
coPAS and monoPAS: APIs to Communicate C++ and C# with

Octave for the implementation of Signal Processing

Applications

AMAIA MÉNDEZ, BEGOÑA GARCÍA, IBON RUIZ, IKER ALONSO
University of Deusto

Avda. Universidades, 24. 48009, Bilbao. SPAIN
amendez@eside.deusto.es, mbgarcia@eside.deusto.es, ibruiz@eside.deusto.es,

ialonso@tecnologico.deusto.es

Abstract: This is an approach to provide signal processing learners two gateways between the programming
languages C++ or C# and Octave mathematical software. They have been named coPAS and monoPAS, and
have been developed in free software by the PAS research group at the University of Deusto (Spain). These
gateways are developed with the shape of API, and have been made available to students doing degrees in
Electronics and Telecommunications Engineering, so as to assist them in their lab training in signal processing,
as well as for the drafting of their final projects. . They are very useful to research developments as well, not to
rewrite existing code. The aim is to enable students to rapidly develop applications of signal treatment by using
experience and simplicity in the design of graphic interfaces in the above-mentioned programming languages,
which are widely used in engineering. Finally, it is important to stress the free-software nature of the developed
gateways: as no license is necessary, student access to this program of scientific calculus is easier.
The interest of this APIs increases according to the student’s satisfaction. The PAS group has made several polls
obtaining an average of 8.3, this has promoted the idea of new bridges. Exactly, the next step is the combination
of Octave with other languages such as Python or with other platforms such Linux. The compatibility in a higher
level is the next research. Hence, this research Group is actually working into other approaches, focused on
biomedical applications.

Key-Words: - Engineering Education, API, C++, C#, Gateway, Octave.

1 Introduction
At present, students of both electronic and
telecommunications engineering have plentiful
knowledge of digital signal processing, as it is one of
the fundamental pillars of their training. During their
studies they learn how to understand and develop
mathematical algorithms[19] in order to characterize
voice behavior, image sequences and control systems.

The above is all implemented in Matlab [3],

software widely used by teaching staff, but whose
main drawback is its commercial nature. The
proposed alternative is Octave, developed by the free
software community, and whose syntax is compatible
with Matlab. The problem arising from the use of
Octave is that it does not allow the completion of
graphic interfaces, which enable students carrying out
their final-year projects to interact with what they
have previously developed and gives the impression
of a final application.

In this field, this paper proposed an API concept

will make it possible to communicate the

programming language C++ or C# (both widely used
in engineering field) with Octave. “coPAS” and
“monoPAS” are called, and their function is to enable
the use of Octave’s instructions (variables and
functions) through a C++ or C# program,
respectively.

These APIs have been developed by PAS Group at

the University of Deusto. They have created another
previous API, in JAVA.[1]. With this work is
possible carry out the scientific calculation in Octave,
solving the latter’s deficiencies in the development of
graphic interfaces. The necessity of re-implement the
Octave code in another program language more
versatile comes from the researches in esophageal
voices of this group [13][14]. Many developed
prototypes of some algorithms are very expensive if
they use Matlab, and hardly incomprehensible
without a graphic representation. Then, these APIs
create a stable Integrated Development Environment
(IDE) which enables the programming of graphic
interfaces.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 457 Issue 7, Volume 5, July 2008

The purpose was to design “coPAS” and
“monoPAS” as bridges between C++ or C# and
Octave for signal processing applications
development.

The main aims of these APIs can be subdivided in

two groups. In one hand, a technical objective is
proposed for the development of this project, making
a tool available that can enable the rapid development
of applications with a user interface that use signal
processing algorithms implemented with other tools
[8] (Octave). And in other hand, there is a more
educational purpose, which of enhancing the
student’s learning process stands out. Furthermore,
they will feel greater personal satisfaction by
obtaining applications more similar to those on offer
in the professional market.

Apart from these, there are others secondary

objectives of a different nature, such as:

1. To reduce the cost of licenses for

mathematical programs, through the use of
free software, such as Octave, which
specializes in digital signal processing.

