
Analytically Tuned Parameters of Simulated Annealing
for the Timetabling Problem

 JUAN FRAUSTO-SOLIS, FEDERICO ALONSO-PECINA

Instituto Tecnológico y de Estudios Superiores de Monterrey, Cuernavaca, Morelos, México

{juan.frausto, A01125296}@itesm.mx

CINHTIA GONZALEZ-SEGURA

Universidad Autónoma de Yucatán

gsegura@uady.mx
Abstract: - University Timetabling problem (UTT) has a computational complexity that grows exponentially
as the size of the problem augments; therefore random algorithms become the best alternative to solve it, and
among them, Simulated Annealing (SA) is one of the most efficient. However, SA obtains very good
solutions, only if its parameters are well tuned. SA requires an initial solution for solving UTT. Besides,
analytical tuning strategies for SA in UTT have not been explored. In this paper a SA Markov tuning strategy
and a heuristic to generate feasible solutions are proposed. This strategy improves SA performance for UTT
as is shown with experimental instances taken from PATAT benchmark.
.

Key-Words: - Timetabling, Simulated Annealing, Optimization

1 Introduction
This paper deals with an Educational Timetabling
problem proposed in PATAT [1], and named
University Timetabling (UTT) which has a
computational complexity that grows
exponentially as the size of the problem is
increased. Commonly UTT is realized as the
scheduling of courses and teachers, within a
given number of rooms (classrooms) and time
periods; however as is described in section 2
other events different than courses (v.gr.
conferences) can be considered.
 A common approach to solve UTT is first to find
a feasible initial solution using some procedure
specially developed for that purpose; then a
metaheuristic [2]-[7] is commonly applied to
improve this initial solution. Simulated Annealing
(SA) is among these metaheuristics and one of
the most used algorithms for UTT [6], [8], [9].
 SA obtains very good solutions (close to the
optimal or even the global optimum) [5] whether
it is well tuned and an adequate neighborhood is
used.
 In this paper a new SA algorithm for UTT using
a Markov tuning strategy is proposed; this new
algorithm is named “Tuned Simulated
Annealing” (TSA). In addition, two
neighborhoods are tested on TSA. Besides,

experimentation using instances taken from PATAT
benchmark [1] shows TSA is more efficient for
UTT than the classical SA.
 The paper is organized as follows. Section 2
includes the PATAT problem description and its
mathematical model. In section three, the instances
to test the algorithms are presented. Section 4
presents TSA variations and experimentally tuned.
Section 5 describes the analytical tuning parameters
strategy. Finally, Sections 6 and 7 include the results
and the conclusions respectively.

2 Problem Description
For UTT, as for any other NP problem, it is not
efficient to apply deterministic methods due to their
exponential complexity [8]; therefore it is useful to
develop random methods to find the best feasible
solution. Basically, UTT consists of:

i) a set E of events to be scheduled in 45
periods of time (5 days of 9 intervals
every one),

ii) a set R of rooms that hold the events,
iii) a set U of students that attend the

events, and
iv) a set F of features that should satisfy

every room because of the exigencies of
events to be held there. Each student

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 272 Issue 5, Volume 5, May 2008

attends specific events and each room
has a capacity measured in number of
students.

 A feasible timetable is one in which all events
have been assigned a timeslot and a room, and all
of the following hard constraints (hc) must be
completely fulfilled:

1hc : No student attends more than one event at
the same time.

2hc : The room chosen for an event is big enough
to house all the attending students and it satisfies
all the technical features required by the event.

3hc : Only one event is hold in each room at any
specific timeslot.
In addition, there are other constraints, named
soft constraints (sc), which are desirable not be
violated. The soft constraints of PATAT are the
following:

1sc : Any student should not have a class in the
last slot of the day.

2sc : Any student should not have more than two
classes consecutively.

