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Abstract: - University Timetabling problem (UTT) has a computational complexity that grows exponentially 
as the size of the problem augments; therefore random algorithms become the best alternative to solve it, and 
among them, Simulated Annealing (SA) is one of the most efficient.  However, SA obtains very good 
solutions, only if its parameters are well tuned. SA requires an initial solution for solving UTT. Besides, 
analytical tuning strategies for SA in UTT have not been explored. In this paper a SA Markov tuning strategy 
and a heuristic to generate feasible solutions are proposed. This strategy improves SA performance for UTT 
as is shown with experimental instances taken from PATAT benchmark.  
. 
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1 Introduction 
This paper deals with an Educational Timetabling 
problem proposed in PATAT [1], and named 
University Timetabling (UTT) which has a 
computational complexity that grows 
exponentially as the size of the problem is 
increased. Commonly UTT is realized as the 
scheduling of courses and teachers, within a 
given number of rooms (classrooms) and time 
periods; however as is described in section 2 
other events different than courses (v.gr. 
conferences) can be considered.   
 A common approach to solve UTT is first to find 
a feasible initial solution using some procedure 
specially developed for that purpose; then a 
metaheuristic [2]-[7] is commonly applied to 
improve this initial solution. Simulated Annealing 
(SA) is among these metaheuristics and one of 
the most used algorithms for UTT [6], [8], [9]. 
   SA obtains very good solutions (close to the 
optimal or even the global optimum) [5] whether 
it is well tuned and an adequate neighborhood is 
used. 
   In this paper a new SA algorithm for UTT using 
a Markov tuning strategy is proposed; this new 
algorithm is named “Tuned Simulated 
Annealing” (TSA). In addition, two 
neighborhoods are tested on TSA. Besides, 

experimentation using instances taken from PATAT 
benchmark [1] shows TSA is more efficient for 
UTT than the classical SA. 
     The paper is organized as follows. Section 2 
includes the PATAT problem description and its 
mathematical model. In section three, the instances 
to test the algorithms are presented. Section 4 
presents TSA variations and experimentally tuned. 
Section 5 describes the analytical tuning parameters 
strategy. Finally, Sections 6 and 7 include the results 
and the conclusions respectively.  
 
 
2 Problem Description 
For UTT, as for any other NP problem, it is not 
efficient to apply deterministic methods due to their 
exponential complexity [8]; therefore it is useful to 
develop random methods to find the best feasible 
solution. Basically, UTT consists of: 

i) a set E of events to be scheduled in 45 
periods of time (5 days of 9 intervals 
every one), 

ii) a set R of rooms that hold the events, 
iii) a set U of students that attend the 

events, and 
iv) a set F of features that should satisfy 

every room because of the exigencies of 
events to be held there. Each student 
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attends specific events and each room 
has a capacity measured in number of 
students. 

     A feasible timetable is one in which all events 
have been assigned a timeslot and a room, and all 
of the following hard constraints (hc ) must be 
completely fulfilled: 

1hc : No student attends more than one event at 
the same time. 

2hc : The room chosen for an event is big enough 
to house all the attending students and it satisfies 
all the technical features required by the event.  

3hc : Only one event is hold in each room at any 
specific timeslot. 
In addition, there are other constraints, named 
soft constraints (sc), which are desirable not be 
violated. The soft constraints of PATAT are the 
following: 

1sc : Any student should not have a class in the 
last slot of the day. 

2sc : Any student should not have more than two 
classes consecutively.  

