
Collaborative Learning Environment
to Improve Novice Programmer with Convincing Opinions

DINH THI DONG PHUONG
Computer Science Dept
Ritsumeikan university

JAPAN
phuong@de.is.ritsumei.ac.jp

HIROMITSU SHIMAKAWA
Computer Science Dept
Ritsumeikan university

JAPAN
simakawa@is.ritsumei.ac.jp

Abstract: At the present, many universities do not have enough teaching staffs for programming training. The
teacher cannot give suggestions in a timely fashion to all of the students who need guidance for their programming
problems. The training condition reduces motivation to learn programming of the students. We propose a model to
promote collaborative learning among the students. In the model, the students are combined into small groups to
practice programming. Although every group member has to do programming independently, they are encouraged
to share programming problems with other group members to find out solution. The voting mechanism is applied
to each group. If a group member gives an opinion which is evaluated convincing one, the member is rewarded
by others with COOP points. For effective collaboration of students in each group, we combine students based
on two features of each student. One is programming ability, which are scores of the source codes. The other is
contribution to group, which are COOP points accumulated during the collaborative learning. Using the model,
we developed a collaborative learning environment, Col-E. The Col-E has been applied to actual classes in Rit-
sumeikan university, Japan. The experiment results show that Col-E has good possibilities to improve any kinds of
students.

Key–Words: Collaborative learning, convincing opinion, student combination, chat-based system, client-server
architecture, Col-E

1 Introduction
Programming practicing is indispensable tasks for stu-
dents to understand comprehensively what they learn
from lectures. Practicing is to improve program-
ming experience and skill. The more practice, the
deeper and further understanding and experience can
be achieved. Moreover, it brings foundation to under-
stand better subsequent lectures and practices. There-
fore, whenever novice programmers get stuck in prob-
lems, they should be helped with suggestion and guid-
ance from teaching staffs so that they can progress
their programming as the training expectation.

However, at the present, in many programming
training places, programming training condition is not
good enough. Especially there are not enough teach-
ing staffs. There are usually 40 or more students learn-
ing programming in one class room but there is only
one teacher or one teaching assistant - TA. The short-
age of teaching staffs causes programming practice in
computer rooms is not effective for both students and
the teacher. The students frequently cope with prob-
lems but are not responded to by the instructor in a
timely fashion. If they are not able to solve problem
and have no idea to solve it, they reach an impasse.

The teacher has to answer many questions from many
students though these questions often include similar
ones repeatedly asked or easy ones for other students
to answer.

As stated above, whenever a student is faced with
problems and cannot solve them, the student has to
wait for guidance from the teacher. However, in many
cases, students hesitate to consult with their class-
mates on the troubles. The reason may be they are
not sure whether the person with whom they intend to
consult can offer good opinions for them or not. They
are afraid to interrupt others who are concentrating on
doing their works.

More seriously, these actual states cause stu-
dents to become bored with studying programming.
They expect to achieve more programming experi-
ence. They expect to make a program successfully.
But they are not satisfied because they cannot receive
guidance and advice from their instructor when they
need. As a result, they do not want to come to the
programming practice class.

The teacher spends much time to answer simi-
lar questions time by time from different students.
It also takes teacher much time to reply big number

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 635 Issue 9, Volume 5, September 2008



of unimportant questions to students who are unprac-
ticed or have holes of necessary programming matters.
It would prevent the teacher from instructing students
the instruction of whom is indispensable. It reduces
time to encourage students to achieve creative solu-
tions. These therefore make the teacher to be stuck in
the situation where the supervision of the students is
not effective and boring.

For the problems, we should utilize the power of
classmates, instead of making the teacher repeat to
answer the same simple questions to many students.
Therefore, it is necessary to promote collaborative
learning among students. Our method is combining
the students into small groups to encourage students
to search a solution for themselves. The collaborative
work among a small number of students enables them
to find a solution in a timely manner, even thought the
teacher is not available at that time. Grouping the stu-
dents is based on each student programming ability
and contribution to group. The former is evaluated by
source code. The latter is measured by COOP points.
COOP points are the number of opinions from the stu-
dent to be considered convincing enough to solve cer-
tain problems of other members of the group.

CoL-E is a collaborative learning environment us-
ing the above method. It is a chat-based system with
the server and client architecture. The servers take in
charge of logging the two features of the students to
combine them. Client provides graphical user inter-
face facilitating their collaborative learning activities.

