
Teaching Strategy for Algorithmic Problem-Solving

SOOJIN JUN†, SEUNGBUM KIM†, WONGYU LEE††

Computer Science Education, Graduate School†,

Dept. of Computer Science Education, College of Education††

 Korea University

Anam-Dong, Sungbuk-Gu, Seoul

KOREA

soojin.jun@inc.korea.ac.kr, seungbum.kim@ inc.korea.ac.kr, lee@comedu.korea.ac.kr

Abstract: - Many instructors claim that the teaching process of programming education improves problem-solving

abilities. However, if the instructor focuses on teaching programming grammar (syntax) or on memorizing

well-known algorithms’ process maps, such as sorting and searching, students’ cognitive loads could increase and

this does not enhance their problem-solving abilities. Therefore, this paper proposes a sample curriculum and

problems that students should solve in each theme to learn programming skills and algorithmic problem solving.

The programming course was based on methods, such as storytelling, simulations, and games to motivate students.

We also present a teaching strategy to design a programming teaching course. The teaching strategy process is

founded on basic steps of algorithm creation. Then, the Class-Responsibility-Collaborator card model was used as

a hands-on activity for program design. We used an educational programming environment in our experiment in

which the students can easily implement their programs. Our experiment ran for elementary school students for 12

hours. We demonstrate the examples of students’ problem-solving activities that were discovered and solved by

teacher or learner during the programming scenario. Learners’ interests, satisfactions, and achievements in

learning programming with the teaching strategy had considerable positive results.

Key-Words: - Algorithmic problem-solving, Teaching strategy, Squeak etoys, Elementary school students, Novice

1 Introduction
The revolution in information technology has

resulted in innovations that have increasingly

visible affects on human life. There is high

interest in computer education within the school

curriculum and growing investments for this field.

We also need effective methods and tools to teach

computer education content, including

programming, an essential part of the computer

science curriculum [1].
It is important to learn algorithmic thinking in

computer science education for novices or elementary

students [1]. Educational programming language is a

basic tool of computer education [2]. Students are also

interested in using a computer [3]. However, it is

difficult for the student to write computer programs in

the beginning. They first need to learn

problem-solving strategies.

Some researchers states that computer

programming was fertile ground for the development

of problem solving abilities [4]. However, the

approach in traditional programming education has

limited research in supporting systems to improve

programming skills or developments of programming

languages [2][5][6][7][8][9]. Little research has been

conducted on teaching and learning methods that

consider students’ interests and motivation for

enhancing the problem solving ability [4][10][11].

Most software engineering students program games,

as exercises, to learn a programming language or

operating system [12].

This paper suggests a teaching method based on

edutainment, such as storytelling, simulating, and

game programming, not practicing grammars or

memorizing programming skills to learn programming

for elementary school students.

In this paper, Squeak etoys is used to keep

students’ interests high and to implement their

program more easily. Squeak etoys is an Educational

Programming Language (EPL), not a high-level

language. Squeak is a programming environment

designed to teach programming skills to children.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 371 Issue 11, Volume 7, November 2010

Working with Squeak provides children with

programming abilities whilst they play [13].

Activities based on the CRC (Class-Responsibility

-Collaborator) card model [14][15] are used for the

student to analyze and describe the process and the

algorithm of a problem systematically and more easily

before they program on a computer.

Moreover, they could learn programming easily

and amusingly using Squeak etoys. Although these

programming contents are a middle school curriculum,

our experiments are run for elementary school

students. Our approach is convenient for younger

students, as well as secondary students.

Finally, this paper evaluates if these teaching

methods and approach to problem solving are

effective in schools.

2 Backgrounds

2.1 Squeak-etoy Environment
Squeak is a programming environment designed to

teach programming skills to children. Working with

Squeak provides children with programming abilities

while playing. It is a media-rich authoring

environment with a simple powerful scripted object

model for many kinds of objects created by end-users.

It runs on many platforms and is free and open source

[16].

