximum RAE evaluated 

on n ∈ ℵ is 0.0102% for n = 5. This case 
corresponds to the limit case for which all RAE 
values are nonnegative. For b > b* the RAE becomes 
negative for n = 1. From Equation (6), the condition 
b = b* corresponds to 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+=

π
πζ

2
21*

n
en

b
 (25) 

 
Results of a more detailed analysis are shown in 

Fig. 3, where the maximum RAE is reported for 
different values of n in function of the parameter b. 
Fig. 3 shows that only the cases n = 1, n = 4 and n = 
5 are involved in defining the maximum RAE as the 
parameter b changes. In particular, the maximum 
RAE occurs for n = 1 when the parameter b varies 
from about 11.823 to about 11.855. 

Let us then compute the minimum value of the 
maximum RAE:  
 

( )( ){ }{ }nn b
bn

ψεε ,maxmin %%
min =  (26) 

 
For n ∈ ℵ, %

minε = 0.0085% occurs for n = 5 and b 
= b′ = 11.855. However, as already pointed out (Fig. 
2), in this case the RAE values are negative for n < 3 
and positive for n ≥ 3.  

Let us focus on the case with parameter b = b*, 
for which the RAE is always nonnegative and the 
maximum RAE is relatively close to its minimum 
value. By using Equation (2) and Equation (25) and 
substituting the terms into Equation (23), it is 
possible to represent the approximation to the 
factorial in a simple form, for n ∈ ℵ: 
 

( ) ( )[ ] nn
ennen −−

−+= 2
1

21 πν  (27) 
 

The formulation of Equation (27) merges the 
simplicity of representation with a very low value of 
the maximum RAE and with RAE values always 
non-negative for n ∈ ℵ. The latter property allows 
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for considering Equation (27) as an upper bound to 
the factorial for any n ∈ ℵ.  

The asymptotic convergence of ν(n) to n! for n 
→ ∞ is guaranteed by the fact that ( )nbζ  tends to 
unity for ∞→n  and by the existing proof of 
convergence of the Stirling’s formula to n! for n → 
∞, such that 
 

( ) ( ) 1
!

lim
!

lim =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

∞→∞→ n
ns

n
n

nn

ν  (28) 

 
In spite of the asymptotic convergence of the 

approximated functions to the factorial, stated from 
the limit (28), it is well-known that the difference n!-
s(n) does not converge to zero. In effect, in absolute 
terms this difference n!-s(n) increases by increasing 
n, however with an increase much lower than the 
increase of n! or s(n). The same asymptotic property 
holds for the proposed formulation ( )nν  in Equation 
(27). Fig. 4 shows the trend of increase of the 
logarithmic difference defined as 
 
( ) ( )nnn ψδ −= !ln  (29) 

 
where also the basic expression s(n) of the Stirling’s 
formula (2) is considered among the functions ( )nψ . 
According to the definition (29), no distinction is 
made in Fig. 4 among the formulations providing 
upper bounds, lower bounds, or no explicit bound to 
the factorial. From Fig. 4, the formulation s(n) is the 
one providing the least accurate approximation to 
the factorial with respect to all the other variants 
considered, including the proposed formulation 
( )nν . 

Equation (27) is then proposed here as a novel 
simple approximation to the factorial. The 
logarithmic form of the proposed equation is  

 

( )( ) ( )( ) nnnnen −⎟
⎠
⎞

⎜
⎝
⎛ −+−+= ln

2
121lnln πν  (30) 

 
The possible applications of this novel 

formulation are the same as those of the original 
Stirling’s formula and of its existing approximations. 
Some fields of application are recalled in the 
following section.  
 
 
4   Applications 
Approximations to the factorial are particularly 
useful in all the applications in which the factorial 

plays a basic role on the computational side. Some 
examples can be found with respect to q-parametric 
operators [25]-[27]. Other examples refer to cases in 
which it may be convenient to obtain factorial-free 
formulations to avoid the evaluation of one or more 
factorials. In this paper, some applications are shown 
concerning the exploitation of moments for pattern 
recognition purposes. The use of moments in this 
respect can be addressed by following the approach 
introduced by Hu [28], leading to the use of 
orthogonal moments [29] of different categories. 
Some widely used categories of orthogonal moments 
are Fourier-Mellin, Zernike (based on the principles 
introduced in [30]) and pseudo-Zernike [31]. The 
orthogonal moments can be exploited for instance in 
image processing for reconstructing the 
characteristics of a given object by using a finite 
number of moments. However, multiple factorials 
appear in the definition of the orthogonal moments, 
leading to heavy computational burden for the 
numerical procedures to calculate the high-order 
moments. As such, specific formulations to compute 
the orthogonal moments have been developed by 
avoiding the direct use of factorials, as summarized 
in [32]. An approach to obtain factorial-free 
formulations of the approximate orthogonal 
moments using the extended Stirling’s formula has 
been presented recently [32]-[34]. Following the 
lines of this approach, the proposed formula (27) for 
approximation to the factorial is used here to write 
dedicated and factorial-free versions of some 
components used to determine the approximate 
orthogonal Fourier-Mellin and pseudo-Zernike 
moments. With these formulations, it is possible to 
reduce the computational complexity evaluated in 
terms of numbers of multiplications required to 
compute the orthogonal moments. 
 