2 Novice programmer training
2.1 Problems
Problems in novice programmer education can be
classified as two main categories. One category is the
mastering programming knowledge. Programming
knowledge includes understanding theory, practicing
and applying it. The shortage of these matters is cov-
ered from background, general to specific[1][2][3][4].

Background problems include those related to
from understanding how computer works to using the
tools, understanding the task (programming exercises)
and getting started. Poor understanding of naming
principles and directory hierarchy causes students to
fail the resources or to lose files. Since students can
not understand the requirements of the exercise, they
are unable to figure out solution. Even if students un-
derstand the requirement and be able to have an image
of possible solution, they do not how to get started.

General problems are those that students have a
general design view but are getting basic structural
details wrong. These result from problems with ba-
sic algorithms and data structures. Besides, naming

causes problems. They understand what the function
of the thing is, but cannot name it adequately. It is also
serious barrier not to be Being not familiar with pro-
gramming processes such as analysis, design, coding,
testing and maintenance.

Specific problems are those that are associated
with programming languages and particular program-
ming matters such as arrays, loops, expressions and
strategies to apply them. For instance, with C pro-
gramming language, many students mistake the result
of an expression evaluation which is equivalent to 0 or
1, with the values of true or false of Pascal program-
ming language.

The other category is derivative matters of the first
category. Learners are eager to succeed in their pro-
gramming, but they do not how to proceed when they
encounter problems. They need teacher guidance to
overcome the problems. In actual conditions, how-
ever, they have to waste time waiting guidance from
the teacher. The situation reduces their motivation to
study programming.

Whenever the programming training condition
is not qualified enough, these problems continues.
Shortage and weakness of programming teaching
staffs are the main reasons. However, the problems
cannot be solved in a short time.

2.2 Comparison with existing works

2.2.1 MEDD

The multistrategy error detection and discovery sys-
tem - MEDD is a bug classification system[6]. Stu-
dents can retrieve the bug libraries to solve their diffi-
culties. However, there are considerable matters. The
input of the system must be a program. This criterion
is so difficult for the beginners. Problems of novice
are so wide range that they are hard to be classified.
Retrieval from the bug library also takes much time.
Understanding the suggestion from the bug libraries
is hard task for beginners.

2.2.2 Pair programming

Pair programming, a software development technique
in which two programmers work together at one key-
board, is another considerable solution for this train-
ing condition.

From the study on problems encountered by
novice pair programmers[3][5], a notable result is pre-
sented. The number of problems occur for the case of
pairs much less than for the case of solo.

The experiment on 40 senior Computer Science
students at the University of Utah by Laurie Ann

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 636 Issue 9, Volume 5, September 2008



Figure 1: Col-E theme

Williams[7] also shows that paired students feel en-
joyable and more confident than solos. The quality of
source codes made by paired students are better than
those made by solos.

However, if we let novice programmers pair when
they practice programming, it would reduce the real
practicing time of each member. Whenever a problem
occurs, the one who has solution will seize the op-
portunity to solve it. The other even would not have
chance to understand the problems and have no oppor-
tunity to practice it. This makes the student gradually
become not confident enough to program solo after
pairing.

Furthermore, if we apply pair programming to
novice students, we cannot clarify exactly who makes
the programs because we have no means to manage
all the pairs. To make the matter worse, if we make
the score of exercises important, students good at pro-
gramming would finish most parts of the work, leav-
ing ones poor in programming idle[8].

Besides of these, we do not know how to pair two
students so that both of the two members can achieve
their collaborative learning the most. We might com-
bine a less experienced programmer with a more ex-
perienced one with the hope that the former will learn
from the latter and can achieve the best result. As the
real phenomena stated above, it is difficult to achieve
this goal.

3 Collaborative learning with con-
vincing opinions

3.1 Collaborative learning

The project of the Wisconsin Center for Education Re-
search studies the collaborative learning intensivety.
Their web page[9] says ”Collaborative learning or co-
learning is an educational approach to teaching and
learning that involves groups of students working to-
gether to solve a problem, complete a task, or cre-
ate a product. Collaborative learning is based on the
idea that learning is a naturally social act in which
the participants talk among themselves. It is through
the talk that learning occurs.”(Gerlach, 1994) Co-
learning method has been used somehow and brought
many interesting advantages[10][11][12].