3sc : Any student should not have a single class
on any day.
 The PATAT’s criteria to determine the winner
of the contest is based on the next formula [1]:

()
()ii

ii
bw

bx
−

−=iF (1)

 where i is the number of the instance (1≤ i
≤20), x is the number of soft constraints violated
for the contestant; b and w are, respectively, the
number of soft constraints violated by the best
and the worst participant on this instance during
the same contest.
The next variables are defined in PATAT for
UTT:
• n Events: E = {e1, e2, ... , en}
• m Students: U = {u1, u2, ... , um}
• 45 Periods: P = {p1, p2, ... , p45}
• r Rooms: A = {a1, a2, ... , ar}
• r Room sizes: C = {c1, c2, ... , cr}
• t Features: F = {f1, f2, ... , ft}

Besides three binary matrixes are defined as
follows:
• Matrix student/event: Dnxm

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mnmm

n

n

nxm

ddd

ddd
ddd

D

...
............

...

...

21

22221

11211

where dil = 1 if the student l attends the event i, and
0 otherwise.
• Matrix room/feature: Stxr

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

rtrr

t

t

txr

sss

sss
sss

S

...
............

...

...

21

22221

11211

where sjf = 1 if the room j satisfies the feature f, and
0 otherwise.
• Matrix event/feature: Qtxn

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ntnn

t

t

txn

qqq

qqq
qqq

Q

...
............

...

...

21

22221

11211

where qif = 1 if the event i requires the feature f, and
0 otherwise.
Let be xijk = 1 if the event i, is assigned to the room
j in the period k, and 0 otherwise.
Therefore, the problem can be formulated as
follows:

FulfilledishcEvery
tosubject

sczMin
sstraTotSoftCon

v
v∑=

=

int

1

Next the explanation and mathematical model of
every constraint is presented:

Hard Constraints (hc):

1hc (No student attends more than one event at
the same time): This constraint establishes that in
any period k, at most one event i ∈ Qe can be
programmed. Qe is a set defined for every event. Qe
contains its event e plus every event that have
conflicts with e. Therefore this constraint is written
as:

∑
∈

===≤
eQi

ijk nekrjx ,...,145,...,1,...,11
 (2)

where i, j and k represent the number of events,
rooms and periods respectively.

2hc (The room is big enough for all the attending
students and satisfies all the features required by
the event): This constraint is described by these two
other constraints:
• A) The room is big enough for all the attending

students, and

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 273 Issue 5, Volume 5, May 2008

• B) The room satisfies all the features required
by the event.

The constraint A can be also stated as follows:
For every room j where the event i is
programmed, the capacity cj of the room j should
be higher or equal to the number of students that
attend the event i. That is equivalent to the next
relation among the number bi of participants of
the event i:

nidb
m

l
lii ,...,1

1
== ∑

= (3)
where the student l attends the event i, dli worths
1 if the student l attends the event i.
The constraint A can be written as follows:

45,...,1,...,1,...,1,,1 ===≤=∀ krjnicbx jiijk (4)
The constraint B can be stated as follows: For
each k period, the room j must satisfy all the
features required by every event i programmed in
this room. This constraint can be established as
follows:

45,...,1,...,1,...1,1 ===≤∀⇒= krjnisqfx jfifijk

 (5)
where qif represents the feature f associated to the
event i, and sjf represents the feature f satisfied by
the room j.

3hc : (Only one event is hold in each room at
any timeslot). This constraint is established for
every period k. For any period k and any room j
at most one event must be held. This constraint
can be written as follows:

∑
=

==≤
r

j
ijk knix

1
45,...,1,...,11

 (6)
Besides, there is another very important hard
constraint implicit in the problem’s definition:
“All the events must be programmed in some
periods”. Therefore, for all the 45 periods, every
event i must be programmed exactly once.
Therefore this constraint can be written as
follows:

∑∑
==

==
r

j
ijk

k

nix
1

45

1

,...,11
 (7)

Soft constraints
The soft constraints are the following:
1. Any student should not have a class in the

last slot of the day
Let be a set V that contains the last periods of the
days: V = {k | k mod NUMPER = 0}. Where k =
1, 2, ... , 45 and NUMPER = Number of periods

for day (9, in this case). This constraint can be
realized in this way: “some event i should not be
programmed in any room j, in any period k ∈ V”.
Therefore, this constraint can be written as:

0
1 1

=∈∀ ∑ ∑
= =

n

i

r

j
ijkxVk

 (8)

2. Any student should not have more than two

classes consecutively
That means that any student l should not have 3 or
more events programmed in a row. Let be Sl the set
of events of the student l so this constraint is written
as:

() () ()∑ ∑ ∑
−

+−= ∈ =
+++ =∈∀

2

1 1
321 0

v

NUMPERvk Si

r

j
kijkijkij

l

xxxVv

l = 1,2,…m (9)

3. Any student should not have a single class on

any day.
This constraint establishes that all the students
should have programmed zero or more that one
event per day; that means:

mlxVv
v

NUMPERvk Si

r

j
ijk

l

,...,11
2

1 1
=≠∈∀ ∑ ∑ ∑

−

+−= ∈ =

 (10)

3 Problem’s Instances
In [1], a generator to produce instances from
different seeds is used. All the instances generated
have at least one perfect solution, which means, zero
violated constraints (hard and soft). In table 1, the
features of PATAT’s instances are presented, and
table 2 contains the criteria to classify them.
 In PATAT, small cases are called S1, S2, S3, S4
and S5, while medium instances are called M1, M2,
M3, M4 and M5, and finally, large instances are
called L1 and L2. Besides, in PATAT some UTT
instances are commonly named Competitionx or Cx,
where x is the number of the UTT instance (e.g.,
Competition01 is C01, and so on).

4 Algorithm Description
Simulated Annealing (SA) is one of the
metaheuristics used with more success to solve
UTT. SA allows some "wrongs" movements in
order to escape of local optimum with the goal of
reach the global optimum whether its parameters are
well tuned.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 274 Issue 5, Volume 5, May 2008

Table 1 PATAT´s Benchmark

Instance Events Rooms Features Students
C01 400 10 10 200
C02 400 10 10 200
C03 400 10 10 200
C04 400 10 5 300
C05 350 10 10 300
C06 350 10 5 300
C07 350 10 5 350
C08 400 10 5 250
C09 440 11 6 220
C10 400 10 5 200
C11 400 10 6 220
C12 400 10 5 200
C13 400 10 6 250
C14 350 10 5 350
C15 350 10 10 300
C16 440 11 6 220
C17 350 10 10 300
C18 400 10 10 200
C19 400 10 5 300
C20 350 10 5 300

Table 2 Socha’s classification

Instance Events Rooms Features Students
small 100 5 5 80
medium 400 10 5 200
Large 400 10 10 400

 The most common cooling scheme of SA and
used in this paper is a geometric scheme:
T(k+1)=αT(k), where k is the temperature
number and 0<α<1. The algorithm's parameters
are: the initial temperature T0, the final
temperature TF , the parameter alpha α and the
length of Markov chain L. Besides, in SA a
feasible initial solution S0 is required; to find this
initial solution for the PATAT's benchmark, two
different methods are commonly used:
• The first method uses a heuristic that

provides a feasible solution and then the
classical SA improves it. The heuristic that
finds this initial solution uses the concept of
"more constrained event" [8].

• The second method uses SA itself to find the
initial feasible solution. In the past this
strategy was not successful to find feasible
initial solutions but [5], now it is more
efficient. This method disables the infeasible
movements in such a way that, they do not
introduce any new hard violation.

The algorithm is the following: Firstly, all the
events are initialized to the first hour in the first
room. Then, a random event is chosen. Its

feasible neighborhood is calculated and a random
feasible neighbor is selected. In most of the cases,
the procedure reaches a feasible solution and when it
is achieved, the algorithm continues improving its
objective function until the system is frozen. The
next implementations of SA were developed in this
work:

Pseudocode of the implementation SA01

Begin
x = initial_solution();
BestCost = costIni = f(x);
T = 470 * num_students + num_events;
L_MAX = 10000;
END_TEMP = 0.01;
While (T > END_TEMP)
 Iter=0;
 While (Iter < L_MAX)
 Do
 timeslot_1 = rand() MOD 45;
 timeslot_2 = rand() MOD 45;
 room_1 = rand() MOD num_rooms;
 room_2 = rand() MOD num_rooms;
 if the interchange of the event
 placed in timeslot_1 and room_1
 with the event placed in
 timeslot_2 and room_2 is feasible
 then
 ban = true
 else
 ban = false;
 endif
 While (ban == false)
 costNew = f(x_new);
 costDif = costNew – costIni;
 r = rand()
 if (costNew <= 0) then
 costIni = costNew;
 x = x_new;
 else
 r = rand()
 if (r < exp(-costDif/T)) then
 costIni = costNew;
 x= x_new;
 End_if
 End_if
 if (BestCost > costoIni) then
 x* = xl;
 BestCost = costoIni;
 End_if
 iter = iter + 1
 End_While
 T = T * ALPHA
End_While
End

4.1 First Neighborhood
A neighborhood called first neighborhood or SA01)
was established with the next parameters:

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 275 Issue 5, Volume 5, May 2008

• Markov chain length: 10000 (as in[8]).
• Cooling scheme: Geometric defined as Tn

= αTn-1. Experimentation was done with
different alpha values: 0.70, 0.75, 0.85,
0.90 and 0.95

• Initial temperature ci=470m + n, where
m=number of students; n=number of
events.

 This SA implementation starts from a feasible
solution obtained for the first strategy previously
described in [8].
 This first neighborhood is used to generate new
solutions with a procedure as follows.

• First, two random periods are selected
and after that,

• Two random classrooms are chosen. If an
interchange of events is feasible, this
interchange is accepted. Otherwise, two
news random periods and two new
random rooms are selected, and this
process goes on.

4.2 Second Neighborhood
A second neighborhood (SA02) was also defined;
is similar to SA01 except by the form of the
procedure used to generate new solutions:

• Firstly, a random event is chosen;
• Secondly, if this event is feasible several

interchanges are calculated (over the
period and/or over the room or even over
other event) taking care that any hard
constraint is not violated.

• Finally, a random change is chosen.

This new way to calculate the neighborhood
allows to obtains better solutions that the
previous one.

4.3 SA without feasible initial solution
SA without feasible initial solution was label
SA03. Initially, any feasible solution is given to
the algorithm, all the events are set in the timeslot
1 and the room is set to 1. Using this solution, the
algorithm starts working until it reaches a feasible
solution. The percentage of not feasible solutions
obtained with this approach is less to 2%. The
neighborhood using by this implementation is the
same as the Second Neighborhood.

Pseudocode of the implementation SA02

Begin
x = initial_solution();
BestCost = costIni = f(x);
T = 470 * num_students + num_events;
L_MAX = 10000;
END_TEMP = 0.01;
While (T > END_TEMP)
 Iter=0;
 While (Iter < L_MAX)
 ban = false;
 Do
 e1 = rand() MOD num_events;
 num = neighborhood(e1);
 if num != 0 then
 move = rand() MOD num;
 ban = true;
 do the the random move of
 the event
 endif
 While (ban == false)
 costNew = f(x_new);
 costDif = costNew – costIni;
 r = rand()
 if (costNew <= 0) then
 costIni = costNew;
 x = x_new;
 else
 r = rand()
 if (r < exp(-costDif/T)) then
 costIni = costNew;
 x = x_new;
 End_if
 End_if
 if (BestCost > costoIni) then
 x* = xl;
 BestCost = costoIni;
 End_if
 iter = iter + 1
 End_While
 T = T * ALPHA
End_While
End

5 Analytically tuned parameters of

Simulated Annealing
The scheme of tuned parameters published in [10]
was used. This scheme was used successfully in
other problems [11] [12]. In this scheme, the initial
temperature T0 is obtained as a function of the
maximum possible deterioration of the objective
function that can be accepted in a current solution.
In other hand, the final temperature Tf is obtained as
a function of the minimum possible deterioration of
the objective function.
 The maximum possible deterioration, with the
proposed neighborhood is: K*(maximum number of
students per event). Where is easy to note that in this
case K is equals to eight