Having a look at the use of Squeak for learning

computer programming, we see that it provides

principles mentioned by Arthur Chickering and

Stephen C. Ehrmann in 1996 [17]. Squeak etoys

provides (1) immediate feedback. The instructor is

able to check if students have learned what they were

taught. It contacts students and the instructor easily.

They can spend their class time full of (3) enjoyment

[3], which is very important in education [19]. They

enjoy seeing their programs work. The student can

easily change the program flow and correct it if they

make a mistake. This provides (4) effectiveness.

Squeak allows this with its visual environment.

Students do not have to write the program code

directly, but drag-drop the object in an easy way.

Programming code elements are defined as objects.

Students only use their mouse to move the objects.

Using objects lets the student become familiar with (5)

object-oriented programming, a good thing for their

future computer science education [18].

Squeak also allows (6) active learning, because

students learn by doing [18]. The interesting point is

that the method defined below will enable productive

(7) collaborative learning between students and

instructor. Thus, it provides for (8) joint problem

solving.

The advantages are not limited to the ones

mentioned here. There is more about using Squeak for

computer programming education. Thus, it seems

using Squeak is appropriate for teaching algorithmic

thinking to middle school students enjoyably and

allows them to apply a real 'good practice'[17].

2.2 Curriculum of Programming in school
Middle school’s model curriculum for computer

science describes that Programming Languages (PL)

introduce the student to basic issues associated with

program design and development.

The focus of this unit is to establish an appreciation

of the work being done by software [1]. Student

learning objects of the PL are as follows.

The student will be able to:

1. Code, test, and execute a program.

2. Convert a word program to code using

top-down design

3. Select appropriate data type

4. Write structured program code

5. Describe the changes occurring in RAM,

as code executes

We developed and applied variable activities based

on “Code, test, and execute a program” and “Convert a

word program into code using top-down design” of

this curriculum.

2.3 Problem-based learning and programming
Programming is a process of problem solving.

Therefore, students can experience new algorithms by

being involved in the entire context, rather than simply

be given a programming problem.

Problem-based learning (PBL) is an active

learning strategy. Students are engaged by these active

PBL in real world problems. The PBL also allow them

to connect the learner with real world and to provoke

their high level thinking skill [18]. Therefore, they can

achieve their highest potential in their fields [20].

Strategies to aid the PBL for programming are various

[12][15][21][22].

A CRC (Class–Responsibility-Collaborator)-card

as one of the strategies describes the properties that

certain kinds of objects of interest in the problem

domain have in common. An object can be a tangible

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 372 Issue 11, Volume 7, November 2010

thing, person, place, event, or (abstract) concept. A

class should have a single and well-defined purpose..

It should be named by a noun, noun phrase, or

adjective that applicably can state the abstraction. The

class name is written across the top of the CRC-card.

The goal of the CRC-card is to develop, discuss and

evaluate object-oriented models. Students establish

these objects for exploring scenarios of their

programming. When a command is sent to an object,

the player tries to achieve the request by playing the

equivalent responsibility, which is listed on the

CRC-card. This role-play using CRC card gives

learners a ‘live impression’ of the functionality of an

object-oriented program [15].

3 Methodologies

3.1 Design of Curriculum for programming

learning
First, we developed a curriculum including

storytelling, simulation, and game programming to

improve programming skills. This enables students to

understand programming easily, interestingly and

progressively from basic concepts.

Table 1 Programming Learning Curriculum

Days

(12h.) Types Themes
Programming

 skills

1
st
 Story

Drive

Objects

Interface, Making

objects and

Scripts, Loop

statements

2
nd

 Story
Rabbit vs.

turtle race

Test(Conditional

statements) and alll of the

above

3
rd
 Simulation

Collecting

candies

Controlling scripts and all

of the above

4
th
 Simulation

Following a

train

Top-down design and all of

the above

5
th
 Game Free Project All of the above

6
th
 Game

Saving a

baby

butterfly

from the

spider

All of the above

Moreover, students touch various algorithmic

solutions by analyzing complete project solutions that

the teacher offers with the foundation of such an

educational process. With such a method, students can

become interested in learning programming and the

interest increases through game source analysis. They

can also learn a source maker's approach and

philosophy to solve a problem [23].