3sc : Any student should not have a single class 
on any day.  
     The PATAT’s criteria to determine the winner 
of the contest is based on the next formula [1]:  
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     where i is the number of the instance (1≤ i 
≤20), x is the number of soft constraints violated 
for the contestant; b and w are, respectively, the 
number of soft constraints violated by the best 
and the worst participant on this instance during 
the same contest.  
The next variables are defined in PATAT for 
UTT: 
• n Events: E = {e1, e2, ... , en} 
• m Students: U = {u1, u2, ... , um} 
• 45 Periods: P = {p1, p2, ... , p45} 
• r Rooms: A = {a1, a2, ... , ar} 
• r Room sizes: C = {c1, c2, ... , cr} 
• t Features: F = {f1, f2, ... , ft} 
 
Besides three binary matrixes are defined as 
follows: 
• Matrix student/event: Dnxm 
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where dil = 1 if the student l attends the event i, and 
0 otherwise.  
• Matrix room/feature: Stxr 
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where sjf = 1 if the room j satisfies the feature f, and 
0 otherwise.  
• Matrix event/feature: Qtxn 
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where qif = 1 if the event i requires the feature f, and 
0 otherwise.  
Let be xijk  = 1 if  the event i, is assigned to the room 
j in the period k, and 0 otherwise. 
Therefore, the problem can be formulated as 
follows: 
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Next the explanation and mathematical model of 
every constraint is presented: 
 
Hard Constraints (hc): 

1hc  (No student attends more than one event at 
the same time): This constraint establishes that in 
any period k, at most one event i ∈ Qe can be 
programmed. Qe is a set defined for every event. Qe 
contains its event e plus every event that have 
conflicts with e. Therefore this constraint is written 
as: 

∑
∈

===≤
eQi

ijk nekrjx ,...,145,...,1,...,11
 (2) 

where i, j and k represent the number of events, 
rooms and periods respectively. 

2hc (The room is big enough for all the attending 
students and satisfies all the features required by 
the event): This constraint is described by these two 
other constraints:  
• A) The room is big enough for all the attending 

students, and 
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• B) The room satisfies all the features required 
by the event.  

The constraint A can be also stated as follows: 
For every room j where the event i is 
programmed, the capacity cj of the room j should 
be higher or equal to the number of students that 
attend the event i. That is equivalent to the next 
relation among the number bi of participants of 
the event i: 

nidb
m

l
lii ,...,1

1
== ∑

=             (3) 
where the student l attends the event i, dli worths 
1 if the student l attends the event i. 
The constraint A can be written as follows: 

45,...,1,...,1,...,1,,1 ===≤=∀ krjnicbx jiijk (4) 
The constraint B can be stated as follows: For 
each k period, the room j must satisfy all the 
features required by every event i programmed in 
this room. This constraint can be established as 
follows: 

45,...,1,...,1,...1,1 ===≤∀⇒= krjnisqfx jfifijk

                (5) 
where qif  represents the feature f associated to the 
event i, and sjf   represents the feature f satisfied by 
the room j. 

3hc : (Only one event is hold in each room at 
any timeslot). This constraint is established for 
every period k. For any period k and any room j 
at most one event must be held. This constraint 
can be written as follows:  
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             (6) 
Besides, there is another very important hard 
constraint implicit in the problem’s definition: 
“All the events must be programmed in some 
periods”. Therefore, for all the 45 periods, every 
event i must be programmed exactly once. 
Therefore this constraint can be written as 
follows:   
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Soft constraints 
The soft constraints are the following: 
1. Any student should not have a class in the 

last slot of the day 
Let be a set V that contains the last periods of the 
days: V = {k | k mod NUMPER = 0}. Where k = 
1, 2, ... , 45 and NUMPER = Number of periods 

for day (9, in this case). This constraint can be 
realized in this way: “some event i should not be 
programmed in any room j, in any period k ∈ V”. 
Therefore, this constraint can be written as: 
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2. Any student should not have more than two 

classes consecutively 
That means that any student l should not have 3 or 
more events programmed in a row. Let be Sl the set 
of events of the student l so this constraint is written 
as: 
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3. Any student should not have a single class on 

any day.  
This constraint establishes that all the students 
should have programmed zero or more that one 
event per day; that means: 
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3 Problem’s Instances 
In [1], a generator to produce instances from 
different seeds is used. All the instances generated 
have at least one perfect solution, which means, zero 
violated constraints (hard and soft). In table 1, the 
features of PATAT’s instances are presented, and 
table 2 contains the criteria to classify them. 
   In PATAT, small cases are called S1, S2, S3, S4 
and S5, while medium instances are called M1, M2, 
M3, M4 and M5, and finally, large instances are 
called L1 and L2. Besides, in PATAT some UTT 
instances are commonly named Competitionx or Cx, 
where x is the number of the UTT instance (e.g., 
Competition01 is C01, and so on). 
 
