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Abstract:The creation of knowledge from information can be promoted by proper representations of information
which make the inherent logical structure of the information transparent. Since concepts are the basic units of
human thought and hence the basic structures of logic, the logical structure of information is based on concepts
and concept systems. Methods from the theory of formal concept analysis and frequent set mining are applied for
automated extraction of information from students’ responses to preliminary tests about their lack of knowledge or
misconception of fundamental terms and skills. Personalized recommendations are suggested to each student once
possible difficulties in learning a new subject are detected.
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1 Introduction

A single inference procedure (abduction) can opera-
tionalize a wide variety of knowledge-level model-
ing problem solving methods; i.e. prediction, clas-
sification, explanation, tutoring, qualitative reason-
ing, planning, monitoring, set-covering diagnosis,
consistency-based diagnosis, validation, and verifica-
tion, [24].

Association rules are widely used for detecting re-
lationships between variables. Association rules show
attribute value conditions that occur frequently to-
gether in a given dataset. They deal with statements of
the form ’the presence of attributesα andβ often also
involves attributeγ’. This approach has an application
in different fields such as market basket analysis [7],
medical research [14], web clickstream analysis [27]
and census data [22].

The process of determining the set of association
rules that hold in a context can be broken down into
two steps - finding all frequent subsets of attributes,
and generating confident rules from the frequent item-
sets. Traditional approaches to find frequent itemsets
rely on a minimum support threshold in order to re-
duce the amount of candidates they have to work with
[12].

Ordered weighted averaging aggregation opera-
tors (OWA) provide a parametrized class of mean type
aggregation operators, [34] and [35]. Such operators
are often used to model linguistically expressed ag-
gregation instructions, [21]. OWA have two impor-
tant characteristics: attitudinal (orness) and disper-

sion. The first one is similar to the OR operation when
OR is defined as the Max, while the second one illus-
trates how uniformly the arguments are being used.

This paper aims at finding an efficient way for dis-
covering which specific knowledge each student does
not possess in order to successfully start a new course
or to proceed with another section in a current subject.
Most existing tutoring systems respond to students’
mistakes by providing links to a collection of teaching
materials. Such an approach does not satisfy the indi-
vidual needs of each student. We believe in applying
a holistic approach that involves looking at the whole
system of each student knowledge within an subject
rather than just concentrating on single mistakes, lack
of knowledge or misconception.

Our goal is to find a way to identify those stu-
dents who are exposed to a serious danger of not be-
ing able to obtain sufficient knowledge and skills in
integration due to lack of preliminary knowledge in
mathematics. Once these students are identified they
will be suggested to take extra classes in mathemat-
ics. This will decrease the amount of students fail-
ing exams in mathematics as well as the amount of
students failing exams in other subjects that require
mathematical skills. In addition it will facilitate the
process of allocating teaching resources at the begin-
ning of a semester.

The rest of the paper is organized as follows. Sec-
tion 2 contains definitions of terms used later on. Sec-
tion 4 describes how we propose to select students that
need extra classes and Section 5 is devoted to a system
description. Section 6 contains the conclusion of this
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work.

2 Knowledge, Frequent Sets and
Fuzzy Functions

2.1 Knowledge Modeling
The creation of knowledge from information can be
promoted by proper representations of information
which make the inherent logical structure of the infor-
mation transparent. Since concepts are the basic units
of human thought and hence the basic structures of
logic, the logical structure of information is based on
concepts and concept systems. Therefore, concept lat-
tices as mathematical abstraction of concept systems
can support humans to discover information and then
to create knowledge [30].

2.2 Design and Evaluation
A uniform view of different problem solving methods
is presented in [9], [10] and [6]. Abductive approach
can be used for validation as well since the technique
we involves both inference and testing tools. Working
in vague and conflicting domains often require appli-
cation of nonstandard approaches. Therefore abduc-
tion can be used for knowledge modeling.

An online application for test design and evalu-
ation of trainees is described in [5]. An interesting
analysis of the e-learning technologies used in the Ital-
ian universities can be found in [8]. Experience with
using multimedia activities to improve the results of
university students is presented in [20].

2.3 Concept of a Context
The mathematical preparedness of students embark-
ing upon science and engineering degree programmes
has been the subject of close scrutiny over recent
years, with disheartening conclusions, [36]. Since
mathematics is a key facet of all engineering degree
courses it appears also to be one of the reasons for
increased dropout rates and poor student progression.

