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Abstract. The paper presents a platform, named Parallel Internet Traffic Simulator (PITS), which allows 

simulating Internet traffic and accurately replicating appropriate stochastic processes using scale-free models 

with self-similar topology. The experiments compare simulation of large-size scale-free networks when using 

different number of CPU's running in parallel in the platform cluster and note the differences in simulation 
time as well as some characteristics related to the efficiency of the simulation distribution is possible and if 

there are limitations in single-CPU simulation. We consider that PITS shows interesting properties when 

compared to other traffic generators and therefore it represents a real simulation tool for controlled traffic 
generation over real networks which allows to accurately analyze and evaluate the performance of network, 

transport, and application-level protocols.  
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1 Introduction 
To model a distributed network environment like 

the Internet, it is necessary to integrate data 

collected from multiple points in a network in order 
to get a complete picture of network-wide view of 

the traffic. Knowledge of dynamic characteristics is 

essential to network management (e.g., detection of 
failures/congestion, provisioning, and traffic 

engineering like QoS routing or server selections). 

However, because of a huge scale and access 

rights, it is expensive (sometime impossible) to 

measure such characteristics directly. To solve this, 

methods and tools for inferencing of unobservable 

network performance characteristics are used in 

large scale networking environment. The main 

previous results refer to the so called network 
tomography [1]. Network tomography can be 

regarded as a statistical inverse problem that 

includes two typical forms: inference of network-

internal characteristics based on end-to-end path 

measurements [2], [3] and end-to-end flow 

behavior inference from aggregated flows [4], [5].  

A model where inference based on self similarity 

and fractal behavior can be applied is the scale free 

network. Scale-free networks are complex 

networks in which some nodes are very well 
connected while most nodes have a very small 

number of connections. An important characteristic 

of scale-free networks is that they are size 
independent, that is they preserve the same 

characteristics regardless of the network size N. 

Scale-free networks have a degree distribution that 

follows a power relationship, P(k) = k^(-λ), where 
the coefficient λ may vary approximately from 2 to 

3 for most real networks. Many real networks have 

a scale-free degree distribution, including the 
Internet [6].  

Simulation of scale-free networks is necessary in 

order to study their characteristics. However, large-
scale networks are difficult to simulate due to the 

hefty requirements imposed on CPU and memory. 

Thus a distributed approach to simulation can be 

useful particularly for situations where a single-

processor is not enough.  

  

 

2 Scale-free topology 
All real-life networks are finite so can be 

characterized by the degree of connectivity of the 

associated graph. But the degree distribution does 

not characterize the graph or ensemble in full; other 

quantities, such as degree-degree correlation and 

spatial correlations are also useful. Several models 

have been presented for the evolution of scale-free 

networks, each of which may lead to a different 

ensemble. The first suggestion was the preferential 
attachment model by Barabasi and Albert, which 

came to be known as the “Barabasi-Albert (BA)” 

model. Several variants have been suggested to this 
model. One of them known as the “Molloy-Reed 
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construction” [7], which ignores the evolution and 

assumes only the degree distribution and no 

correlations between nodes, will be considered in 

the following. Thus, the site reached by following a 

link is independent of the origin. This means that a 
new node will more probably attach to those nodes 

that are already very well connected, i.e. they have 

a large number of connections with other nodes 
from the network. Poor connected nodes, on the 

other hand, have smaller chances of getting new 

connections (see fig.1).  

 

 
Fig. 1. Graphic representation of the generated 

network for 200 network nodes and λ=2.35 
  

Besides following the repartition law mentioned 

above, some other restrictions (for example those 
related to cycles and long chains) had to be applied 

in order to make the generated model more realistic 

and similar to the Internet. Another obvious 

restriction is the lack of isolated components (see 

fig.2). 

 
Fig. 2. Graphic representation of the generated 

network for 200 network nodes and λ=2.85 

A more subtle restriction is related to the TTL 

(Time-to-living) which is a way to avoid routing 

loops in a real Internet. This translates in a 

restriction for our topology – there can be no more 

that 30 nodes to get from any node to any other 
node. Another restriction is that the generated 

network will also have redundant paths, multiple 

possible routes between nodes.  
The algorithm used for the generation of the scale-

free network topology is generating networks with 

a cyclical degree that can be controlled, in our case, 

approximately 4% of the added nodes form a cycle. 