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 276 Issue 5, Volume 5, May 2008

 T0 and Tf are calculated with the next
formulas:

())(ln max

max
0

V
A

V

ZP
Z

T
∆

∆−
=

(11)

())(ln min

min

V
A

V
f ZP

Z
T

∆
∆−

=

(12)

Pseudocode of the implementation SA04

Begin
x = initial_solution();
BestCost = costIni = f(x)
T_analytical = DZmax / log
(Pacceptation)
β = exp((log(Lmax)-log(L1))/n);
END_TEMP = 0.01;
L=L1;
While (T > END_TEMP)
 Iter=0;
 While (Iter < L)
 Do
 timeslot_1 = rand() MOD 45;
 timeslot_2 = rand() MOD 45;
 room_1 = rand() MOD num_rooms;
 room_2 = rand() MOD num_rooms;
 if the interchange of the event
 placed in timeslot_1 and room_1
 with the event placed in
 timeslot_2 and room_2 is
 feasible then
 ban = true
 else
 ban = false;
 endif
 While (ban == false)
 costNew = f(x_new);
 costDif = costNew – costIni;
 r = rand()
 if (costNew <= 0) then
 costIni = costNew;
 x = x_new;
 else
 r = rand()
 if (r < exp(-costDif/T)) then
 costIni = costNew;
 x= x_new;
 End_if
 End_if
 if (BestCost > costoIni) then
 x* = xl;
 BestCost = costoIni;
 End_if
 iter = iter + 1
 End_if
 End_While
 T = T * ALPHA
 L = β * L
End_While
End

Pseudocode of the implementation SA05

Begin
x = initial_solution();
BestCost = costIni = f(x)
T_analytical = DZmax / log (Pacceptation)
β = exp((log(Lmax)-log(L1))/n);
END_TEMP = 0.01;
L=L1;
While (T > END_TEMP)
 Iter=0;
 While (Iter < L)
 ban = false;
 Do
 e1 = rand() MOD num_events;
 num = neighborhood(e1);
 if num != 0 then
 move = rand() MOD num;
 ban = true;
 do the the random move of
 the event
 endif
 While (ban == false)
 costNew = f(x_new);
 costDif = costNew – costIni;
 r = rand()
 if (costNew <= 0) then
 costIni = costNew;
 x = x_new;
 else
 r = rand()
 if (r < exp(-costDif/T)) then
 costIni = costNew;
 x= x_new;
 End_if
 End_if
 if (BestCost > costoIni) then
 x* = xl;
 BestCost = costoIni;
 End_if
 iter = iter + 1
 End_if
 End_While
 T = T * ALPHA
 L = β * L
End_While
End

The Markov chains length L of the metropolis loop
(the inner one) are also tuned dynamically. In [10],
is presented how to determine the length Li for any
iteration i. In this method, Li is determined
establishing the relationship between the cooling
function and the Markov chain length. In the first
Metropolis cycle the L-parameter is 1 and it is
increased according to a β-parameter, until, in the
last Metropolis cycle of Metropolis, the maximum L
value or Lmax ,:is reached; Lmax follows the Markov
model (13)

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 277 Issue 5, Volume 5, May 2008

Lmax = βn L1 (13)
 Where

αln
lnln 1max LL

n
−

=

(14)

n
LL 1max lnln

exp
−

=β

(15)

 With this analytical method, Tf will be 0;
however the stochastic equilibrium is verified
here since 0.01. Lmax takes the same value for all
implementations (10000 iterations).
Implementations with these tuned parameters are
next described: The implementation of the
analytical tuned parameters of SA first
neighborhood (SA01) was labeled SA04.
The implementation of the analytical tuned
parameters of SA second neighborhood (SA02)
was called SA05
 Usually, using the analytical tuned approach is
possible to obtain a SA algorithm which has a
similar quality of the experimental tuned version
of the same algorithm, but the former may save
until fifty percent of computational time [11],
[12]. The next paragraphs presents an efficiency
analysis of the algorithm analytically tuned is
presented:
Theorem 1:
The number of iterations of the cycle of
Metropolis of Tuned Simulated Annealing
(ITSA) is smaller than the number of iterations of
the Simulated Annealing (ISA), when the number
of cycles of Metropolis is greater or equal to two:

2, ≥< nISAITSA (16)
using:

n
LL 1max lnln

exp
−

=β

(17)

 Where n is the number of cycles of
Metropolis, Lmax is the number of iterations of the
last cycle of Metropolis, and L1 is the number of
iterations of the first cycle of Metropolis.

n
MAX

n
MAX

MAX

L
L

L
L

n
L

L 1

1

1

1

1 lnexp
ln

exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=β

(18)

When n = 1: MAXLL <1 , therefore ITSA < ISA where
n = 1
When n = 2

MAX

n
MAX L
L

LL <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1

1
1

(19)

Therefore

MAX

n
MAX L
L

LLL 2

1

1
11 <⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

(20)

and ITSA < ISA where n = 2. In general, it is trivial
to demonstrate that:

MAX

n
i

MAX L
L

LL <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1
1

(21)

where ni <≤0 , then:

() MAX

n

i

n
i

MAX Ln
L

LL 1
1

0 1
1 −<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛∑
−

=

(22)

And, adding MAXL to both members of the inequality
(in the iteration number n), it is obtained:

MAX

n

i

n
i

MAX nL
L

LL <⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=0 1

1

(23)

Thus ITSA < ISA

 Although an interesting saving of time was
obtained with the analytical tuned parameters of SA,
the quality of its solutions is lightly smaller to those
obtained without formulae (11) to (15). The
explanation is the following. The experimental
method has obtained a very big T0 value, which was
bigger than the T0 value obtained with the analytical
method (formulas 11-15); in fact the latter was
relatively too small. The later result was obtained
because both the acceptance probability and the
exploratory capacity of the experimental
implementation were very high. To solve this
problem, some actions can be taken:
a) The initial temperature T0 is set equal to that
obtained with the experimental method, and its
Markov chain length is set equal to 1 (L1=1), as is
established by the analytical method.
b) After each cycle of Metropolis, the temperature is
decreased according to the geometrical cooling
scheme, and the Markov chain length is increased
by one, until is reach the T0 value obtained with the
analytical method.
c) Starting from the T0 value obtained by the
analytical method, the length Markov chain is
increased according to the β parameter, until it
reaches Lmax and then, it stays constant until arriving
to Tf.
This implementation is called, SATUNED and the
pseudocode is the following one:

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 278 Issue 5, Volume 5, May 2008

Pseudocode of the implementation SATUNED

Begin
x = initial_solution();
BestCost = costIni = f(x)
T = 470 * num_students + num_events;
T_analytical = DZmax / log
(Pacceptation)
β = exp((log(Lmax)-log(L1))/n);
END_TEMP = 0.01;
L=L1;
While (T > END_TEMP)
 Iter=0;
 While (Iter < L)
 ban = false;
 Do
 e1 = rand() MOD num_events;
 num = neighborhood(e1);
 if num != 0

 then
 move = rand() MOD num;
 ban = true;
 do the the random move of
 the event
 endif
 While (ban == false)
 costNew = f(x_new);
 costDif = costNew – costIni;
 r = rand()
 if (costNew <= 0)

 then
 costIni = costNew;
 x = x_new;
 else
 r = rand()
 if (r < exp(-costDif/T))

then
 costIni = costNew;
 x= x_new;
 End_if
 End_if
 if (BestCost > costoIni)

 then
 x* = xl;
 BestCost = costoIni;
 End_if
 iter = iter + 1
 End_if
 End_While
 T = T * ALPHA
 if(T<T_analytical)
 then
 L = L + 1
 else
 if(L<Lmax)
 then
 L = β * L
 Endif
 endif
End_While
End