Definition 1 [13] Let P be a non-empty ordered set.
If sup{x, y} andinf{x, y} exist for allx, y ∈ P , then
P is called alattice.

In a lattice illustrating partial ordering of knowl-
edge values, the logical conjunction is identified with
the meet operation and the logical disjunction with the
join operation.

Definition 2 [29] A context is a triple (G,M, I)
whereG andM are sets andI ⊂ G ×M . The el-
ements ofG andM are calledobjectsand attributes
respectively.

ForA ⊆ G andB ⊆M , define

A′ = {m ∈M | (∀g ∈ A) gIm},

B′ = {g ∈ G | (∀m ∈ B) gIm}

whereA′ is the set of attributes common to all the
objects inA andB′ is the set of objects possessing the
attributes inB.

Definition 3 [29] A conceptof the context(G,M, I)
is defined to be a pair(A,B) whereA ⊆ G,B ⊆M ,
A′ = B andB′ = A.

The extentof the concept(A,B) is A while its
intent is B. A subsetA of G is the extent of some
concept if and only ifA′′ = A in which case the
unique concept of the whichA is an extent is(A,A′).
The corresponding statement applies to those subsets
B ∈M which is the intent of some concepts.

The set of all concepts of the context(G,M, I) is
denoted byB(G,M, I).

Definition 4 [29] 〈B(G,M, I);≤〉 is a complete lat-
tice and it is known as theconcept latticeof the context
(G,M, I).

2.4 Frequent Sets

Frequent sets are sets of attributes that occur often
enough to deserve further consideration.

Definition 5 [12] An association ruleQ → R holds
if there are sufficient objects possessing bothQ andR
and if there are sufficient objects among those withQ
which also possessR.

The complexity of mining frequent itemsets is ex-
ponential and algorithms for finding such sets have
been developed by many authors such as [3] and [12].

A context(G,M, I) satisfies the association rule

Q→ Rminsup,minconf

with Q,R ∈M , if

sup(Q→ R) =
|(Q ∪R)′|

|G|
≥ minsup,

conf(Q→ R) =
|(Q ∪R)′|

|Q′|
≥ minconf

providedminsup∈ [0, 1] andminconf∈ [0, 1].

The ratios
|(Q ∪R)′|

|G|
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and

|(Q ∪R)′|

|Q′|

are called, respectively, thesupportand thecon-
fidenceof the ruleQ → R. In other words the rule
Q → R has supportσ% in the transaction setT if
σ% of the transactions inT containQ ∪ R. The rule
has confidenceψ% if ψ% of the transactions inT that
containQ also containR.

Mining association rules is addressed in [2]. Al-
gorithms for fast discovery of association rules have
been presented in [1], and [33]. Association rules have
applications in different fields such as market basket
analysis [7], medical research [14], web clickstream
analysis [27], and census data [22].

2.5 Fuzzy Functions
Fuzzy reasoning methods are often applied in intel-
ligent systems, decision making and fuzzy control.
Some of them present a reasoning result as a real
number, while others use fuzzy sets. Fuzzy reason-
ing methods involving various fuzzy implications and
compositions are discussed by many authors, f. ex.
[4], and [12].

Definitions of fuzzy sets and fuzzy functions are
taken from [31].

Definition 6 LetX be a space of points (objects), and
x ∈ X being a generic element. A fuzzy set (class)A
in X is characterized by a membership (characteris-
tic) functionfA(x) which associates with each point
in X a real number in the interval[0, 1].

The value offA(x) represents the ”grade of mem-
bership” ofx in A. This in contrast to the classical set
theory where a membership function takes one of the
two values 1 and 0, an element belongs the set or it
does not.

Thesum-of-1-criterion[19] states that

Σi∈Mi
mi(x) = 1, ∀x ∈ χ

whereMi, i = 1, ..., k denotes all possible mem-
bership terms{mi, i = 1, ..., k} of a fuzzy variable in
some universe of discourseχ.

An affiliation valueα to a concept(A,B) is de-
fined as

α(A,B) =
Σo∈A,f∈Bmof

|A| · |B|

The affiliation value represents the relative extent
to which an object belongs to this concept or an at-
tribute is common to all objects in the concept.

In the derived graph, also known as a Hasse dia-
gram, i.e. in the concept lattice each vertex represents
a concept. The concepts are arranged hierarchically in
this concept lattice, i.e. the closer a concept is to the
supremum, the more attributes belong to it. Moving
from one vertex to a connected vertex which is closer
to the supremum means moving from a more general
to a more specific description of the attributes if an
object appears in both concepts.