 
4 Algorithm Description 
Simulated Annealing (SA) is one of the 
metaheuristics used with more success to solve 
UTT. SA allows some "wrongs" movements in 
order to escape of local optimum with the goal of 
reach the global optimum whether its parameters are 
well tuned. 
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Table 1 PATAT´s Benchmark 

Instance Events Rooms Features Students 
C01 400 10 10 200 
C02 400 10 10 200 
C03 400 10 10 200 
C04 400 10 5 300 
C05 350 10 10 300 
C06 350 10 5 300 
C07 350 10 5 350 
C08 400 10 5 250 
C09 440 11 6 220 
C10 400 10 5 200 
C11 400 10 6 220 
C12 400 10 5 200 
C13 400 10 6 250 
C14 350 10 5 350 
C15 350 10 10 300 
C16 440 11 6 220 
C17 350 10 10 300 
C18 400 10 10 200 
C19 400 10 5 300 
C20 350 10 5 300 

 
Table 2 Socha’s classification 

Instance Events Rooms Features Students 
small 100 5 5 80 
medium 400 10 5 200 
Large 400 10 10 400 
 
 
   The most common cooling scheme of SA and 
used in this paper is a geometric scheme: 
T(k+1)=αT(k), where k is the temperature 
number and 0<α<1. The algorithm's parameters 
are: the initial temperature T0, the final 
temperature TF , the parameter alpha α and the 
length of Markov chain L. Besides, in SA a 
feasible initial solution S0 is required; to find this 
initial solution for the PATAT's benchmark, two 
different methods are commonly used: 
• The first method uses a heuristic that 

provides a feasible solution and then the 
classical SA improves it. The heuristic that 
finds this initial solution uses the concept of 
"more constrained event" [8]. 

• The second method uses SA itself to find the 
initial feasible solution. In the past this 
strategy was not successful to find feasible 
initial solutions but [5], now it is more 
efficient. This method disables the infeasible 
movements in such a way that, they do not 
introduce any new hard violation. 

The algorithm is the following: Firstly, all the 
events are initialized to the first hour in the first 
room. Then, a random event is chosen. Its 

feasible neighborhood is calculated and a random 
feasible neighbor is selected. In most of the cases, 
the procedure reaches a feasible solution and when it 
is achieved, the algorithm continues improving its 
objective function until the system is frozen. The 
next implementations of SA were developed in this 
work: 
 

Pseudocode of the implementation SA01 

Begin 
x = initial_solution();  
BestCost = costIni = f(x); 
T = 470 * num_students + num_events; 
L_MAX = 10000; 
END_TEMP = 0.01; 
While (T > END_TEMP) 
   Iter=0; 
   While (Iter < L_MAX)  
      Do 
         timeslot_1 = rand() MOD 45; 
         timeslot_2 = rand() MOD 45; 
         room_1 = rand() MOD num_rooms; 
         room_2 = rand() MOD num_rooms; 
         if the interchange of the event  
         placed in timeslot_1 and room_1  
         with the event placed in  
         timeslot_2 and room_2 is feasible 
         then  
             ban = true 
         else 
             ban = false; 
         endif 
      While ( ban == false) 
      costNew = f(x_new); 
      costDif = costNew – costIni;  
      r = rand() 
      if (costNew <= 0) then 
         costIni = costNew;  
         x = x_new; 
      else  
         r = rand() 
         if (r < exp(-costDif/T)) then 
            costIni = costNew; 
            x= x_new; 
         End_if 
      End_if 
      if (BestCost > costoIni) then 
         x* = xl;  
         BestCost = costoIni; 
      End_if 
      iter = iter + 1 
   End_While 
   T = T * ALPHA 
End_While 
End 
 