One more restriction is that we try to avoid long-

line type of scale-free networks – a succession of 

several interconnected nodes – structure that does 

not have a real-life Internet equivalent.  

 

 

3. Self-similarity in traffic 
 

3.1 Self-similar processes 
In 1965, Benoit Mandelbrot introduces the self-

similar (SS) processes (another wide-spread name 

is fractal processes). This is a model which finally 

captures the power-law behavior described above 

[8]. Referring directly to the increment process Xs,t 
= Xt-Xs, he defines stochastic self-similarity as: 

Xt0,t0+rt = r
H
 Xt0, t0+t,  ∀t0, t, ∀r>0                  (1) 

Mandelbrot constructs his SS process (fractional 

Brownian motion, fBm) starting with two 

properties of the usual Brownian motion (Bm): 

• Bm has independent increments. 

• Bm is self-similar with Hurst parameter H= 0.5 

Denoting Bm as B(t) and fBm as BH(t), here is a 

simplified version of Mandelbrot’s definition of the 

fBm: BH(0) = 0, H ∈ [0,1] and 
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The integral in eq.(2) points to another important 

property of SS processes: long-range dependence 

(LRD). The SS process is called LRD if  there are 

constants α∈(0,1) and  C>0 such that  
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which we write simply ρ#(k)&'~ k 

–α
 where ρ#(k)&' is the 

autocorrelation of lag k. When represented in 
logarithmic coordinates, eq.(3) is called the 

correlogram of the process, and  has an asymptote 

of slope -α. This property can be used to estimate α 
either graphically or through some analytic fitting 

procedure (e.g. least squares). It is to note that SS 

and LRD are not overlapping properties. There are 

SS processes which are not LRD (the simple Bm is 
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an example), and, conversely, there are LRD 

processes which are not SS. However, the fBm 

with H>0.5 is both SS and LRD. 

 

3.2 Self-similarity in network traffic 
In a landmark paper [9] from 1993, Leland et al. 

report the discovery of self-similarity in local area 
network (LAN) traffic, more precisely Ethernet 

traffic. To be precise, they studied two separate 

processes: number of bytes arriving per time 

interval and number of IP packets. Since packets 

can vary widely in size (from 40 byte to 1500 byte 

in the case of Ethernet), it is in principle 

conceivable for the two processes to be quite 

different. However, the paper shows that they are 

both SS, with H estimated in the range (0.6 – 0.9) 
according to the changing network conditions. As a 

main critique of this approach, we note that all 

methods used in [9] (and in numerous papers that 
followed) detect and estimate LRD rather than SS. 

“Self-similarity” (actually LRD) has since been 

reported in various types of data traffic: LAN, 

WAN, Variable-Bit-Rate video, SS7 control, 

HTTP etc. (see [10] for an extensive bibliography). 

An overview of the above studies shows link 

speeds ranging from 10 Mbps (Ethernet) to 622 

Mbps (OC-12), link type being “access” (typically 

connecting a university campus or research lab to 
an Internet Service Provider), average bandwidths 

between 1.4 and 42 Mbps, minimum time-scale of 

1ms and at most 6 orders of magnitude for time-
scales. Lack of access to high-speed, high-

aggregation links, and lack of devices capable of 

measuring such links have until recently prevented 
similar studies from being performed on Internet 

backbone links. Actually, some researches have 

claimed that aggregating Internet traffic causes 

convergence to a Poisson limit [11]. For reasons 

presented in the next section, based on the remarks 

that on shorter time scales effects due to the 

network transport protocols are believed to 

dominate traffic correlations, although this property 

has not been definitively established and on longer 

time scales, effects such as diurnal traffic load 

patterns become significant, we disagree. 

 

3.3 Relevance of self-similarity in network 

operation 

In virtually all areas of communications 

networking it is of great importance to understand 
the characteristics of packet traffic. In a packet-

switched environment, there are no resources 

reserved for a connection, which creates the 
possibility of packets arriving at a node at a rate 

higher than the processing rate. Packets arriving on 

any of a number of input ports can be destined for 

the same output port. Although there could be in 

general many operations to be performed, they are 

broadly divided into two classes: serialization  the 

process of transmitting the bits out on the link) and 
internal processing (i.e. everything else that 

happens inside the node - classification,  routing 

table and access list look-ups, policing, shaping 
etc). Serialization delays are deterministic and 

given by the speed of the output link. Internal 

processing delays are essentially random but 

advanced algorithms and data structures are doing 

in general a good job of maintaining overall 

deterministic performance. As a consequence, the 

only truly random part of the delay is the time a 

packet spends waiting for service. The internal 

workings of a node are relatively well understood 

(by either analysis or direct measurement) and 
controllable. In contrast, the (incoming) traffic 

flows are neither completely understood nor easily 

controllable. The focus is therefore on accurately 

modeling these flows and predicting their impact 

on network performance. 