3 Aggregation Operator
The problem of aggregating a set of numerical
readings in order to obtain a mean value is addressed
in [35].

If x1, x2, ..., xn is a set of readings then the ag-
gregating process is denoted as

Agg(x1, x2, ..., xn) = a

The aggregation operator has the following prop-
erties

1. A natural boundary

Agg(a) = a

It means that in the case of a single reading the
aggregated value is taken to be that single read-
ing.

2. Self-identity

If
Agg(x1, x2, ..., xn) = a

then
Agg(x1, x2, ..., xn, a) =

Agg(x1, x2, ..., xn) = a

It implies that adding an element equal to an al-
ready existing value does not change the aggre-
gation value.

3. Monotonicity

Agg(x1, x2, ..., xn) ≥ Agg(y1, y2, ..., yn),
xi ≥ yi,∀ 1 ≤ i ≤ n

Agg is called idempotent if
Agg(x1, x2, ..., xn) = a wheneverxi = a ∀ 1 ≤

i ≤ n and (1) and (2) hold.
Idempotencity does not imply self-identity, [35].
If Agg(x1, x2, ..., xn) has a natural boundary and

self-identity, is monotonic and idempotent, then
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a ≤ Agg(x1, x2, ..., xn) ≤ b

wherea = Min[xi] andb = Max[xi]

Theorem 7 [35] If Agg is a monotonic and self-
identity operator then

Agg(x1, ..., xn,K) ≥ Agg(x1, ..., xn), if
K > Agg(x1, ..., xn)

and

Agg(x1, ..., xn,K) ≤ Agg(x1, ..., xn), if
K < Agg(x1, ..., xn)

Theorem 7 implies that addition of new elements
with values greater than the current mean value re-
sults in an increased mean value and addition of new
elements with values smaller than the current mean
value results in an decreased mean value.

Theorem 8 [35] If Agg is an idempotent and mono-
tonic operator, not equal to theMax or Min opera-
tors thenAgg is not associative.

Theorem 8 implies that ifAgg is idempotent and
monotonic its extension to a greater cardinality does
not have to be done in a consistent way. At the same
time if Agg has a natural boundary and self-identity
than by Theorem 7 certain requirements for consis-
tency have to be satisfied while extending its cardinal-
ity.

The weights must satisfy the following conditions

n
∑

j=1

wnj = 1 ∀ n andwnj ≥ 0 ∀ n, j

For the case withn arguments

Agg(x1, ..., xn) =
n

∑

j=1

wnjxn

The weightswnj are uniquely determined by the
formula

wni = wn1

(

1

wi,1

−
1

wi−1,1

)

, 2 ≤ i ≤ n

and the ratio
wn1

wn−1,1

between the first element in the current iteration and
the first element in the previous iteration, [35].

Another approach for calculating the weightswnj

involves the Lukasiewicszt-conorm S(x1, ..., xn)
[15]

S(x1, ..., xn) = Min[1,

n
∑

i=1

xi]

Thus

wnj =
Sj − Sj−1

Sn

where

if Sj < 1 thenwnj =
xj

Sn

if Sj−1 ≥ 1 thenwnj = 0

if Sj = 1, Sj−1 < 1 thenwnj = 1 − Sj−1.

By θ we denote the threshold for membership val-
ues above which an entry is regarded as significant, as
in [19]. This is achieved by computing the arithmetic
mean of all entries within a column and take it as a
threshold.

4 Correlations
At the beginning of a semester students take a test
with mathematical problems. The test results show a
student’s tendency to fail, possession of good knowl-
edge or very good knowledge related to operations
with fractions, logarithmic functions and trigonomet-
rical functions. Our further work aims at finding out
whether a student belongs to a concept containing the
attribute failure in the mathematical operation integra-
tion. If affirmative the student is strongly advised to
attend additional mathematical classes. The suggested
approach is not limited to concepts containing the at-
tribute failure in integration only. On the contrary, it
can show to which concept any particular student be-
longs to.

Based on real data from previous years we first
prepare Table 1 that illustrates correlations between
students’ preliminary knowledge and already obtained
knowledge and skills in integration. Using formal
concept analysis we can extract all concepts based on
the data from Table 1 and build a corresponding con-
cept lattice, see Fig 1. Concept lattice illustrating the
path for the attributeIf is in Fig 2.

In Table 2 the significant entries, i.e. those with
values not smaller than the column’sθ, are denoted by
’⋆’. We pay particular intention on the concepts that
contain failure in integration(If).