 
4.1 First Neighborhood  
A neighborhood called first neighborhood or SA01) 
was established with the next parameters: 
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• Markov chain length: 10000 (as in[8]). 
• Cooling scheme: Geometric defined as Tn 

= αTn-1. Experimentation was done with 
different alpha values: 0.70, 0.75, 0.85, 
0.90 and 0.95 

• Initial temperature ci=470m + n, where 
m=number of students; n=number of 
events. 

   This SA implementation starts from a feasible 
solution obtained for the first strategy previously 
described in [8]. 
   This first neighborhood is used to generate new 
solutions with a procedure as follows. 

• First, two random periods are selected 
and after that, 

• Two random classrooms are chosen. If an 
interchange of events is feasible, this 
interchange is accepted. Otherwise, two 
news random periods and two new 
random rooms are selected, and this 
process goes on. 

 
 
4.2 Second Neighborhood  
A second neighborhood (SA02) was also defined; 
is similar to SA01 except by the form of the 
procedure used to generate new solutions: 

• Firstly, a random event is chosen; 
• Secondly, if this event is feasible several 

interchanges are calculated (over the 
period and/or over the room or even over 
other event) taking care that any hard 
constraint is not violated. 

• Finally, a random change is chosen. 
 
This new way to calculate the neighborhood 
allows to obtains better solutions that the 
previous one. 
 
 
4.3 SA without feasible initial solution 
SA without feasible initial solution was label 
SA03. Initially, any feasible solution is given to 
the algorithm, all the events are set in the timeslot 
1 and the room is set to 1. Using this solution, the 
algorithm starts working until it reaches a feasible 
solution. The percentage of not feasible solutions 
obtained with this approach is less to 2%. The 
neighborhood using by this implementation is the 
same as the Second Neighborhood.  
 

Pseudocode of the implementation SA02 

Begin 
x = initial_solution();  
BestCost = costIni = f(x); 
T = 470 * num_students + num_events; 
L_MAX = 10000; 
END_TEMP = 0.01; 
While (T > END_TEMP) 
   Iter=0; 
   While (Iter < L_MAX) 
      ban = false;  
      Do 
         e1 = rand() MOD num_events; 
         num = neighborhood(e1); 
   if num != 0 then 
       move = rand() MOD num; 
       ban = true; 
       do the the random move of  
            the event 
   endif 
      While ( ban == false) 
      costNew = f(x_new); 
      costDif = costNew – costIni;  
      r = rand() 
      if (costNew <= 0) then 
         costIni = costNew;  
         x = x_new; 
      else  
         r = rand() 
         if (r < exp(-costDif/T)) then 
            costIni = costNew; 
            x = x_new; 
         End_if 
      End_if 
      if (BestCost > costoIni) then 
         x* = xl;  
         BestCost = costoIni; 
      End_if 
      iter = iter + 1 
   End_While 
   T = T * ALPHA 
End_While 
End 
 
 
5 Analytically tuned parameters of 

Simulated Annealing  
The scheme of tuned parameters published in [10] 
was used. This scheme was used successfully in 
other problems [11] [12]. In this scheme, the initial 
temperature T0 is obtained as a function of the 
maximum possible deterioration of the objective 
function that can be accepted in a current solution. 
In other hand, the final temperature Tf  is obtained as 
a function of the minimum possible deterioration of 
the objective function. 
   The maximum possible deterioration, with the 
proposed neighborhood is: K*(maximum number of 
students per event). Where is easy to note that in this 
case K is equals to eight  
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     T0 and Tf are calculated with the next 
formulas: 

( ))(ln max
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Pseudocode of the implementation SA04 