2. To allow communication between C++ and
C# programming languages and Octave.

3. To provide these new APIs with the
necessary libraries, so as to present results in
a graphic form of simple programming.

4. To favor the creativity of students when
carrying out the projects and dissertations
necessary for their university degree.

5. To publish the project at Sourceforge.net, for
its use and assessment by the scientific
community.

Furthermore, this project has achieved greater
student community satisfaction. Outside of the
scientific context, the potential of these gateways [1]
has been demonstrated by measuring the results from
our students’ learning process, boosting their
creativity. Students can easily learn the
implementation of digital signal processing
applications with them. However, the intention is also
to make the gateways available to the scientific
community through the Sourceforge project.

This article is structured as follows. Section 2

summarizes the methodology to develop this
approach. Section 3 describes the proposed APIS
design, and finally, the obtained results and some
concluding remarks are presented in the last sections.

2 Methodology
The main technologies used in the development of
the proposed APIs are detailed below.

2.1 Octave
Octave [2][6] is a high-level language for numerical
calculation, whose syntax is compatible with Matlab,
but is developed by the free software community.

What makes Octave different from other

programming languages?

Octave is particularly oriented towards the

scientific world. Among its main differences from
other programming languages, the following stand
out:

1. Native matrix operation.
2. Native operation with complex numbers.
3. Language is interpreted.

These characteristics mean that scientific
algorithms can be developed in a far shorter time than
in other programming languages. Therefore, Octave
is the ideal language for the development of digital
signal processing algorithms, digital image
processing, control systems, statistics, etc.

Furthermore, there a great many toolboxes that

allow the user to avoid having to start from scratch
when wishing to deal with a particular subject matter.
For instance, if somebody wants to develop a digital
voice-processing algorithm and needs to filter the
signal by means of a Butterworth filter, he/she
needn't implement this function as it already exists in
the signal processing toolbox, which means that its
use is unnecessary in the algorithm. This kind of
toolbox, so highly specialised in scientific matters,
cannot usually be found in other programming
languages, which is yet another advantage for the
development of this type of application in Octave.

What are the Disadvantages of Octave?

Although Octave is an ideal language for the
development of scientific applications as they can be
carried out in a short time, it has some drawbacks,
one of which is linked to the speed of computation.
Being an interpreted programming language, Octave
is slower than a compilable language, due to the fact
that the latter generates native instructions for the
processor, which requires less time.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 458 Issue 7, Volume 5, July 2008

The second disadvantage is related to the graphic
environment. Applications with Octave are executed
on console with the single possibility of making
graphic data displays. Therefore, this makes it
impossible to develop user interfaces that enable the
user to interact with the application.

2.2 C++
C++ [10] is a programming language designed by
Bjarne Stroustrup in the mid 1980s as an extension to
the C programming language.
C++ is regarded by many as being the most

powerful language, due to the fact that it allows the
operator to work at both high and low levels.
However, at the same time, it is one that bears the
least number of automations (as with C, almost
everything has be done manually), which makes it
difficult to learn. The following are some of its main
characteristics:

− Programming is object oriented. The
possibility of orienting programming
towards objects enables the programmer
to design applications from a point of
view that is closer to real life.
Furthermore, it allows the code to be
reused in a more logical and productive
way.

− Portability: A code written in C++ can
be compiled without having to make
hardly any changes in almost all kinds of
computers and operative systems.

− Brevity: A code written in C++ is quite
short in comparison with other languages,
generally because the use of special
characters, rather than “key words”, is
preferred in this language.

− Modular programming. An application
body in C++ can be made of several
source code files that are compiled
separately and joined later. Moreover, this
characteristic means that a code in C++
can be joined to codes produced in other
programming languages such as
Ensamblador or even C itself.

− Speed: The code resulting from a
compilation in C++ is very efficient
thanks to its ability to perform as a high
or low level language and also to the
reduced size of language.