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Sylvia Encheva, Sharil Tumin

ISSN: 1790-1979 114 Issue 4, Volume 6, April 2009



Figure 1: Concept lattice

Figure 2: Concept lattice illustrating the path for the attributeIf
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Table 1: Context for students groups

F L T I

Ff Fg Fvg Lf Lg Lvg Tf Tg Tvg If Ig Ivg

G1 ⋆ ⋆ ⋆ ⋆

G2 ⋆ ⋆ ⋆ ⋆

G3 ⋆ ⋆ ⋆ ⋆

G4 ⋆ ⋆ ⋆ ⋆

G5 ⋆ ⋆ ⋆ ⋆

G6 ⋆ ⋆ ⋆ ⋆

Table 2: Context for students groups with numerical values

F L T I

Ff Fg Fvg Lf Lg Lvg Tf Tg Tvg If Ig Ivg

G1 1⋆ 0.3 0.1 0.6⋆ 0.1 0.1 0.8⋆ 0.1 0.2 0.7⋆

G2 0.1 0.9⋆ 0.1 0.7⋆ 0.2 0.1 0.7⋆ 0.2 0.2 0.3 0.5⋆

G3 0.2 0.7⋆ 0.1 0.2 0.6⋆ 0.2 0.1 0.4 0.5⋆ 0.3 0.5⋆ 0.2
G4 0.7⋆ 0.2 0.1 0.3 0.6⋆ 0.1 0.3 0.5⋆ 0.2 0.4 0.5⋆ 0.1
G5 0.2 0.6⋆ 0.2 0.8⋆ 0.1 0.1 0.4 0.5⋆ 0.1 0.7⋆ 0.3 0.1
G6 0.2 0.6⋆ 0.2 0.3 0.6⋆ 0.1 0.8⋆ 0.2 0.8⋆ 0.2

θ 0.22 0.38 0.41 0.33 0.45 0.22 0.3 0.4 0.3 0.41 0.33 0.26

St 1 0.4 0.5 0.1 0.5 0.5 0 0.7 0.3
St 2 0.2 0.6 0.2 0.6 0.2 0.2 0.1 0.8 0.1 0.33
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The following possibilities are further discussed.

4.1 A Case with One Concept
In this case student’s results belong to one concept
having If as an attribute or to a unique set of con-
cepts havingIf as an attribute.

Suppose there is only one concept havingIf as
an attribute. A student belongs to that concept if the
attributes’ values, related to his/her test result, belong
to the corresponding attributes’ intervals values of the
concept (all attributes’ values exceptIf because the
student has not been tested on integration).

If there are several concepts havingIf as an at-
tribute we apply the same rule like the one with a sin-
gle concept but we work with attributes’ intervals val-
ues of the set of all concepts havingIf as an attribute
(again all attributes’ values exceptIf because the stu-
dent has not been tested on integration).

Example 9 The test results of a new student (St1, Ta-
ble 2) belong to the intervals determined by the con-
cept

I = {Fg, If}, E = {G5, G6}.

Therefore, theIf value ofST1 belongs to the
interval [0.7, 0.8] whereθ(If) = 0.4. The student
is therefore advised to take additional classes since
θ(If) = 0.4 is smaller than values in the interval
[0.7, 0.8].

4.2 A Case with Several Concepts
Suppose a student’s results belong to more than one
concept where at least one concept does not haveIf
as an attribute. The value of the attributeIf(s) for
that student is calculated according to the function

If(s) =
ΣIf(Ci) · αCi

l

where

• Ci are the concepts that have the sameIfvalues
as the student,

• αCi
are the corresponding affiliation values, and

• l is the number of the involved concepts.

If the student’s results are not equal to any of the
known attributes’ we take the concept that has the
closest attribute value. In case there are several con-
cepts with attribute values equal to the one we are in-
terested in, we consider all these concepts.

Example 10 We apply the suggested approach to the
tests’ results of another new student(St2). The test
results of the studentSt2, (Table 2) belong to the con-
cepts with objectsG2, G3, G5, andG6. The affilia-
tion values for concepts with objectsG2, G3, G5, and
G6 are then obtained.

The sum-of-1-criterion is applied while values of
membership functions in Table 2 are determined. The
order of the correspondingIf(St2) value is then cal-
culated to be0.33.

Since0.33 < 0.41 = θ(If), the second student
can proceed normally without the need to attend ad-
ditional classes.