Table 1 shows the curriculum for the experiment.

We let the children analyze and make familiar stories

or interesting games. Moreover, they programmed

together with pair for effective learning [24]. This

course was run for six classes, two hours a day; 12

hours in all. The teacher provided students problems

in the 1st to 4th class by telling a story or showing a

model project. Thus, we applied our new teaching

strategies to support students’ algorithmic problem

solving. Then, the students made a free project after

designing it themselves in the 5th class. Their

programming skills and problem solving were

evaluated with a test in the last class.

Table 2 shows the problems that the students

should solve in each theme. Programming problems

can let students acquire valuable solutions by touching

on new algorithmic situations in given themes, not

following a given assignment exactly. It should also

include problem situations in which students can think.

Therefore, the teacher should provide the student with

encouraging problems related to a guided project, not

just following it, in this curriculum.

Table 2 Problems as themes

Days

(12h.) Themes Problems

1
st
 Drive Objects

Drive your object with a

joystick.

2
nd

Rabbit vs.

turtle race

Control the race between the

rabbit and the turtle by

changing instances.

3
rd

Collecting

candies

Collect all candies, using a

conditional statement in the

field.

4
th

Following a

train

Let the back train follow the

front train only on the rail.

5
th
 Free Project Make a game of your choice.

6
th

Saving a baby

butterfly from

the spider

Do not let the spider leave the

spider's thread; save the little

butterfly from the spider.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 373 Issue 11, Volume 7, November 2010

Fig. 1 Projects examples

Figure 1 shows projects’ examples. Students can

learn programming and enhance their problem-solving

ability by making valuable edutainment projects by

themselves.

3.2 Teaching strategy for algorithmic problem

solving
Understanding the problem and communicating a

design to peers is not easy for many students. When

students try to design and code at the same time, they

frequently make the situation more complex than it

would be if they first designed a solution in a natural

language and then subsequently faced the issue of

coding [21]. Therefore, these hands-on activities (or

unplugged) have been developed for computer science

novices [25].

Students need abilities to analyze and to design

problems to implement programs. Analyzing

programs can allow learners see new ideas and

functions naturally. Designing programs can support

learners to understand the structure of programming.

Fig. 2 Teaching steps for algorithmic problem solving

In this paper, we suggest a new teaching strategy of

programming learning for algorithmic problem

solving based on the ‘General strategy for algorithm

creation’ of Jorge Vasconcelos [26]. Figure 2 shows

the teaching steps in a class.

We transformed and applied activities in our class

to design object-oriented programs. The activities for

program design were based on CRC

(Class-Responsibility-Collaborator) Card Modeling, a

simple, yet powerful object-oriented analysis

technique [14].

CRC-cards have been described as a tool to teach

object-oriented thinking to programmers [15][27]. It is

a simple informal tool for collaborative

object-oriented modeling. The power of the CRC-card

approach lies in its associated role-play activities.

Scenario role-play is usually used in the social

sciences to evaluate human behavior in specific, yet

hypothetical situations. Role-playing is an effective

way to simulate or explore hypothetical situations,

since the characters and scripts can be easily varied

[15].

In object-oriented software development, the

characters are the objects in our system and the

scenarios are situations of system usage. Scenario

role-play can be used in the very early stages of

software development, before any code is written (or

even designed) [28]. That makes it appealing for

novices, as a means to become familiar with the

object-oriented way of thinking, without needing to

bother about syntactic details of programming or

design languages [15].

Accordingly, we make students learn using steps

of activities to analyze and design games and

Problem comprehension

Analysis and search

of conceptual tools

Define requirements

and results

Design a strategy to

solve the problem

Foresight results and test
strategy

Step of general strategy

for algorithm creation[21]

Reading scenarios or observing projects

Defining objects

Writing behaviors and properties

Making scripts

Modifying or adding scripts

Implementing

Proposed steps

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 374 Issue 11, Volume 7, November 2010

simulations: concept of objects, behavior of the

objects, scripts etc. The details of each step follow.