Begin 
x = initial_solution();  
BestCost = costIni = f(x) 
T_analytical = DZmax / log 
(Pacceptation) 
β = exp((log(Lmax)-log(L1))/n);  
END_TEMP = 0.01;  
L=L1; 
While (T > END_TEMP) 
   Iter=0; 
   While (Iter < L)  
      Do 
         timeslot_1 = rand() MOD 45; 
         timeslot_2 = rand() MOD 45; 
         room_1 = rand() MOD num_rooms; 
         room_2 = rand() MOD num_rooms; 
         if the interchange of the event  
         placed in timeslot_1 and room_1  
         with the event placed in  
         timeslot_2 and room_2 is  
         feasible then  
             ban = true 
         else 
             ban = false; 
         endif 
      While ( ban == false) 
      costNew = f(x_new); 
      costDif = costNew – costIni;  
      r = rand() 
      if (costNew <= 0) then 
         costIni = costNew;  
         x = x_new; 
      else  
         r = rand() 
         if (r < exp(-costDif/T)) then 
            costIni = costNew; 
            x= x_new; 
         End_if 
      End_if 
      if (BestCost > costoIni) then 
         x* = xl;  
         BestCost = costoIni; 
      End_if 
      iter = iter + 1 
      End_if 
   End_While 
   T = T * ALPHA 
   L = β * L  
End_While 
End 
 
 

      

Pseudocode of the implementation SA05 

Begin 
x = initial_solution();  
BestCost = costIni = f(x) 
T_analytical = DZmax / log (Pacceptation) 
β = exp((log(Lmax)-log(L1))/n);  
END_TEMP = 0.01;  
L=L1; 
While (T > END_TEMP) 
   Iter=0; 
   While (Iter < L)  
      ban = false;  
      Do 
         e1 = rand() MOD num_events; 
         num = neighborhood(e1); 
   if num != 0 then 
       move = rand() MOD num; 
       ban = true; 
       do the the random move of  
            the event 
   endif 
      While ( ban == false) 
      costNew = f(x_new); 
      costDif = costNew – costIni;  
      r = rand() 
      if (costNew <= 0) then 
         costIni = costNew;  
         x = x_new; 
      else  
         r = rand() 
         if (r < exp(-costDif/T)) then 
            costIni = costNew; 
            x= x_new; 
         End_if 
      End_if 
      if (BestCost > costoIni) then 
         x* = xl;  
         BestCost = costoIni; 
      End_if 
      iter = iter + 1 
      End_if 
   End_While 
   T = T * ALPHA 
   L = β * L  
End_While 
End 
 
The Markov chains length L of the metropolis loop 
(the inner one) are also tuned dynamically. In [10], 
is presented how to determine the length Li for any 
iteration i. In this method, Li is determined 
establishing the relationship between the cooling 
function and the Markov chain length. In the first 
Metropolis cycle the L-parameter is 1 and it is 
increased according to a β-parameter, until, in the 
last Metropolis cycle of Metropolis, the maximum L 
value or  Lmax ,:is reached; Lmax follows the Markov 
model (13) 
 

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 277 Issue 5, Volume 5, May 2008



Lmax = βn L1 (13) 
     Where  

αln
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  With this analytical method, Tf will be 0; 
however the stochastic equilibrium is verified 
here since 0.01. Lmax takes the same value for all 
implementations (10000 iterations). 
Implementations with these tuned parameters are 
next described: The implementation of the 
analytical tuned parameters of SA first 
neighborhood (SA01) was labeled SA04. 
The implementation of the analytical tuned 
parameters of SA second neighborhood (SA02) 
was called SA05 
     Usually, using the analytical tuned approach is 
possible to obtain a SA algorithm which has a 
similar quality of the experimental tuned version 
of the same algorithm, but the former may save 
until fifty percent of computational time [11], 
[12]. The next paragraphs presents an efficiency 
analysis of the algorithm analytically tuned is 
presented: 
Theorem 1: 
The number of iterations of the cycle of 
Metropolis of Tuned Simulated Annealing 
(ITSA) is smaller than the number of iterations of 
the Simulated Annealing (ISA), when the number 
of cycles of Metropolis is greater or equal to two: 