6 Results
In table 3 to 4, and figures 1 to 4 are presented the
results of quality and execution time of the different
implementations of SA proposed in this paper.
 Graphical results for alpha 0.90 and 0.95 used in
the geometrical cooling scheme are shown. In most
of the cases, the best results were obtained by a SA
using the second neighborhood and SA without
feasible initial solution or SATUNED (SA02, SA03
and SA06, respectively).
 Figure 4 shows the execution time of the
implementations with alpha equals to 0.95; as can be
noticed, the faster implementation is SA05, but, its
quality is not the best one.
 Regarding the execution time, the best result was
obtained with implementations SA02, SA03 and
SA06. For simplicity, only some alpha values in this
table and figures are presented.
 The results are shown in two categories: quality
and time. The quality solution is measured
considering the number of soft constraints violated.
 The execution time unit used is seconds and every
instance was executed ten times for every alpha
value:

Table 3 Quality results with alpha = 0.70
Instance SA01 SA02 SA03 SA05 SA06

s1 1 3.7 2.1 3.5 2.4
s2 22 5.7 2.8 6.4 4.1
s3 1 6.2 3.2 6.3 4.1
s4 1 5.4 2.6 6.7 4.6
s5 80 2.3 0.5 0.8 1.1

M1 150 112.3 114.3 112.8 114.8
M2 170 111.5 113.1 109.2 113.4
M3 199 154.5 153.8 155.5 151.8
M4 122 102.4 105.9 104.8 102.5
M5 123 72.2 74.2 86.1 85.7
H1 * * 550.5 ∗ *
H2 * * 482.4 * *

∗ It was not possible to obtain enough feasible solutions to
make an average.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 279 Issue 5, Volume 5, May 2008

Table 4 Quality results with alpha = 0.80

Instance SA01 SA02 SA03 SA04 SA05 SA06
s1 0.9 2.6 3.6 1.5
s2 2.4 2 3.2 3.1
s3 2.4 2.2 3.8 2
s4 2.6 3.4 4.5 4.1
s5 0.9 1.1 2 0.3
M1 99 104.1 99.1 104.7
M2 109.8 104.3 99.6 95.1
M3 137.1 141.4 137.7 140
M4 95.7 93.9 91.2 90.1
M5 61 71.5 77.7 68.9
H1 * 478.1 * *
H2 * 434.7 * *

Table 5 Quality results with alpha = 0.90

Instance SA01 SA02 SA03 SA04 SA05 SA06
s1 1 1.1 1.4 1.4 0.8
s2 10 1.5 1.4 1.7 1.5
s3 1 2.1 1.1 3.6 2.4
s4 1 2.8 1.6 3.2 2.7
s5 82 0.3 0.2 1.5 0.5
M1 126 93.9 85.5 92.6 87.1
M2 161 80 84 81.1 79.7
M3 149 118.1 117.9 120.2 118.4
M4 105 74.4 74.8 73 75
M5 72 47.5 48.1 52.3 49.2
H1 753 * 425.4 ∗ *
H2 870 * 380.8 * *

0

100

200

300

400

500

600

700

800

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

Instance

SA01
SA02
SA03
SA04
SA05
SA06

Fig. 1 Quality results using alpha = 0.85, The axe
y is the number of soft constraints violate and the
axe x is the instance.

∗ It was not possible to obtain enough feasible
solutions to make an average.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

Instance

SA01
SA02
SA03
SA04
SA05
SA06

Fig. 2 Time results using alpha = 0.85, the axe y are
the seconds and the axe x the instance

0

100

200

300

400

500

600

700

800

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

Instance

Ti
m

e(
s)

SA01
SA02
SA03
SA04
SA05
SA06

Fig. 3 Quality results using alpha = 0.90, The axe y
is the number of soft constraints violate and the axe
x is the instance.

0

500

1000

1500

2000

2500

3000

3500

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

Instance

Ti
m

e(
s)

SA01
SA02
SA03
SA04
SA05
SA06

Fig. 4 Time results using alpha = 0.90, the axe y are
the seconds and the axe x the instance

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 280 Issue 5, Volume 5, May 2008

0

100

200

300

400

500

600

700

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

SA01
SA02
SA03
SA04
SA05
SA06

Fig. 5 Quality results using alpha = 0.95, The axe
y is the number of soft constraints violate and the
axe x is the instance.