It is has been shown time and again that the high 

variability associated with LRD and SS processes 

can greatly deteriorate network performance, 

creating for instance queuing delays orders of 
magnitude higher than those predicted by 

traditional models. We make this point once again 

with the plot shown in fig.3: the average queue 
length created in a queuing simulation by the actual 

packet trace is widely divergent from the average 

predicted by a simple queueing model (M/D/1).  

COMPARISON OF THEORETICAL AND 
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  Fig. 3 Comparison between the queue lengths 

 

The notation is easily explained: “M” stands for the 

(unique) input process, which is assumed 

Markovian, i.e. a Poisson process; “D” stands for 

the service, assumed Deterministic; and “1” means 

that only one facility is providing service (no 

parallel service). In view of our simple model of a 

node discussed above, hypotheses “D” and “1” 
seem reasonable, so we would like to identify “M” 
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as the cause of the massive discrepancy. The 

question then is: Is there an “fBm/D/1” queuing 

model? The answer “almost” will be argued in the 

next section. 

 

 

4 Proposed Internet model  
The generated topology consists of three types of 

nodes: Routers, defined as nodes with one or 
several links. Routers do not initiate traffic and do 

not accept connections. Routers can be one of the 

following types: routers that connect primarily 

customers, routers that connect primarily servers 

and routers that connect primarily other routers. 

Routers that connect primarily customers have 

hundreds or thousands of type one connections 

(leaf nodes) and a reduced number of connections 

to other routers.  
Routers that connect primarily servers have a 

reduced number of connections to servers in the 

order of tenths and reduced number (2 or 3) 

connections to other routers. Routers that connect 

primarily routers have a number in the order of 

tenths  of connections to other routers and do not 

have connections to neither servers nor customers.  
Servers are defined as nodes with one connection 

but sometimes could have two or even three 

connections. Servers only accept traffic 
connections but do not initiate traffic. 

Customers (end-users) defined as nodes that have 

only one connection, very seldom two connections. 
Customers initiate traffic connections towards 

servers at random moments but usually in a time 

succession. For our proposed model, we chose a 

20:80 customers to servers ratio. 

 

4.1 Scale-free network design algorithm 
We designed and implemented an algorithm that 

generates those subsets of the scale-free networks 

that are close to a real computer network such as 

the Internet. Our application is able to handle very 
large collections of nodes, to control the generation 

of network cycles, and the number of isolated 

nodes. The application was written in Python 
being, as such, portable. It runs very fast on a 

decent machine (less than 5 minutes for 100.000 

nodes model).  

 

Network generation algorithm: 

 

1. set node_count and λ 
2. compute the optimal number of nodes per degree 

3. create manually a small network of 3 nodes 

4. for each node from 4 to node_count 

 4.1. call add_node procedure  

 4.2. while adding was not successful  

  4.2.1. call recompute procedure 

  4.2.2. call add_node procedure 

5. save network description file  
 

add_node procedure 

1. according to the preferential attachment, 
compute the degree of the parent node 

2. if degree could be chosen then exit procedure 

3. compute the number of links that the new node 

shall establish with descendants of its future parent, 

according to copy model 

4. chose randomly a parent from the nodes having 

the degree as computed above  

5. compute the descendant_list, the list of 

descendants of the newly chosen parent 

6. create the new node and links 
7. for each descendant of the descendant_list 

 7.1. create the corresponding links 

8. exit procedure with success code  

 

recompute procedure 

1. for each degree category 

 1.1. calculate the factor needed to increase 

the optimal count of nodes per degree 

 1.2. if necessary increase the optimal 
number of nodes per degree 

2. exit procedure 

 
The algorithm starts with a manually created 

network of several nodes, then using preferential 

attachment and growth algorithms, new nodes are 
added. We introduced an original component, the 

computation in advance of the number of nodes on 

each degree-level. The preferential attachment rule 

is followed by obeying to the restriction of having 

the optimal number of nodes per degree.  