For novice programmers to study programming
effectively, practice programming on their own must
be strengthened. In addition to that, the collaborative
learning and the pair programming methods should
be applied in the fashion of taking their advantages
and diminishing negative effects. By approaching
this way, in practice time, every student is demanded
to practice programming by itself on the assignment
given by a teacher. When a student cope with a prob-
lem, it itself would try to search for clues from others.
The student itself would practice these suggestions
and make up its decisions, make the understanding
into experience and vice versa. We call this training
method as collaborative learning or co-co-learning.

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 637 Issue 9, Volume 5, September 2008



3.2 The overview of the model

The model overview is described in figure 1. The stu-
dents of the class are grouped. Each group member
is called an opinion source. Inside a group, opin-
ion sources can give opinions on programming prob-
lems bravely. For effective co-learning of each group,
the following factors are taken into account. Fist, the
number of each group should be logical. It should be
3 because of the balance of many matters. If there are
more than 3 students in a group, one member would be
interrupted too much, while it has to focus on its own
programming. The group member would not have a
sense of responsibility to others, either. From the view
point of the receiver, more than two different opinions
are puzzling. Opinions from the other two members
are enough to help the receiver. In case these opin-
ions are not convincing, they can consult the teacher.
Second, the combination of students for each group
would be appropriate. The grouping algorithm based
on contribution to group and programming ability of
the students presented in section 3.4 aims at this pur-
pose. Third, a proper communication means must be
stepped up among group members. In case all group
members are engaging in their programming, the stu-
dent with a problem can broadcast it without hesita-
tion. The broadcasting is supported with the system
described in section 4.

3.3 Convincing opinions

Figure 2 illustrates the co-learning mechanism in each
group. Whenever a group member gets in problems,
it can broadcast the problems to all remaining mem-
bers using the co-learning supporting system. When
the others of the group receives signals of requesting
suggestion, it would try to offer suggestion back to
the requesting one. The requesting one itself would

Figure 2: Co-learning activities in one group

examine and practice the guidance to solve its prob-
lems. If the receiver considers an opinion convincing,
it gives a COOP(COnvincing OPinion) point to the of-
ferer. Giving COOP points is similar to commending
and rewarding mechanism. If a person contributes a
good opinion, the person is rewarded with a COOP
point.

Interaction of COOP points is a mental encour-
agement. From actual experience, it is obvious that in
case a student has to cope with so many problems to
reach to a final good result, the student wants to ex-
press the problems to others with expectation of good
advice. When one is praised, appreciated, rewarded
because it has done something good, or helpful to oth-
ers, a big encouragement is brought back to the author.
This is a strong motivation that inclines students to try
more and be willing more to do their work.

Because motivation of students is increased, the
discussion between them is promoted. It brings effec-
tive co-learning.

To encourage students offering opinions among
them, we should consider COOP points of a student
as a part of its achievement.

3.4 Grouping method

Several grouping criteria are studied to improve the
learning among students[16]. We group student based
on its programming ability and its contribution to the
group.

Suppose the students have to practice program-
ming many times during a semester. After each co-
learning session, every student submits its source code
to the server. A teacher grades these source codes for
students. Each student will have:

1. A score of its source code, and

2. COOP points which are accumulated when it
practices programming.

The two features of every student, as shown in fig-
ure 3, are basic to specify type for a student. The ex-
ample in figure 4 adopts 4 types: type I for strong pro-
gramming ability and contribution, type II for strong
ability but poor contribution, type III for poor ability
but strong contribution, and type IV for poor ability
and contribution. The type of a student at a specific
time will be identified based on the average values of
COOPs points and scores over all its past practicing
sessions. We assume the types are ranked as I, II, III,
and IV in the descending order.

For several preliminary sessions, students are
grouped randomly. Let e be the number of the pre-
liminary sessions. After session i ends, the following

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 638 Issue 9, Volume 5, September 2008



Table 1: List of groups of students

Student Q E D H L F I C M B A G K O P
Type I IV III II I I I II II III III IV IV II III
Group No 3 2 4 1 3 4 5 1 1 4 5 2 3 2 5

 

COOPs 0 

Score 

. 

x 

y 
A(x,y) 

Figure 3: Two features of one student

 

COOPs 0 

Score 

 II 

IV 

 I 

 III 

Figure 4: 4 types of students

procedure is used to determine new student groups for
session (i + 1), where i > e.