2.3 C#
C# (C Sharp) [11] is the new general-use language
designed by Microsoft for its .NET platform [16]. Its

syntax and structure are very similar to that of C++.
However, its straightforwardness and high degree of
productivity are comparable to that of Visual Basic.

The following are some this language’s

characteristics:

− Simplicity. C# eliminates many
elements that are included in other
languages yet are unnecessary in .NET.

− Modernity. C# incorporates elements
into its language that have proved to be
very useful for the development of
applications over the years, elements that
have to be simulated in other languages
such as Java o C++.

− Object-oriented. It is like all current
general-use programming languages.
One difference of this focus on objects,
as regards other languages like C++, is
that C# is purer in that neither global
functions nor variables are admitted. The
code and all the data have to be defined
within data-type definitions, which
reduces problems with name conflicts
and facilitates the reading of the code.

− Efficiency. In principle, the whole code
includes numerous restrictions in C#, so
as to ensure its security and does not
allow the use of pointers.

2.4 XML
XML [12] [15] is an extensible brand language
developed by the World Wide Web Consortium
(W3C). It is a simplification and adaptation of SGML
and enables the grammar of specific languages to be
defined.
One of the main features of XML is its design,

which allows spreading documents already produced.
The addition of new tags makes compatible the new
modified documents, no giving any trouble to use the
service. In that way, this is so easy due to the
structure and processing of XML documents. With a
hierarchical structure in which only exist a root tag
and where each tag have to be correctly referred with
its start and end tag.
Although it is being used mainly for internet

purposes, XML is proposed as standard for the
exchange of structured information between various
platforms.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 459 Issue 7, Volume 5, July 2008

2.5 Inter-Process Communication (IPC)
IPC [17] is based on several techniques for exchange
data among two or more processes. Each of these
processes usually is found in different threads.

The methodology of this type of communication

will be independently if they run in the same or
different computers:

1. Message Passing
2. Synchronization
3. Shared Memory
4. Remote Procedure Calls (RPC)

In this case, IPC is carried out thanks to the pipes.

During the API execution, a child process with
Octave is launched and the input/output data is
controlled by the main application. Exactly, it is
provided two pipes for the input stream, and other
two for the output stream. What is reached with this,
it is to redirect both streams to the main process: the
C++ or C# application.

To do all of this, The Microsoft Windows operating

system provides ways for making easier the
communications between applications. The Windows
Native API facilitates the creation of pipes and the
child process, at the same time to help the
redirections and the final closed of the process.[5]

3 Design of APIs
Throughout their degree studies, engineering students
(more specifically those specializing in electronics
and telecommunications) develop a great number of
algorithms for digital signal processing in
Octave/Matlab [9][18][20].

When it comes to carrying out a complex

application or final-year project, they come across the
need to reprogram part of these algorithms in a
compiled language such as C++, C# or Java.

So as to avoid this -and so that students can reuse

the codes of the algorithms developed in instead of
codifying them again-, and also to provide the
resulting software with an attractive interface, the
implementation of the “coPAS” and “monoPAS”
APIs was proposed.

As the scientific calculation is still carried out in

Octave, the APIs allow the exchange of variables
between both languages, as well as the execution of
Octave commands from C++ and C#. The work

methodology with “coPAS” and “monoPAS” would
be as it is showed previously (Figure 1).

1. Program Algorithm in

Octave

2. Reduce Algorithm to

Functions

3. Activate Communication

with Octave

4. Create Graphic Interface

5. Execute the Octave

Functions

6. Change the Octave

Variables to C++/C#

7. Carry Out Graphic Display

Figure 1. Design methodology flow chart
using “coPAS” & “monoPAS”.

When this has been carried out, the Parser execute

the Octave’s algorithms. Usually this is a
combination of several instructions just to execute,
and others instructions which their results have to be
saved. This is possible thanks to exchange the
variables between the bridge-languages. Once the
execution of the algorithm has been concluded, the
results are stored and the variables are turned back
into the language of C# (or C++).
Having reached this point, it will be the compiled

language that undertakes the graphic representation
of the result.