Step 1. Reading scenarios or observing projects

Students read scenarios or demonstrate projects of

the stories, the simulations, or the games. They also

explain (speaking or writing) their processing. Then,

the children can understand an outline of the stories.

For example, if they program a race between a

rabbit and a turtle, the children can understand the

logical situation by reading and explaining the story.

Step 2. Defining objects

Children grasp the main objects in the stories. For

instance, although all items (rabbit, turtle, tree, rock

etc.) are objects, students know that they have to

command only the rabbit object and the turtle object in

practice.

Step3. Writing behaviors and properties of objects

After finding the objects, children write the

object’s behaviors and properties: "the rabbit is

running" and "If the rabbit meets a rock, he sleeps".

Fig. 3 Activities to Make Scripts

Step4. Making scripts using scripts card

Children compound scripts (tiles), pieces that a

teacher gave them, or make scripts through hands-on

activities using tangible things, such as cards and

Post-it notes, as in Figure 3.

Therefore, the concept is to make scripts, not to

write scripts. In addition, if they are novices or young

programming students, script components prepared

beforehand could be used. They could write the scripts

on cards or Post-its, as they become proficient in

making scripts. For example, they can compound

commands of "a turtle: forward by 5", "a turtle: If he

meets a tree", "a rabbit: forward again" and so on.

Step5. Modifying or adding scripts (Optional)

The children are able to modify scripts using new

tiles and cards and to add new ideas to the completed

script cards. Students can predict the results of the

scripts by modifying or adding lines.

Fig. 4 Activities for Top-down design

Step6. Top-Down design (Optional)

They can use script tiles exactly. In addition, they

should make new scripts for specific commands to

implement some behaviors of the objects. This is

motive to let them design top-down. For instance,

"train: forward by" can use scripts of Squeak category,

however, "train: full down. " should compound two or

more scripts on a new script card (see figure 4)

Step 7. Implementation with Squeak etoys

The children implement programs with the script

cards using Squeak etoys. They can eventually make

simulations or games.

4 Assessments

4.1 Experiment

Train :

Train: forward by 5

Train: full

down

Train : full

down

Train: y axis decreases 5

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 375 Issue 11, Volume 7, November 2010

We create an environment to show that our curriculum

and teaching strategy using Squeak etoys are very

useful and effective methods for algorithmic problem

solving for students in learning programming.

We show examples of problem solving in a free

project and an assignment from a teacher. A post-test

on problem-solving ability for given situations was

conducted and the ability to apply the programming

skills (‘saving a baby butterfly’ of figure 5): naming of

objects and scripts, loop statements, conditional

statements and controlling scripts was assessed.

We surveyed the children on how satisfied they

were with the programming activities and how much

they maintained their interest in programming.

This experiment was performed over 12 hours

(three weeks: 2 days a week for two hours), for 3rd

grade ~6th grade students (N=13) of a Korean

elementary school. None of the students had learned a

programming language before.

A pre-test was used as a measure of interest in

programming and basic computer literacy. Although

they learned a programming language for the first time,

their interest in programming was over the mid-point.

Their abilities using computer was similar to each

other and they were familiar with basic computer

skills, such as using the Internet, and OA applications.

4.2 Solving Algorithmic Problems

4.2.1 Problem solving in assignments

For example, in the game “Saving a little butterfly

from the spider” students used various methods to

solve the problem.

Example: If I try to make sure that the spider won't

go out of the cobweb, how do I this?

Students' solution examples:

Solution 1: After the inside of the Cobweb is

colored with different colors from the background, if a

spider meets a color of the outside background, let it

turn back to the inside of the web.

Solution 2: After the outside of the Cobweb is

colored with different colors from the background, if a

spider meets the color of the outside background, let it

turn back to the inside of the web.

Solution 3: Cobweb is colored with a different

color surround. If the spider meets that color, it turns

back to the center.