1. Figure out the type of each student over all the
past practice sessions.

2. Evaluate whether a combination of students is
good or not. If the types of session i of all the
group members are greater or equivalent to the
types figured out in the previous step, the combi-
nation is regarded good. This good combination
of student types is counted up in the statistic ta-
ble.

3. Group students based on their types and the well
combinations from the statistic table.

Table 2: Statistics of effective combinations

Combination
of types

Good
times

Combination
of types

Good
times

I I I 0 II II II 6
III III III 1 IV IV IV 0
I I II 4 I I III 3
I I IV 4 II II I 1
II II III 5 II II IV 2
III III I 4 III III II 2
III III IV 1 IV IV I 2
IV IV II 5 IV IV III 3
I II III 2 I II IV 5
I III IV 4 II III IV 1
I I 0 I II 0
I III 0 I IV 1
II II 2 II III 1
II IV 0 III III 0
III IV 0 IV IV 0

The first 2 rows in table 1 shows an example
of the random list of the students with their current
types. Table 2 shows statistic data of well combina-
tions of students accumulated from the beginning ses-
sion. From the table 2, the combination of students
typed II, II and II is the most effective. Therefore,
students H, C and M will be in the same group in ses-
sion (i + 1). The next is the combination of students
typed II, II, III, the combination of student typed IV,
IV, II, and the combination of students typed I, II, IV
. It brings students E, G and Q to the same group, and
so on. The lowest row in table 1 shows the groups of
students for session (i + 1).

4 Co-learning environment with con-
vincing opinions, Col-E

The co-learning environment with convincing opin-
ions is a chat-based system[14] using client-server ar-
chitecture. The system aims at two main functions.
One is logging students COOP points and scores of

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 639 Issue 9, Volume 5, September 2008



 

Figure 5: Discussion areas with COOP buttons

exercises, analyzing them to recommend good stu-
dents combinations for next co-learning session. The
other is facilitating communications among opinion
sources of each group.

The server program undertakes the former func-
tion and provides some facilities for the teacher to
manage the class. The client program provides graph-
ical user interface (GUI) to support co-learning among
students.

4.1 Client

The procedure to use the client program is described
as:

1. Log in.

2. Get exercise requirements and work on them.

3. Submit the result source code to the server.

If a student logs in successfully, the co-learning
GUI occurs. Student full name, session number, and
time left for this session are displayed in the title of
this window. The window has two main areas: left
area for group discussion and right area for private dis-
cussion, i.e., discussion with a specific person in the

group as shown in figure 5. The exercise will be dis-
played in the tab Exercise of private discussion part.

When a message such as question, comment is
sent with the left area for group discussion, the mes-
sage is broadcasted to all of the group members. A
student presses the button ”COOP” to give a COOP
point to the group member who has offered the con-
vincing opinion. The button can be pressed at any
time.

In the right area for private discussion, there are 3
tabs windows. The names of the first and the second
tabs will be the names of other sutdents who are in
the same group. A student can choose a group mem-
ber to whom it wants to chat[15]. Button ”COOP” is
prepared to give COOP points to the chat partner.

Some students prefer group discussion, while oth-
ers private discussion. The wider the area for the pre-
ferred discussion, the better utility is brought to stu-
dents. The separator between the left area and the
right area allows ”Click and Drag” to broaden the ei-
ther area.

The button ”Submit” in Exercise Tab enables to
submit the source code to the server. The teacher will
grade these source codes to enroll the scores into the
database.

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 640 Issue 9, Volume 5, September 2008



 

Figure 6: GUI of the Col-E server

4.2 Server

The functions of the server are arranged into two
groups. One group is functions to manage an exer-
cise session. This includes selecting the way to group
students. Two ways to group students are provided
here. Auto grouping is the grouping method done by
the grouping algorithm described in section 3.4. Man-
ual group is used for teacher to assign the group num-
ber of each student to the database. The other group
consists of functions to manage student information
such as co-learning usernames, passwords, exercise
requirements, which are in the left side in figure 6. To
send message to all students of the class, the teacher
can utilize the textbox in the bottom part.