Finally, the Parser and the Octave’s thread are

removed, and consequently just the GUI is running
which shows the graphic result. Taking part in
another question, the structure of this APIs should be
to consider. In spite of the fact that “coPAS” and
“monoPAS” can implement numerous classes to
simulate the Octave variables such as Matrix or
Complex classes.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 460 Issue 7, Volume 5, July 2008

Start monoPAS

GUI

Run Octave’s algorithm

Show Plot

End Parser

End Parser

End Octave’s process

Remove Thread

Start Parser

monoPAS

Start Octave’s Process

ParserOctave

Start Thread

Run

loop (nºinstructions)

Run and save

results

loop (nºInstructions)

Figure 2. “MonoPAS” API organigram

However, the communication among the bridge-

languages in each case is just based in three main
classes:

− “ParserOctave” class. It is the main
API class; it manages the communication
with Octave. It is responsible for loading
the Octave thread and administering their
input and output through the control of
windows API functions. The streams are
redirected to input/output stream
descriptors which send the Octave
instructions (“execute” function) and get
the results in the appropriate variable
(“executeAndSave” function).

− “Copas” or “Monopas” classes. In each
of these classes the Parser, defined
previously, is started and closed. Also,
the Octave’s algorithm is programmed
with the according execution form,
saving the points of X and Y axis.

− GUI class. This class is based on a plot.

With a button, “Copas” or “Monopas”
class is now launched. But, the real issue
is to implement a correct library
(depending of the language C++ or C#),
the graphic is represented, using the X
and Y axis.

Plainly, the structure has been simplified in such a
way that the knowledge of these three classes is
enough for these APIs. This is one reason to reach the
education objective.

4 Results

The implementation of digital signal processing
applications using “coPAS” and “monoPAS” is
extremely straightforward. Below, it is explained a
signal as a demo of “coPAS”. Exactly, it is a 4th
order low-pass filter, band pass maximaly flat, at
sample-frequency of 20 kHz with 512 samples. And
the cut-off frequency (W) should be in the range of
0.0 and 1.0, considering that 1.0 is fs/2 being fs the
sampling rate. The user interface or Plot implemented
in C++ of this signal is showed in the Figure 3

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 461 Issue 7, Volume 5, July 2008

The first step is delimit the Octave instructions, or
sentences, for carrying out the calculate (list 1).

N=4;

W=0.5;

[B,A]=BUTTER(N,W);

[H,F]=freqz(B,A,512,20000);

modulodB=20*log10(abs(H));

List 1. “Octave” instructions for a filter.

This code is included in a C++ application with in a
function which obtains the number of points, the
value of the points in the X axis and in the Y axis.
Previously to this, the parser must be initiated. In an
easy way, the code for this signal is described in the
following figures (list2 and list 3).

//Function to Execute Octave’s instructions

void Copas::octaveAlgorithm(double** ejeX,double**

ejeY,int* puntos){

//Executes the Octave commands using one static variable

to the ParserOctave class (p)

Copas::p->execute("N=4;\n");

Copas::p->execute("W=0.5\n");

Copas::p->execute("[B,A]=BUTTER(N,W);\n");

Copas::p->execute("[H,F]=freqz(B,A,512,20000);\n");

Copas::p->execute("modulodB=20*log10(abs(H));\n");

//Write the values at the output variables for the X axis

Copas::p->executeAndSave("ejeX=F'\n", "ejeX");

while (ParserOctave::m == NULL);

double* auxX = (ParserOctave::m->getReal())[0];

*ejeX = new double[ParserOctave::puntos];

for(int i = 0; i<ParserOctave::puntos; i++)

 (*ejeX)[i] = auxX[i];

//Write the values at the output variables for the Y axis

Copas::p->executeAndSave("ejeY=modulodB'\n","ejeY");

while (ParserOctave::m == NULL) ;

double* auxY = (ParserOctave::m->getReal())[0];