4.3 Weights

Suppose new groups of students are added to the
database. The value of the attributeIf(s) for a stu-
dent is then calculated according to the function

If(s) =
ΣIf(Ci) · αCi

· wn,If

l

wherewn,if is the weight obtained after thenth
interaction for the attributeIf .

The weights wn1

wn−1,1
are determined via normal-

ization of the number of elements in the two iterations:

n− 1th iteration -φ elements
nth iteration -ψ elements

wn−1,1 =
φ

φ+ ψ
,

wn,1 =
ψ

φ+ ψ

4.4 Association Rules
The followingQ → R association rules have been
derived from the relations in Table 1

• – Q: a student has good knowledge about
trigonometrical functions

– R: the student has good knowledge about
logarithms

supportQ→ R = 33%
confidenceQ→ R = 66%

• – Q: a student has good knowledge about
fractions

– R: the student has good knowledge about
logarithms

supportQ→ R = 33%
confidenceQ→ R = 66%
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• – Q: a student has good knowledge about
fractions

– R: the student has insufficient knowledge
(failing) about integration

supportQ→ R = 33%
confidenceQ→ R = 66%

• – Q: a student has good knowledge about
logarithms

– R: the student has good knowledge about
trigonometrical functions

supportQ→ R = 33%
confidenceQ→ R = 50%

• – Q: a student has good knowledge about
logarithms

– R: the student has good knowledge about
integration

supportQ→ R = 33%
confidenceQ→ R = 50%

• – Q: a student has good knowledge about
logarithms

– R: the student has good knowledge about
fractions

supportQ→ R = 33%
confidenceQ→ R = 50%

• – Q: a student has very good knowledge
about fractions and integration

– R: the student has very good knowledge
about logarithms and trigonometrical func-
tions

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has good knowledge about
logarithms and trigonometrical functions

– R: the student has very good knowledge
about fractions and integration

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has good knowledge about
logarithms and integration

– R: the student has very good knowledge
about trigonometrical functions and good
knowledge about fractions

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has good knowledge about
fractions and logarithms

– R: the student has very good knowledge
about trigonometrical functions and good
knowledge about integration

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has good knowledge about
fractions and insufficient knowledge (fail-
ing) about integration

– R: the student has good knowledge about
trigonometrical functions and insufficient
knowledge (failing) about logarithms

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has good knowledge about
fractions and insufficient knowledge (fail-
ing) about integration

– R: the student has good knowledge
about logarithms and insufficient knowl-
edge (failing) about trigonometrical func-
tions

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has very good knowledge
about integration

– R: the student has very good knowledge
about fractions, logarithms and trigonomet-
rical functions

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has insufficient knowledge
(failing) about integration

– R: the student has good knowledge about
fractions and trigonometrical functions,
and insufficient knowledge (failing) about
logarithms

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has very good knowledge
about trigonometrical functions

– R: the student has very good knowledge
about fractions, logarithms and integration

supportQ→ R = 16%
confidenceQ→ R = 50%

• – Q: a student has good knowledge about
trigonometrical functions

– R: the student has good knowledge about
fractions and insufficient knowledge (fail-
ing) about both logarithms and integration
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supportQ→ R = 16%
confidenceQ→ R = 33%

5 System Description
A system prototype is build as a Web-based appli-
cation using Apache HTTP server [37], modpython
module [38] and SQLite database [39]. The
mod python module provides programmable runtime
support to the HTTP server using Python program-
ming language. The whole application components
are

1. Web-based users interface,

2. application logic, and

3. database interaction were written in Python.

The users, i.e. expert tutors, teachers, and stu-
dents interact with the system using Web forms. Be-
fore any interaction with the system can take place,
a user needs to be authenticated first. Experts and
teachers can submit and update data, while students
can only view information.

For a particular subject, an expert tutor will first
submit data that will be used to construct a data table.

The system will then check that there are no du-
plicate attribute combinations and insert the context
data in to the database.

The system provides recommendations on
whether or not a student needs to take additional
classes (courses) based on fuzzy dependencies.

6 Conclusion
Fuzzy systems provide the opportunity for modeling
of conditions that are imprecisely defined. Various
systems can be modeled and evaluated using fuzzy
reasoning.

The suggested approach turns out to be quite use-
ful for providing timely recommendations to students
who might have serious problems studying a particu-
lar subject due to lack of sufficient preliminary knowl-
edge. Even though the approach has been discussed in
relation to studying one subject only, we believe that
it can be applied to other subjects that require prelim-
inary knowledge and or skills.
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