0

1000

2000

3000

4000

5000

6000

c0
1

c0
2

c0
3

c0
4

c0
5

c0
6

c0
7

c0
8

c0
9

c1
0

c1
1

c1
2

c1
3

c1
4

c1
5

c1
6

c1
7

c1
8

c1
9

c2
0

Instance

Ti
m

e
(s

)

SA01
SA02
SA03
SA04
SA05
SA06

Fig. 6 Time results using alpha = 0.95, the axe y
are the seconds ant the axe x the instance

7 Conclusions
In this paper, several implementations of SA for
UTT are presented. These implementations are
able to find feasible solutions for hard instances.
It represents an advance in relation with previous
results [5]. The best results were obtained with
SA02, SA03 and SA06; the fastest was SA06.
SATUNED implementation (SA06) saves around
32% of the execution time wasted by SA02 or
saves around 40% of the time used by SA03.
Besides SA06 has a similar quality than other
implementations. Therefore, SA with the
analytical tuned method presented in the paper
had a good performance and is relatively very
simple to be implemented.

References:
[1] International Timetabling Competition, URL:

http://www.idsia.ch/Files/ttcomp2002/
Consultant date: November 28 of 2007

[2] Cerny, V. Minimization of Continuous
Functions by Simulated Annealing. Research
Institute for Theoretical Physics, University of
Helsinki, preprint HU-TFT-84-51, 1984.

[3] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P.
Optimization by Simulated Annealing, Science,
Vol 220, No. 4598, pp 671-680, (1983).

[4] Kostuch, P.A. The University Course
Timetabling Problem with 3-Phase approach.
Third Int Conf on Practice and Theory of
Automated Timetabling, USA,LNCS 3616
Springer 2005, ISBN 3-540-30705-2. pp 251-266

[5] Rossi-Doria, O., Sampels, M., Biratrari, M.,
Chiarandini, M., Dorigo, M., Gambardella, L.
M., Knowles, J., Manfrin, M., Mastrolilli, L.,
Paetcher, B., Paquete L., Stützle, T. A
comparison of the performance of different
metaheuristic on the timetabling problem. Napier
University, Université Libre de Bruxelles,
Technische Universitaet Darmstadt. (2002).

[6] Luca Di Gaspero, Andrea Schaerf. Timetabling
Competition TTComp 2002: Solver Description,
Conf on Practice and Theory of Automated
Timetabling, Pittsburgh,PA,USA,Aug 2004.

[7] Socha, K.; Knowles, J.; Sampels, M. “A MAX-
MIN Ant System for the University Timetabling
Problem”.In Proceedings of the 3rd International
Workshop on Ant Algorithms, ANTS 2002,
LNCS, Vol. 2463, Springer, (2002), pp. 1-13.

[8] Bykov, Y., The Description of the Algorithm for
International Timetabling Competition.
Timetabling Competition of PATAT, University
of Nottingham, School of Computer Science &
IT, Wollaton Road, August, 2004.

[9] Halvard Arntzen, Arne Lokketangen. A local
search heuristic for a university timetabling
problem, PATAT time tabling Com. Aug, 2004.

[10] Sanvicente-Sanchez, H., Frausto-Solis, J., A
Method to Establish the Cooling Scheme in
Simulated Annealing Like Algorithms. Assis,
Italy. ICCSA’2004. LNCS Vol. 3095. 755-763.

[11] Sanvicente-Sanchez, H.; Frausto-Solís, J.,
Imperial-Valenzuela, F., Solving SAT Problems
with TA Algorithms Using Constant and
Dynamic Markov Chains Length, Algorithmic
Applications in Management, Springer LNCS,
June (2005)

[12] Sanvicente-Sánchez, H., A Methodology to
parallelize the Temperature Cycle of Simulated
Annealing Like Algorithms, (in Spanish), PhD
Thesis in Computer Science, ITESM Campus
Cuernavaca, Octuber (2003).

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Juan Frausto-Solis and Federico Alonso-Pecina

ISSN: 1790-1979 281 Issue 5, Volume 5, May 2008