*ejeY = new double[ParserOctave::puntos];

for(int i = 0; i<ParserOctave::puntos; i++)

 (*ejeY)[i] = auxY[i];

//Write the values at the output variables for the point’s

number

*puntos = ParserOctave::puntos;

}

List 3. C++ Code for execute the “Octave”
instructions

Figure 3. 4th order low-pass filter representation using “CoPAS”

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 462 Issue 7, Volume 5, July 2008

These codes represent the extraction of the data
necessary. However this code is activated, when is
pressed a button to launch the graphic or plot. This
button is included inside of the main menu of the
GUI. And after this process, the result will be as what
has been showed at the figure 3.

Now, briefly an example with “monoPAS” is pointed
out. In this case the instructions belong with a Discrete
Cosine Transform (DCT) of a vector, which is defined
in the following instructions (list 4)

X=[1 2 3];
Y=DCT(X);

List 4. “Octave” instructions for a DCT.

But, in the same way as the C++ example, these
instructions must be embedded inside of a C# code.
(list 5).

List 5. C# Code for execute the “Octave”
instructions

Figure 4. DCT of vector {1,2,3} representation using “CoPAS”

//Function to Execute Octave’s instructions

static public void octaveAlgorithm(ref double[] ejeX, ref

double[] ejeY) {

 //Executes the Octave commands using one static

variable to the ParserOctave class (p)

 p.execute("X=[1 2 3];\n");
 p.execute("Y=DCT(X);\n");

//Write the values at the output variables for the X axis

 p.executeAndSave("ejeX=X'\n","ejeX");

 while (ParserOctave.m == null);

 ejeX = (double[])(ParserOctave.m.getReal())[0].Clone();

//Write the values at the output variables for the Y axis

 p.executeAndSave("ejeY=Y'\n","ejeY");

 while (ParserOctave.m == null)

 ejeY = (double[])(ParserOctave.m.getReal())[0].Clone();

 }

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 463 Issue 7, Volume 5, July 2008

In comparison, the result is much more easy and
simple. The number of instructions apart from the
code has been reduced, and the representation is more
detailed thanks to the graphic library used in its
compilation (Figure 4). It has to be mentioned that for
the C++ compiler, the graphic library used is
wxWidgets, and for C# is nPlot, both of them free
software. The use of two different libraries is the
reason for the appearance changes in the plots or
representations.

As can be seen in this example, by using “coPAS”,
applications can be designed in a faster and a more
simple way. And in a even easier way can be
developed in “monoPAS”

Not only the technical results have been taken into

account, but also those obtained from the students’
learning process. In the table below, the results from
a satisfaction survey given to the students are shown.
Generally speaking, the results from a significant
sampling of 35 students have been outstanding.

QUESTION ASKED

(To a group of 35 students)

NOTE

(0-10)

Is the documentation on the gateway clear? 8

Do the gateways cover all the operations of
signal processing?

9,7

Degree of difficulty re time needed to
master gateways?

6,3

Degree of difficulty re time required to
develop digital signal processing systems in
C or .NET?

7,2

Does the gateway design allow one to go
deeply into the subject content?

8,2

Do you find the gateways more
motivating/easier to use than the traditional
method?

8,5

General satisfaction with coPAS &
monoPAS

8,3

Table 1. Satisfaction survey results

POLL RESULTS

0,00

20,00

40,00

60,00

80,00

100,00

120,00

1 2 3 4 5 6 7

ITEM

S
C

O
R

E
 (

%
)

ITEMS

Figure 5. Opinion poll results (%)

Each item has been evaluated between 1 and 10
points:

9-10: Strongly agree
7-8: Agree
5-6: Neutral
3-4: Disagree
1-2: Strongly Desagree

In figure 5, it can be seen that the item which

obtained the worst mark was number 3. This is
because of the fact that the students not only have to
control this tool, Octave code too. But the average
result is very satisfactory in general terms.