 
4.1 Orthogonal Fourier-Mellin moments 
The orthogonal moments have been introduced in 
[35] by using a set of complex polynomials whose 
kernel is given by a set of orthogonal radial 
polynomials expressed in polar coordinates as 
 

( ) ( ) ( )
( ) ( )

( ) ( )∑

∑

=

+

=

+

−=

=
+−

++
−=

p

k

k
p

kp

p

k

kkp
p

rkT

r
kkkp

kprQ

0

0

1

!1!!
!11

 (31) 

 
where r is the radius, p ∈ ℵ and q is a positive or 
negative integer such that 0 ≤ |q| ≤ p, for  p = 0, 1, 2, 
. . . ,∞. 
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Following the developments reported in [33], 
based on the general property n! = n⋅(n-1)! for n ∈ 
ℵ, the term Tp(k) containing the factorials can be 
rewritten as  
 

( ) ( )( ) ( )
( ) ( ) ( )!1!1!1

1!11
+++−
++++−

=
kkkp

kkpkpkTp  (32) 

 
Taking the logarithm of (32) yields 
 
( )( ) ( ) ( )
( )( ) ( )( ) ( )( )!1ln2!1ln!1ln

1ln1lnln
+−+−−+++

++++−=

kkpkp
kkpkTp (33) 

 
By replacing ( )!ln n  with ( )( )nνln  for n ∈ ℵ in 

all the terms containing the factorials, the following 
expressions are found: 
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( ) ( ) ( )( )
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k
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kpkpkpe

kpkpkp
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kTp

 (34) 
 

Hence, by reporting the expressions of the right-
hand side to a single logarithm and comparing the 
arguments at the left-hand and right-hand sides, the 
final factorial-free expression of the term Tp(k) is 
 

( ) ( ) ( )
( )
( )

( )( )
( )( )π

π
π 2

2
2

1

11
22

2
1

2
1

kpe
kpe

ke
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kpkpkT
k
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p

−+
++

−
+

⋅

⋅+++−= +++−

 (35) 

 
The expression (35) is relatively simple to be 

computed with respect to (32). In order to quantify 
the related advantages, computational complexity 
issues [36]-[38] can be addressed as indicated in 
[33]. To simplify the determinations, we assume 
here that the operations of addition and subtraction 

are ignored under the hypothesis that their 
computational burden is much lower than the one of 
multiplications for the processor used. The few ratio 
operations are treated here as multiplications for the 
sake of simplicity, assuming that priority is given to 
the products of all the terms separately at the upper 
(lower) side, leaving the ratio as the last operation. 
On the above concepts, computational complexity is 
calculated approximately by enumerating the 
number of equivalent multiplication operations. For 
this purpose, the hypotheses used here are the same 
ones indicated in [33]. In particular, square roots are 
assumed to be calculated with the Newton-Raphson 
method, with each square root equivalent to 24 
multiplications. Exponentials are assumed to be 
computed with the FASTEXP method [20], 
according to which the complexity of each 
exponential calculation is given by the base-2 
logarithm of the exponent. 

For the purpose of computational complexity 
assessment, the expression (35) is written in the 
form 

 

( ) ( )( )( ) ( )
( )

( )
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( )( )
( )( )π

π
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Thus, in the worst case the exponentials depending 
on p on the upper side of the ratio have complexity 
log2(2p) each (for k = p) and the exponential at the 
lower side has complexity log2(2p) for k = 0. The 
square root corresponds to 24 multiplications. The 
other multiplications refer to the 3 products with the 
terms containing π2  (considered as a given 
constant), 5 other products on the upper side 
(including e2), 2 other products on the lower side 
and eventually 1 ratio. The overall complexity is of 
about 2log2(2p)+log2(p)+35. As indicated in [33], 
the computational complexity of Equation (32) 
containing the factorials is 5p-1, and the one 
obtained by using the approximation provided in 
Equation (20) is 9log2(2p+4)+18. The variations of 
the computational complexity for increasing values 
of the moment order p in the cases indicated in [33] 
and using the proposed approximation are 
summarized in Fig. 5. It emerges that the expression 
(35) has a computational complexity higher than the 
one of Equation (32) for relatively low values of p, 
but its complexity increases according to a 
logarithm-based law and not linearly with respect to 
p as it occurs by using Equation (32).  
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Fig. 5. Computational complexity comparisons for 
the orthogonal Fourier-Mellin moments.  
 