Solution 4: The cobweb background is filled with a

different color. When the spider sees it, it goes around

in random movements. When it does not see the color,

it turns around.

Fig. 5 Examples of problem solving in an assignment

4.2.2 Problem solving in students’ own projects

When a learner creates a project, s/he faces problems.

Thus, s/he should solve the algorithmic problems to

implement what s/he wants. The students solved or

implemented the following problems or situations they

had never previously learned or exercised.

Table 3 Example 1 of student’s own project

Squeak eToys’ tiles for

programming

Original codes of the tile codes

self forward: 20 atRandom.

self turn: 20 atRandom

(self

color: (Color

r: 1.0 g: 0.71 b: 0.129)

sees: (Color

r: 0.935 g: 0.935 b: 0.935))

 ~~ false

ifTrue: [self setY: self getY - 30]

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 376 Issue 11, Volume 7, November 2010

Example 1: 3
rd
 grade student’s project

Problem: If I stop them going up to the water

surface, although squid swim freely, how do I do this?

Solution: forwarding and turning squid has a

random value, it makes them repeat, and when

meeting air it decreases the y coordinate.

Table 4 Example 2 of student’s project

Squeak eToys’ tiles for

programming

Original code for the tile

codes

(self color:

(Color r: 0.129 g: 0.806 b:

0.0) sees: (Color r: 0.0 g:

0.0 b: 0.774))

ifTrue: [Robot set score:

Robot get score + 1.

 self setX: 1196.

 self setY: 383]

Example 2: 6
th
 grade student’s project

Problem: How can I automatically count the

number of containers of oil collected by the robot?

Solution: N is incremented by 1 each time a robot

collects a container of oil using variable N.

As you see from the examples of tables 3 and 4,

although sometimes students did not learn the concept

about random, y coordinate, a variable and so on, they

could naturally acquire the needs and uses of these.

These programming courses automatically provide

problems the students have to solve, even if the

teachers do not provide the problems.

4.3 Programming skills
We surveyed how the students think about finding the

object, writing behaviors and properties of objects,

and making scripts for each stage: analyzing,

designing and implement using Squeak. The survey

design questions used a 5-point Likert scale (difficult:

1, easy: 5).

The children thought that finding suitable objects

for programming was the easier than the next step,

writing behaviors and properties (Fig. 6); the

implementation step was the hardest. They felt that

making the scripts at the design step was the hardest.

However, they felt that it was easy again when it came

to implementing the scripts.

Fig. 6 The self-evaluation about learning during

programming processing

We also asked them questions about the help doing

the activities gave them to program using Squeak very

well.

Q1. It helped me to understand concepts of the

scripts and the tiles: 76.9% - always

Q2. When we made a program after making the

script cards, it was easier: 84.6% - always

50.0%

75.0%

83.3%

100.0%

75.0%

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Naming Conditional

St.

Loop St. Control St. Parameter

Fig. 7 The rate of students passing each skill

Figure 7 shows the success rate of the students for

each of the programming skills test for ‘the saving

butterfly from a spider’ project. Most of them (i.e.

over 75% passed) could use the conditional statements,

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 377 Issue 11, Volume 7, November 2010

loop statements, control statements, and parameters

for solving the problems. Only naming caused

problems (50% pass rate). Overall, students felt a high

sense of achievement and acquired programming

skills.

4.4 Interest in programming
Changes of interest in programming were also

surveyed using the 5-point Likert scale (very much

agree; 5, very much disagree; 1).

Q1. I am interested in making programs.

Q2. I like to learn a programming language.

Q3. I like to make programs.

Q4. I also want to learn other programming languages.

4.40

4.55 4.50

4.69

3.80
3.91

4.25

4.62

3.60

4.27
4.33

4.62

4.00
4.09

4.17

4.46

3.00

3.20

3.40

3.60

3.80

4.00

4.20

4.40

4.60

4.80

First week Sec. week Third week Fourth week

Q1 Q2 Q3 Q4

Fig. 8 Programming interest over time

We found out that the students’ interest in

programming was higher over time for all questions

(Fig. 8). Scores for Q3 (Interests about making

programs) were statistically significant with p<0.05

between the first week and the last week. That is, we

could see that children got more interested in making

programs during the course.