5 Conclusions
The gateways developed have made the work of both
the professor and student much easier, enabling them
to gain simple access from a C++ or C# environment
to the classic functions of a signal and system
simulation program in such an advanced context of
signal processing as Octave (Matlab). Moreover, it
encourages creativity on the part of the student when
carrying out new projects.

These gateways also facilitate the broadening of the

students’ profiles; they need to develop user
environments providing access to signal processing
functions. Telecommunications engineers usually
implement user environments in Java, whereas
Industrial engineers prefer C++ and computer
engineers C# or Java. Therefore, a pack of gateways
including all these possibilities is made available, one
that is straightforward and well documented with
examples.

A support software in C++ and another in are

currently being worked on. They include a series of
plugins with the most common digital processing
examples in the student’s learning process, such as
modulations [7], filters, audio and image effects, etc.
This involves developing something similar to what
was done with the joPAS gateway (from Java to
Octave). This enabled the implementation of the
easyPAS application, which includes both the
gateway and the group of sample plugins in a Java
user environment.

As future works, the combination of Octave with

other languages such as Python or with other
platforms such Linux will be the focus on the new
gateways to link Octave with other languages which
provides an efficient GUI.

As a final conclusion, it should be pointed out that

the result of these gateways has been very

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 464 Issue 7, Volume 5, July 2008

satisfactory not only for the developers but also the
users, since it provides a very powerful tool for the
swift development of voice (specially pathological
and oesophageal) and image processing applications,
along with the possibility of being applied both in
teaching and research contexts.

6 Acknowledgements
The authors of this paper would like to thank the
University of Deusto for the support it gives to this
kind of initiative through the concession of a
pedagogical innovation project in 2007. This is also
one of the e-vida group activities in “Tecnologico
Deusto” (TD) .
Thanks must also be given to Sourceforge for

allowing us to lodge the “coPAS” and “monoPAS”
APIs in their servers, thus enabling anybody wishing
to download them to do so from the internet.

References:

[1] Javier Vicente, Begoña García, Amaia Mendez,
Ibon Ruiz, Oscar Lage, "Teaching Signal
Processing Applications With joPAS: Java To
Octave Bridge'' in Proc. EUSIPCO 2006, Firenze,
Italy, 2006

[2] Kurt Hornik, Friedrich Leisch, Achim Zeileis,
"Ten Years of Octave Recent Developments and
Plans for the Future'' in Proc. DSC 2004, Vienna,
Austria, 2004.

[3] B.L. Sturm, J.D. Gibson, “Signals and Systems
using Matlab: an integrated suite of applications
for exploring and teaching media signal
processing”, in Proceedings 35th Annual

Conference Frontiers in Education, FIE '05.2005
[4] R.J. Castaldo, M.A. McKay and V. Tosic

“Exposing GNU Octave Signal Processing
Functions As Extensible Markup Language
(XML) Web Services”. In Proc. Electrical and

Computer Engineering, 2006. CCECE. pp. 1442 –
1445

[5] Nebbett, G. “Windows NT/2000 Native API
Reference” New Riders Publishing, 2000

[6] D. Eddelbuettel “Econometrics with Octave”.
Journal of Applied Econometrics, Vol. 15, No. 5,
(Sep. - Oct., 2000), pp. 531-542

[7] Ph. Dondon, J.M Micouleau, P. Kadionik.
“Improving learning efficiency for digital
modulations courses”. WSEAS Transactions on

Advances In Engineering Education. Issue 4,
Volume 2, October 2005.

[8] Afif Mghawish, Marek Woda, Piotr Michalec. ”
Guidelines for Teaching Material Composition in
Computer Aided Learning”. WSEAS Transactions

on Advances In Engineering Education. Issue 4,
Volume 3, April 2006

[9] Mihaela Popescu, Alexandru Bitoleanu, Mircea
Dobriceanu. “Matlab GUI Application in
Energetic Performances Analysis of Induction
Motor Driving Systems”. WSEAS Transactions on

Advances In Engineering Education. Issue 5,
Volume 3, May 2006.