5 Experiment and results

5.1 Experiment condition

We applied our method into two actual classes of
the second grade students in Ritsumeikan univer-
sity. Each class has 37 students. They practices
database programming with an ODBC library and C
language. These students have learned C program-
ming and database systems in previous semesters. Be-
cause of the strictness of the syllabus of the university,
the experiment condition does not best match the eval-

uation of our method in the following reasons.
There are a teacher and 5 TAs for each class.

Each group consisting 3 students is assigned with an
exercise. Each group member takes in charge of a
small part of the exercise. After 7 weeks, every stu-
dent is required to submit the source code as well as
presentation on its part. During programming, the
students could use Col-E as a text communication
means. COOP points are not considered an impor-
tant achievement of the students, because their report
documents have been declared as dominant criteria for
the evaluation of their scores in the syllabus.

5.2 Results

Because students with problems can receive guidance
from the teacher and TAs at any time, the learning
condition described above is quite good for the stu-
dents. We could not evaluate the real effect of our
method due to the good learning condition. However,
we still have several achievements.

1. Communication among group members are real-
ized as following:

At the beginning of the practice, when students
discuss on who takes which part of the assign-
ment, communication is done almost face-to-
face. When students start to work on their own

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 641 Issue 9, Volume 5, September 2008



Relationship between co-learning 
communication and result

0

50

100

150

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

studen

as
k 

an
d

 a
n

sw
er

 

ask answer result

Figure 7: Relation of co-learning communication and result in Class 1

part, our system is a preferable means to ex-
change opinions with group members. This com-
munication can be classified as:

Co-learning communication These are ex-
changes of opinions on problems, messages
to ask friends ideas and guidance as well
as the agreements of discussions. Some of
them initiate a face-to-face discussion on
certain problems. Examples are:
• How can I execute psql?
• Did I decide ID and name properly?
• I have checked my source code but I

could not find any error. Can you come
and help me?

Non co-learning communication Some com-
munication messages are to ask or inform
the work progress. Some students use
Col-E to chat the things unrelated to the
work. Following are examples:
• What are you doing now? - I am creat-

ing product table.
• I like this website.

2. Relation of student programming ability (score
of the source code) and their co-learning com-
munication:

From the chat log of the students, we have an-
alyzed co-learning and non co-leaning commu-
nications. From co-learning communication, we
extract the asking, answering opinions. Figure
7 and 8 show the relevance of asking and an-
swering with scores of source codes. The re-

sults shows that the co-learning activities occur
at all sorts of student. Many students enjoy co-
learning. It means the Col-E has good possibili-
ties to improve capability and motivation of any
kind of students.

3. The client GUI is as familiar as other chat GUI.
Students have no difficulty to use it.

4. The system is implemented using Java. The in-
stallation is not complicated on Windows as well
as Linux platform.

6 Discussion

With the proposed method, both students and teacher
get more achievements from co-learning of students.
The essence of this environment is to help students
search by themselves for solutions, giving comments
with each other on its problems to avoid wasting time.
At the same time, it brings collaborations of students.
Therefore, this CoL-E is effective for courses de-
signed for students who start to learn programming
such as programming courses including programming
languages (C programming, Java programming) and
data structure and algorithms. The grouping function
aims at two main purposes. The first is to let students
take chances to learn from many other different stu-
dents so that one student can deepen its programming
skill. The second is to find out the combination rules
of students for effective co-learning if possible. At
the time the rules are found out, we can fix these good
combinations.

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 642 Issue 9, Volume 5, September 2008



Relation between co-learning communication and 
programming result

0

50

100

150

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

student

as
k 

an
d

 a
n

sw
er

 

ask aswer result

Figure 8: Relation of co-learning communication and result in Class 2

Depending on the the real purpose of the course,
we can adjust the number of each group and the fea-
tures of students. For example, for the courses which
are emphasize on coding, the features of students may
be ability of programming, experience of program-
ming and contribution.

The GUI of our system is another issue to be dis-
cussed. In case group members are working in one
place, the face-to-face discussion is the most effective
co-learning. However, the chat-based communication
contributes to recoding discussion contents during the
learning. When a student given guidance messages
from others reviews them later, the record would bring
deeper understanding to the student. In addition to
that, the chat-based GUI can support the collaborative
learning when students work on exercises in various
places such as they work on homeworks.