2, ≥< nISAITSA  (16) 
using: 
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     Where n is the number of cycles of 
Metropolis, Lmax is the number of iterations of the 
last cycle of Metropolis, and L1 is the number of 
iterations of the first cycle of Metropolis. 
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When n = 1: MAXLL <1 , therefore ITSA < ISA where 
n = 1 
When n = 2 
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and ITSA < ISA where n = 2. In general, it is trivial 
to demonstrate that: 
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where ni <≤0 , then:  
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And, adding MAXL   to both members of the inequality 
(in the iteration number n), it is obtained: 
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Thus ITSA < ISA 
 
     Although an interesting saving of time was 
obtained with the analytical tuned parameters of SA, 
the quality of its solutions is lightly smaller to those 
obtained without formulae (11) to (15). The 
explanation is the following. The experimental 
method has obtained a very big T0 value, which was 
bigger than the T0 value obtained with the analytical 
method (formulas 11-15); in fact the latter was 
relatively too small. The later result was obtained 
because both the acceptance probability and the 
exploratory capacity of the experimental 
implementation were very high. To solve this 
problem, some actions can be taken:  
a) The initial temperature T0  is set equal to that 
obtained with the experimental method, and its 
Markov chain length is set equal to 1 (L1=1), as is 
established by the analytical method.  
b) After each cycle of Metropolis, the temperature is 
decreased according to the geometrical cooling 
scheme, and the Markov chain length is increased 
by one, until is reach the T0 value obtained with the 
analytical method.  
c) Starting from the T0 value obtained by the 
analytical method, the length Markov chain is 
increased according to the β parameter, until it 
reaches Lmax and then, it stays constant until arriving 
to Tf.  
This implementation is called, SATUNED and the 
pseudocode is the following one: 
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Pseudocode of the implementation SATUNED 

Begin 
x = initial_solution();  
BestCost = costIni = f(x) 
T = 470 * num_students + num_events; 
T_analytical = DZmax / log 
(Pacceptation) 
β = exp((log(Lmax)-log(L1))/n);  
END_TEMP = 0.01;  
L=L1; 
While (T > END_TEMP) 
   Iter=0; 
   While (Iter < L) 
            ban = false;  
      Do 
         e1 = rand() MOD num_events; 
         num = neighborhood(e1); 
   if num != 0 

      then 
       move = rand() MOD num; 
       ban = true; 
       do the the random move of  
            the event 
   endif 
      While ( ban == false) 
      costNew = f(x_new); 
      costDif = costNew – costIni;  
      r = rand() 
      if (costNew <= 0) 

  then 
         costIni = costNew;  
         x = x_new; 
         else  
         r = rand() 
         if (r < exp(-costDif/T)) 

then 
             costIni = costNew; 
             x= x_new; 
         End_if 
       End_if 
      if (BestCost > costoIni) 

  then 
         x* = xl;  
         BestCost = costoIni; 
      End_if 
      iter = iter + 1 
      End_if 
   End_While 
   T = T * ALPHA 
   if(T<T_analytical) 
      then 
      L = L + 1 
   else  
      if(L<Lmax) 
         then 
         L = β * L  
      Endif 
   endif 
End_While 
End 
 
 

6 Results  
In table 3 to 4, and figures 1 to 4 are presented the 
results of quality and execution time of the different 
implementations of SA proposed in this paper. 
   Graphical results for alpha 0.90 and 0.95 used in 
the geometrical cooling scheme are shown. In most 
of the cases, the best results were obtained by a SA 
using the second neighborhood and SA without 
feasible initial solution or SATUNED (SA02, SA03 
and SA06, respectively). 
   Figure 4 shows the execution time of the 
implementations with alpha equals to 0.95; as can be 
noticed, the faster implementation is SA05, but, its 
quality is not the best one. 
   Regarding the execution time, the best result was 
obtained with implementations SA02, SA03 and 
SA06. For simplicity, only some alpha values in this 
table and figures are presented. 
   The results are shown in two categories: quality 
and time. The quality solution is measured 
considering the number of soft constraints violated. 
   The execution time unit used is seconds and every 
instance was executed ten times for every alpha 
value: 
   