We noticed that the power law is difficult to follow 

while the network size is growing, as a result we 

calculate again the optimal number of nodes per 

degree-level at given points in the algorithm. This 
is necessary because the bigger the network the 

higher the chance that a new node will be attached 

only to some specific very-connected nodes. In a 
real network such as Internet this will not happen.  

If only the preferential and growth algorithms are 

followed, then the graph will have no cycles, which 

is not realistic, therefore we introduced a 

component from the “copy model” for graph 

generation in order to make the network graph 

include cyclical components.  

This component ensures that each new node is also 

attached to some of its parent-node descendants 

using a calibration method. The calibration method 
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computes the number of additional links that a new 

node must have with the descendants of its parent. 

This number depends on how well-connected is the 

parent and it also includes a random component. 

The output of the application is a network 
description file that can be used by several tools 

like for instance a tool to display the power law. 

This file is stored using a special format needed in 
order to reduce the amount of disk writes.  

 

 
Fig. 4. Graphic representation of the distribution 

law for a scale-free network model and for a 
randomized network with 10000 nodes 

 

In Fig. 3 we compare an almost random network 
distribution law and a free-scale distribution law. 

On the Y axis we represent the number of 

connections and on the X axis the number of nodes 
having this number of connections. It was 

impossible to obtain a completely random network 

given the limitations imposed by the Internet 

model. In this paper we further describe only the 

scale-free network model since we think that such a 

model can lead to a better balancing based on the 

preferential attachment mechanism. 
 

4.2 Traffic generation 
Traffic generation is an essential part of the 

simulation as such, we decided to initiate randomly 
between 1 and 3 simultaneous traffic connections 

from “customer” nodes and for the sake of 

simplicity we used ftp sessions to randomly chosen 

destination servers. We also decided that the links 

connecting routers should have higher speeds than 

lines connecting customers to routers, for example 
- server-router 1 Gbps, client-router 10 Mbps, 

router-router 10, 100 Mbps or 1Gbps depending on 

the type of router. The code generated respecting 
these two conditions is added to the network 

description file, being ready to be processed by the 

simulator. 

4.3 Single-CPU simulation 
We used a modular approach that allows us to later 

reuse components for different parts of the 

simulation. For example, the same network model 

generated by the initial script can be used for both 

single-CPU and distributed simulations, allowing a 

comparison between the two types of simulation.  
Standalone simulations were run under University 

of California Berkeley's NS2 network simulator. 

NS2 (The Network Simulator) is a very complex 

open source discrete event simulator targeted at 

networking research [12]. The simulator is actually 

an OTcl interpreter, which also makes it quite easy 

to use. 

We noticed that on a single machine, as network 

size increases, very soon we hit the limit of the 
network sizes that can be simulated due to 

resources limitations mostly memory but also high 

CPU load. In case of small size network models, 
such as with a few nodes, simulations can be run 

on a single machine. One of the models generated 

with a number of 10000 nodes and a lot of traffic 

connections could not be simulated on an AMD 

Athlon(tm) 64 Processor 3200+ with only 512 

Megabytes of RAM available.  

The results provided by NS2 were visualised using 

the nam (network animator) software package. The 

topology generator gives different colours to 
different type of nodes: server, client, router. 

Details about the networking traffic through each 

network node are parsed from the simulator output. 

 

4.4 Multi-CPU simulations 
Unfortunately NS was not designed to run on 

parallel machines. Only in the NS version 3, now 

under alpha development, there are discussions 

about distributed processing. The main obstacle in 

running ns in a distributed/parallel environment is 

related to the description of objects in the 
simulation.  

As such we ran our distributed simulations under 

Georgia Tech's extension to NS2, pdns [13], which 
uses syntax close to that of NS2, the main 

differences being a number of extensions needed 

for the parallelization so that different instances of 

pdns can communicate with each other and create 

the global image of the network to be simulated.  

Each simulator running on different nodes needs to 

know the status of other simulators. Furthermore, if 

we try to split the network description file into 

separate files and run each of these in separate 
simulation contexts, we need to find a way to 

communicate parameters between the simulation 

nodes.  
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The simulation process consists of a number of 

steps, of which, defining network nodes links, 

queue and topology must take into consideration 

the fact that other nodes may not reside under the 

same simulator. All simulations are running 40 
seconds of simulated traffic scenarios. 