We have adopted the programming ability and the
COOP points as the criteria to make groups. There
may be other parameters to be consideres as the cri-
teria. We are planning to apply our method to many
actual classes. We may find other parameters through
the application.

7 Conclusion

We propose a collaborative learning environment to
enhance capability and motivation of novice program-
mers. To promote the co-learning, convincing opin-
ions are key elements. Moreover, combination of
opinion sources and communication means are deter-
mining factors of the CoL-E.

Since attitudes toward learning as well as giving
COOP points are much dependent on student charac-
teristics, the effectiveness of this method depends on

real programming conditions. To make this clear, our
method needs to be applied to actual programming ex-
ercise classes.

References:

[1] Anthony Robins at al., Learning and Teaching
Programming: A Review and Discussion, Com-
puter Science Education, Vol.13, No.2, pp.137-
172, 2003

[2] Sandy Garner, Patricia Haden, Anthony Robins,
My Program is Correct But It Doesn’t Run: A Pre-
liminary Investigation Of Novice Programmers’
Problems, Proceedings of the 7th Australasian
Conference on Computing Education (ACE’05).
pp.173-180, 2005

[3] Brian Hanks, Problems Encountered by Novice
Pair Programmers, ACM Journal on Educational
Resources in Computing, Vol.7, No.4, Article 2,
Jan., 2008

[4] Richard E. Mayer, Teaching and Learning Com-
puter Programming, Proceedings of Symposium
on Research on Teaching and Learning Computer
Programming, Washington D.C., 1987.

[5] Jun Soonjin, Kim Seungbum, Lee Wongyu, On-
line Pair-Programming for Learning Programming
of Novices, WSEAS Transactions on Advances in
Engineering Education, Issue 9, Volume 4, pp:187-
192, 2007,

[6] Raymund C. Sison, Masayuki Numao,
Masamichi Shimura, Multistrategy Discovery

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 643 Issue 9, Volume 5, September 2008



and Detection of Novice Programmer Errors,
Machine Learning, No.38, pp.157-180, Kluwer
Academic Publishers, 2000

[7] Laurie Ann Williams, THE COLLABORATIVE
SOFTWARE PROCESS, Department of Computer
Science, the University of Utah, 2000.

[8] Juan A. Marin-Garcia, Jaime Lloret, Improving
Teamwork with University Engineering Students.
The Effect of an Assessment Method to Prevent
Shirking, WSEAS Transactions on Advances in
Engineering Education, Issue 1, Volume 5, pp.1-
11, Jan., 2008,

[9] http://www.wcer.wisc.edu/archive/cl1/CL/default.asp

[10] Nira Hativa, Teaching for Effective Learning in
Higher Education, Kluwer Academic Pub, 2000.

[11] Lynda Thomas, Mark Ratcliffe, John Woodbury,
Emma Jarman, Learning Styles and Performance
in the Introductory Programming Sequence, Pro-
ceedings of SIGCSE 2002, pp.33-37, 2002.

[12] Andrew Scott, Mike Watkins and Duncan
McPhee, Step Back from Coding - An Online En-
vironment and Pedagogy for Novice Programmers,
Proceedings of the 11 Java in the Internet Curricu-
lum Conference, The Hihger Education Acadamy,
London Metropolitan University-UK, pp. 35-41,
2007

[13] Linda McIver, The Effect of Programming Lan-
guage on Error Rates of Novices, 12th Workshop
of the Psychology of Programming Interest Group,
pp.181-192, 2000

[14] Andew Davison, Killer Game Programming in
Java, Chapter 30, Network Chat, O’Reilly, 2005

[15] Thomas Huining Feng and Hans Vangheluwe,
Case Study:Consistency Problems in UML Model
of a Chat Room, Proceedings of International Con-
ference on the Unified Modelling Language, Work-
shop on Consistency Problems in UML-based
Software Development II, Oct. 2003

[16] Huikkola Miika, Silius Kirsi, and Pohjolainen
Seppo, Clustering and Achievement of Engineering
Students Based on Their Attitudes, Orientations,
Motivations and Intentions, WSEAS Transactions
on Advances in Engineering Education, Issue 5,
Volume 5, pp.342-354, 2008

WSEAS TRANSACTIONS on Advances in Engineering Education
DINH THI DONG PHUONG, 
HIROMITSU SHIMAKAWA

ISSN: 1790-1979 644 Issue 9, Volume 5, September 2008