 
 

Table 3 Quality results with alpha = 0.70 
Instance SA01 SA02 SA03 SA05 SA06 

s1 1 3.7 2.1 3.5 2.4 
s2 22 5.7 2.8 6.4 4.1 
s3 1 6.2 3.2 6.3 4.1 
s4 1 5.4 2.6 6.7 4.6 
s5 80 2.3 0.5 0.8 1.1 

M1 150 112.3 114.3 112.8 114.8 
M2 170 111.5 113.1 109.2 113.4 
M3 199 154.5 153.8 155.5 151.8 
M4 122 102.4 105.9 104.8 102.5 
M5 123 72.2 74.2 86.1 85.7 
H1 * * 550.5 ∗ * 
H2 * * 482.4 * * 

 

                                                 
∗ It was not possible to obtain enough feasible solutions to 
make an average. 
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Table 4 Quality results with alpha = 0.80 

Instance SA01 SA02 SA03 SA04 SA05 SA06 
s1  0.9 2.6  3.6 1.5 
s2  2.4 2  3.2 3.1 
s3  2.4 2.2  3.8 2 
s4  2.6 3.4  4.5 4.1 
s5  0.9 1.1  2 0.3 
M1  99 104.1  99.1 104.7 
M2  109.8 104.3  99.6 95.1 
M3  137.1 141.4  137.7 140 
M4  95.7 93.9  91.2 90.1 
M5  61 71.5  77.7 68.9 
H1  * 478.1  * * 
H2  * 434.7  * * 

 
Table 5 Quality results with alpha = 0.90 

Instance SA01 SA02 SA03 SA04 SA05 SA06 
s1 1 1.1 1.4  1.4 0.8 
s2 10 1.5 1.4  1.7 1.5 
s3 1 2.1 1.1  3.6 2.4 
s4 1 2.8 1.6  3.2 2.7 
s5 82 0.3 0.2  1.5 0.5 
M1 126 93.9 85.5  92.6 87.1 
M2 161 80 84  81.1 79.7 
M3 149 118.1 117.9  120.2 118.4 
M4 105 74.4 74.8  73 75 
M5 72 47.5 48.1  52.3 49.2 
H1 753 * 425.4  ∗ * 
H2 870 * 380.8  * * 
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Fig. 1 Quality results using alpha = 0.85, The axe 
y is the number of soft constraints violate and the 
axe x is the instance. 

                                                 
∗ It was not possible to obtain enough feasible 
solutions to make an average. 
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Fig. 2 Time results using alpha = 0.85, the axe y are 
the seconds and the axe x the instance 
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Fig. 3 Quality results using alpha = 0.90, The axe y 
is the number of soft constraints violate and the axe 
x is the instance. 
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Fig. 4 Time results using alpha = 0.90, the axe y are 
the seconds and the axe x the instance 
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Fig. 5 Quality results using alpha = 0.95, The axe 
y is the number of soft constraints violate and the 
axe x is the instance. 
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Fig. 6 Time results using alpha = 0.95, the axe y 
are the seconds ant the axe x the instance 
 
 
7 Conclusions 
In this paper, several implementations of SA for 
UTT are presented. These implementations are 
able to find feasible solutions for hard instances. 
It represents an advance in relation with previous 
results [5]. The best results were obtained with 
SA02, SA03 and SA06; the fastest was SA06. 
SATUNED implementation (SA06) saves around 
32% of the execution time wasted by SA02 or 
saves around 40% of the time used by SA03. 
Besides SA06 has a similar quality than other 
implementations. Therefore, SA with the 
analytical tuned method presented in the paper 
had a good performance and is relatively very 
simple to be implemented.  
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