5 Conclusions
Programming in computer science education is an

important domain. Programming education is a form

of problem solving that can improve the learner’s

cognitive skills, logical thinking, and reflective

thinking [9].

Therefore, many researchers and instructors have

developed teaching methods to help students learn

computer science concepts, such as programming

[2][29].

However, it is not easy to teach programming to

young students. Students do not have an interest in

programming; most programming languages are too

difficult. Although there are some educational

programming languages, there are few curricula for

learning programming suited to young students.

Therefore, this study designed a curriculum of

programming for algorithmic problem solving. Every

class has a problem that the students should solve.

Then, we proposed strategies based on steps within a

general strategy for algorithm creation to support the

design of algorithms for programming.

In this study, we also experimented with

elementary school students using the methods and

Squeak etoys. Although the students did not learn

basic concepts related to programming, they could

naturally acquire needs and uses of these.

First, we can find that our activities to analyze

algorithms help children to program what they want

more easily, since they answer all are easy at the last,

implementation stage, although they feel describing

the behavior and properties and making the scripts are

not easy at the design stage. They thought that these

strategies helped their programming. Over 75% of

students were assessed as passing the programming

skills test, except for naming objects. We think that the

students may often forget the naming of objects when

they make programs, because they do not take

sufficient care; they might think naming objects is not

important, because the scripts are not complex yet.

Especially, we can see that Squeak etoys supported r

their easy programming.

Second, interest of the programming increased

over time. Activities captured their interest, because

approaches, such as CRC card activities for

programming eased their hard workload. Therefore,

we can state that our strategies helped them to like

programming more.

In conclusion, we provided various problem

situations, so that students could have experiences

solving them in our curriculum. In addition, activities

based on steps of algorithm creation and the CRC card

model helped students program what they wanted. The

students felt high a sense of achievement, and acquired

programming skills. Their interest during learning

programming increased.

References:

[1] Tucker, Allen, (editor), Deek, F., Jones, J.,

McCowan, D., Stephenson, C., and Verno, A. A

Model Curriculum for K-12 Computer Science:

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 378 Issue 11, Volume 7, November 2010

Final Report of the ACM K-12 Task Force

Curriculum Committee. Association for

Computing Machinery (ACM), New York, October,

2003.

[2] Caitlin Kelleher and Randy Pausch, Lowering the

barriers to programming: A taxonomy of

programming environments and languages for

novice programmers, ACM Comput. Surv., vol. 37,

2, pp. 83-137, 2005. [lowering]

[3] Karuno, H. Konomi, S., Creating, Connecting and

Collaborating Through Computing Squeak

workshop experiences in Kyoto. Graduate Sch. of

Informatics, Kyoto Univ., Japan, 2003. [Kyoto]

[4] Karen Swan, LOGO Programming, Problem

Solving, and Knowledge-based Instruction, Paper

presented at the Annual Meeting of the American

Educational Research Association, p.39, 1990.

[5] Martin, J. L., “Is Turing a better language for

Teaching Programming Than Pascal?” Honours

Dissertation, University of Stirling, Department of

Computer Science, 1996. [martin]

[6] Pane, J. F., Nyers, B. A. “Usability Issue in the

Design of Novice Programming Systems.”.

Technical Report, Carnegie Mellon University,

1996.

[7] Moreno and Niko Myller and Erkki Sutinen and

Mordechai Ben-Ari, Visualizing programs with

Jeliot 3, AVI '04: Proceedings of the working

conference on Advanced visual interfaces, pp.

373-376, 2004, ACM Press, New York, NY, USA,

DOI =http://doi.acm.org/10.1145/989863.989928.

[8] Handhausen, Christopher D., Brown, Jonathan L.,

“What You See Is What You Code: A ‘Live’

Algorithm Development And Visualization

Environment For Novice Learners.” Visualization

and End user Programming Laboratory, School of

Electrical Engineering and Computer Science,

Washington State University. March 2006.