As it already happened for the approximated 
formulation used in [33], for computational 
complexity reduction purposes the application of the 
proposed approximated formulation is not 
convenient for small values of the moment order, 
reaches the break-even point for a moment order of 
about 9-10 for the proposed formulation and about 
12-13 for the representation shown in [33], and 
becomes more and more convenient for increasing 
values of the moment order p.  
 
 
4.2 Pseudo-Zernike moments 
The approximate pseudo-Zernike polynomials are 
defined in [34] as the pseudo-Zernike polynomials 
in which the factorial representation is replaced by 
the Stirling approximation (6). 

The pseudo-Zernike moments are defined by 
using in their kernel an orthogonal set of pseudo-
Zernike radial polynomials expressed in polar 
coordinates as [32] 
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 (37) 
 
where r is the radius, p ∈ ℵ and q is a positive or 
negative integer such that 0 ≤ |q| ≤ p, for  p = 0, 1, 2, 
. . . ,∞. 

After the developments reported in [32], based on 
the general property n! = n⋅(n-1)! for n ∈ ℵ, the 
term Tpq(k) containing the factorials can be rewritten 
as  
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Taking the logarithm of (38) yields 
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By replacing ( )!ln n  with ( )( )nνln  for n ∈ ℵ in 

all the terms containing the factorials, the following 
expressions are found: 
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 (40) 
 

Again, by reporting the expressions on the right-
hand side to a single logarithm and comparing the 
arguments on the left-hand and right-hand sides, the 
final factorial-free expression of the term Tpq(k) is 
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For computational complexity assessment 
purposes, Equation (41) is rewritten as 
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Fig. 1. Relative approximation errors for the Stirling’s formula and other approximations to the factorial. 
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Fig. 2.  Relative approximation errors for different values of the parameter b. 
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Fig. 3.  Absolute values of the relative approximation error. 
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Fig. 4.  Logarithmic absolute difference of the approximated formulations with respect to the factorial. 
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By using the same hypotheses and assumptions for 
the computation of square roots and exponentials 
indicated in Section 4.2, the overall complexity 
becomes of about 2log2(2p)+2log2(p)+40 in the 
worst case. This result is compared in Fig. 6 with the  
computational complexity of Equation (38) 
containing the factorials, indicated as 4p+1 in [32], 
and with the one obtained by using the 
approximation provided in Equation (20), 
determined as 3log2(2p+4)+35 in [32]. Again, the 
approximated versions are not convenient for small 
values of the moment order, reach the break-even 
point for a moment order of about 12-13 for the 
representation shown in [32] and of about 14-15 for 
the proposed formulation.  
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Fig. 6. Computational complexity comparisons for 
the pseudo-Zernike moments.  
 
 
5   Conclusions 
Various continuous approximations to the factorial 
have been proposed in the literature. This paper has 
presented a novel and simple formula leading to an 
effective approximation to the factorial by using an 
explicit continuous function. This formula shares the 
asymptotic properties of the classical Stirling’s 
formula and exhibits excellent performance for 
approximating the factorial in the entire range of the 
natural numbers.  
The proposed formula has been derived starting 
from the discussion on the parameters of the 
correction functions associated to the classical 
Stirling’s formula. Its final form it also contains a 
structural modification with respect to the classical 
Stirling’s formula. The proposed formula is 
characterized by a relative approximation error 
nonnegative and with low maximum value (about 
0.01%). Two specific examples of application of the 
proposed formula have been shown, in roder to 
obtain factorial-free formulations for the calculation 
of orthogonal Fourier-Mellin moments and Pseudo-
Zernike moments. Some notes on the possible 

computational complexity reduction obtainable by 
exploiting the proposed formulation with respect to 
the computation of the same moments using the 
factorials, in analogy to what has been done in the 
literature by using a different type of approximation, 
have been shown to confirm the effectiveness of the 
possible application of the proposed formula. 
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