[10] B. Stroustrup, “The C++ Programming
Language” Addison Wesley, Special Edition,
2002.

[11] K. Watson. “Beginning C#”. Wrox. 2001 Press.
[12] Harold, Elliotte Rusty (2002). XML in a

Nutshell: A Desktop Quick Reference. O'Reilly.
[13] B. García, J. Vicente, I. Ruiz, A. Alonso and E.

Loyo, “Esophageal Voices: Glottal Flow
Regeneration”, in Proc. ICASSP 2005.
Philadelphia, USA, March 2005.

[14] B. García, I. Ruiz, A. Mendez, J. Vicente and M.
Mendezona, “Automated characterization of
esophageal and severely injured voices by means
of acoustic parameters”. In Proc. 15th European

Signal Processing Conference, EUSIPCO.
Poznan, Poland, September 2007

[15] D. Esposito. “Applied XML programming for
Microsoft.NET” Redmond, Microsoft, 2003

[16] B. Powell and R. Weeks. “C# and the .NET
framework: the C++ perspective” Indianapolis,
Indiana: Sams, 2002.

[17] Silberschatz, A., Galvin, P., Gagne, G.
“Fundamentos de Sistemas Operativos”, Pearson-
Addison Wesley, 7th Edition. 2006

[18] Huang, G.M.; Zhang, H. “A new education
MatLAB software for teaching power flow
analysisthat involves the slack bus concept and
loss allocation issues” . Power Engineering

Society Winter Meeting, 2000. IEEE Volume 2,
Issue , 2000 Page(s):1150 - 1155 vol.2

[19] McInerny, S.A.; Stern, H.P.; Haskew, T.A.
"Applications of dynamic data analysis: a
multidisciplinarylaboratory course". Education,

IEEE Transactions on Volume 42, Issue 4, Nov
1999 Page(s):276 – 280

[20] J.L. Sánchez. "Octave y Matlab . Herramientas
Informáticas para la Investigación”, Volume II.
121-166,2003 ed.: Servicio de Publicaciones.
Universidad de La Laguna

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 465 Issue 7, Volume 5, July 2008

Amaia Méndez Zorrilla
was born in Barakaldo
(Spain). She received the
MSc in Communications
engineering from the
University of Deusto, Spain,
in 2001. From 2003, she has

been with the Computer Architecture,
Electronic, Automation and Communication
Department at the University of Deusto as
assistant professor. She becomes part of the
researching group Advanced Signal Processing
(PAS) in UD in 2005. Her main research
interest is biomedical signal processing.

Begoña García Zapirain
was born in San Sebastian
(Spain) in 1970. She
graduated in Communications
Engineering speciality in
Telematics for the Basque
Country University in 1994.
In 2003 defended her doctoral

thesis in pathological speech digital processing
field. After many years working in ZIV
Company, in 1997 she incorporates to
University of Deusto faculty as teacher in signal
theory and electronics area. She is leading since
2002 the Telecommunication Department of

University of Deusto. In 2001, creates with
Javier Vicente Sáez the researching group
Advanced Signal Processing (PAS) in the same
university, playing the role of main researcher.
Member of IEEE and EURASIP.

Ibon Ruiz Oleagordia was
born in Bilbao (Spain) in
1975. He graduated in
Physical Science at the
Basque Country University in
1999 and got the degree of
Electronic Engineering at the
same university in 2001. He

has his doctoral thesis registered. Since 2000
works as teacher and is part of the Computer
Architecture, Electronic, Automation and
Communication department at the University of
Deusto. In 2002, he became part of the
researching group Advanced Signal Processing
(PAS) in Deusto University.

Iker Alonso Ortiz de Zarate
was born in Barakaldo
(Spain) in 1985. He received
the MSc in Informatics from
the University of Deusto, in
2008. His interests are 2D and
3D image processing.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Amaia Mendez, Begona Garcia,
 Ibon Ruiz and Iker Alonso

ISSN: 1790-1979 466 Issue 7, Volume 5, July 2008