[9] Park, W.G., Lee, J., Design of Programming

Learning System for Children and Beginner, in

processing Korean Association of Information

Education, 2000.

[10] Zaigham Mahmood, A framework for

teaching introductory software development,

WSEAS Transactions on Computers, Volume 8

Issue 8, August 2009.

[11] Jun, S., Kim, S., Lee, W., Online

Pair-Programming for Learning Programming of

Novices, WSEAS Transactions on Advances in

Engineering Education, Manuscript received Jul. 1,

2007; revised Sep. 11, 2007

[12] Wikipedia,
http://en.wikipedia.org/wiki/Game_programming

[13] Vural, H., Jun, S.J., et al. Using Squeak for

Teaching High School Students 'How Computers

Think', Korea Association of Computer Education,

2006.

[14] David M. Rubin, Methodologies and

Practices – White Paper: Introduction to CRC

Cards, Softstar Research, Inc., January 1998.

[15] Jürgen Börstler, Teaching object oriented

modeling with CRC-cards and role playing games,

in Proceedings WCCE 2005, Cape Town, South

Africa, Jul 4-7, 2005.

[16] What is Squeak? http://www.squeakland.org

[17] Chickering, Arthur and Ehrmann, Stephen C.,

"Implementing the Seven Principles: Technology

as Lever", AAHE Bulletin, 1996.

[18] Yang, H., Kuo, L., Yang, H., Yu, J., Chen, L.,

On-line PBL System Flows and User’s Motivation,

WSEAS Transactions on Communications, Issue 4,

Volume 8, April 2009.

[19] Stasko, J. T., “Using student-built algorithm

animations as learning aids”, In Proceedings of the

Twenty-Eighth SIGCSE Technical Symposium on

Computer Science Education (San Jose, California,

United States, February 27 - March 01, 1997). J. E.

Miller, Ed. SIGCSE '97. ACM Press, New York,

NY, 25-29, 1997. DOI=

http://doi.acm.org/10.1145/268084.268091

[20] Duch, B. “The Power of Problem-based

Learning.” About Teaching, 1995. 47: pp.1-2.

[21] Joseph Bergin, Joseph Bergin et al.

Non-Programming Resources for an Introduction

to CS: A collection of resources for the first

courses in Computer Science, ITiCSE 2000

Working Group Reports, 2000.\

[22] Shin, J.H., Kim, J.H., Programming Learning

by Understanding of Game Programs, in

processing Korean Association of Information

Education, 2001.

[23] Committee on Information Technology

Literacy. “Being Fluent with Information

Technology”, Washington DC: National Academy

Press, 1999.

[24] Jun, S.J., Kim, S.B., et al. Pair-Programming

in Online Programming Learning Environment,

IPSJ symposium Series Vol.2006, No.8, 2006.

[25] Bell, T.C., Witten, I.H., and Fellows, M.

Computer Science Unplugged: Off-line activities

and games for all ages. 1998. available from

http://unplugged.canterbury.ac.nz.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 379 Issue 11, Volume 7, November 2010

[26] Jorge Vasconcelos, Basic Strategy for

Algorithmic Problem Solving, 2007, at URL:

http://www.cs.jhu.edu/~jorgev/cs106/ProblemSol

ving.htm

[27] Beck, K., Cunningham, W. (1989). A

Laboratory for Teaching Object-Oriented

Thinking. Proceedings OOPSLA’89. 1-6.

[28] Larman, C. Applying UML and Patterns; An

Introduction to Object-Oriented Analysis and

Design and Iterative Development, Pearson

Education International Upper Saddle River, NJ

07458, 2004.

[29] Chin, Suk Kim . “A Practical Model For

Improving Student Learning of A Programming

Language”. School of Business and Informatics,

Australian Catholic University. 36th ASEE/IEEE

Frontiers in Education Conference. 2006

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Soojin Jun, Seungbum Kim, Wongyu Lee

ISSN: 1790-1979 380 Issue 11, Volume 7, November 2010