 

4.5 Cluster description 
In order to create a parallel/distributed environment 

we have built a cluster using commodity hardware 

and running Linux as operating system [14]. We 

have written and tested applications using PVM 

(Parallel Virtual Machine) which is a framework 

consisting of a number of software packages that 

accomplish the task of creating a single machine 

that spans across multiple CPU's, by using the 
network inter-connection and a specific library 

[15].  Another framework that can be used to run 

applications in a distributed manner is MPI -
Message Passing Interface [16].  

Our cluster consists of a “head” machine and a 

number of six cluster nodes. The “head” provides 

all services for the cluster nodes – IP allocation, 

booting services, File System (NFS) for storage of 

data, facilities for updating, managing and 

controlling the images used by the cluster nodes as 

well as access to the cluster. The “head” computer 

provides an image for the operating system that is 
loaded by each of the cluster nodes since the 

cluster nodes do not have their own storage media. 

As this image resides in the memory of each cluster 
node, we took special steps to reduce the size of 

this image and to make most of the memory 

available to the running processes.  
The application partition is mounted read-only 

while the partition where data is stored is mounted 

read-write and accessible to the users on all 

machines in a similar manner providing transparent 

access  to user data. In order to access the cluster, 

users must connect to a virtual server located on a 

head machine. This virtual server can also act as a 

node in the cluster when extra computation power 

is needed.  

 

4.6 Network Splitting 
In order to use PDNS simulation, we needed to 

split the network into several quasi-independent 

sub-networks [17]. Each instance of PDNS handles 

a specific sub-network, thus the dependencies 

between them need to be minimal, i.e. there shall 

be as few as possible links between nodes located 
in different sub-networks. 

We chose to have a federated simulation approach. 

We designed and implemented a federalization 

algorithm in order to split the original generated 

network into several small ones. The algorithm that 

generates n federative components chooses the 

most n linked nodes, assigned them to an empty 

federation and starts a procedure similar to the 
breadth-first search algorithm. Each node is 

marked as being owned by a federation. 

The pdns script generator takes as input the 
generated network description and the generated 

federations, respectively. Depending on the 

connectivity of nodes, they are assigned the role of 

routers, servers, end-users and corresponding 

traffic scenario are associated with them. We also 

used a different approach to partitioning a ns script 

into several pdns scripts by using autopart [18], a 

simulation partitioning tool based on the graph 

partitioning package called METIS [19]  

 

 

5 Simulation results 

 
5.1. Testing SFN models parallel processing  
We have decided to run simulations for 40 seconds 

of traffic for a scale-free network model with 

10000 nodes. At such a scale, a one-node 

processing is impossible because the cluster node 

runs out of memory. Still, to get valid results we 
had run the simulation on a much more powerful 

machine with plenty of memory and virtual 

memory.  
We chose two different scenarios, one with a 

moderate network traffic and another scenario with 

a heavy network traffic. Each scenario was 

simulated five times under similar load conditions, 

using two to six CPU's and we noted the time used 

for the actual simulation (in seconds, see Table 1).  

Table 1. Scale-free network model with 10000 

nodes and moderate network traffic (40 seconds) 

 

For the first scenario we noted that there is a point 

where adding more nodes in the simulation does 
not help but rather increases the simulation time. In 

this scenario, the optimum number of nodes is 5. 

The second scenario requires much more resources 
as can be seen from the single-processor simulation 

which again failed on the cluster nodes but was 

Number  of cluster  nodes used
1 2 3 4 5 6

Run  1 failed 68 46 32 29 40

Run  2 failed 68 41 31 30 37

Run  3 failed 67 43 32 33 31

Run  4 failed 68 45 30 29 43

Run  5 failed 67 45 32 31 40

Aver age 135 67.6 44 31.4 30.4 38.2
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successful on a more powerful machine, although it 

takes a longer time. Also in this simulation we see 

that adding more nodes (in our case more than 4) 

the simulation process is slower (see Table 2).  

 
Table 2 Scale-free network model with 10000 

nodes and heavy network traffic (40 seconds) 

 

Another observation is that the 2-CPU simulation 

is actually faster than the 3-CPU simulation, 

although the optimal number of nodes is not 2.  

 

5.2. Testing self-similarity in traffic 
The method used for self-similarity testing is 

named Rescaled Range Statistics [20], and it is 

based on long range dependencies. The analyzed 

data describes the investigated traffic as time 

series. To find long range dependencies, measured 
data in the simulation model has to be evaluated in 

different time-scales. The same sample of cell 

numbers versus time has to be cut into lags. Cuts 

have to be done several times, varying the number 

and length of lags. The length of the lags n is the 

time base for further investigations and also it is 
the number of observations in the lag. For each n, a 

number of lags are selected randomly. This number 

of lags must be the same for all values of n. For 
selected lags, two parameters are calculated: 

• R(n) = max(0, W1, W2,..., Wn) - min(0, W1, W2,..., 

Wn) with Wi = (X1 + X2 + ... + Xi) - i X (n) is the 
sample range of the lag. 

• S(n) is the variance of the set {X1 + X2 +... + Xn} 

of one lag. 

For short range dependent sets of observations the 

expected value E[R(n)/S(n)] is about c0n
1/2. 

Contrary to that, for long range dependent sets of 
observations E[R(n)/S(n)] is about c0n

H with 0.5 < 

H < 1. H is the Hurst parameter and c0 is a constant 

of minor importance [21].  

The tests were executed on simulated video traffic: 

two different video encoders (H.261, JPEG) were 

used to encode a video stream from a camera. For 

all experiments, the predefined frame rate and 

transmission rate have been selected for the highest 

quality transmission that is 30 fps frame rate and 

3072 kbps transmission rate. The lag size ranges 

from 5 seconds to a size where at least 7 non 

overlapping lags could be built from the measured 

data. The streams were multiplexed in order to be 

processed in parallel on the cluster. In theory, when 

sequences of the same H are multiplexed, the same 
H should result for the multiplexed sequence. We 

applied this as follows: each data set of 8 hours 

length was cut into 10 pieces first and then these 10 
streams were multiplexed. The cut of the original 

stream results in streams of approximately the 

same H. On the multiplexed stream, the same 

procedure for self-similarity testing as for the 

original data was applied. After that, the same has 

been done cutting the original data into 100 pieces, 

simulating the multiplex of 100 cell streams. Table 

3 summarizes all experiment statistics and results. 

One can observe that the Hurst parameters of the 

multiplexed streams are more or less in the same 
range as for the single streams. 

 

Table 3 Simulation results for self-similarity tests 

 
H values Encoder Measure 

time (s) single 

stream 

10 mux.     

streams 

100 mux.    

streams 

H261 50094 0.685 0.717 0.705 

JPEG 28782 0.842 0.857 0.862 

 

6 Conclusions  
Although the traffic processes in high-speed 

Internet links exhibit asymptotic self-similarity, 

their correlation structure at short time-scales 

makes their modeling as exact self-similar 

processes (like the fractional Brownian motion) 

inaccurate. This causes existing queueing results to 
be poor predictors of network performance; 

nevertheless, based on statistical and queueing 

analysis of data traces from high-speed Internet 
links, we conclude that Internet traffic retains its 

self-similar properties even under high aggregation. 

Running pdns is more efficient than running NS2 
especially on large size network models where 

sometimes pdns is the only solution.   However, 

there are limitations in the number of cluster nodes 

that could process a given network model since 

more nodes are used, more traffic links between 

different cluster nodes are to be simulated and 
therefore more time is spent on inter-processor 

communication. 

It is very important to split the network model 
correctly into smaller sub networks (federations) 

since there is a trade-off between the degree of 

Number  of c luster  nodes used
1 2 3 4 5 6

Run  1 failed 319 338 135 173 165

Run  2 failed 343 357 140 176 171

Run  3 failed 347 351 134 177 166

Run  4 failed 316 347 139 177 165

Run  5 failed 308 320 138 178 163

Average 1139 326.6 342.6 137.2 176.2 166
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separation and federation balancing -  the more 

separated the sub networks are, the more 

unbalanced they become.  

We assume that the results observed in scenario 

number two where the 2-CPU simulation is 
actually faster than the 3-CPU simulation although 

not being the optimal number of cluster nodes, is 

related to the federalization algorithm which failed 
to reach an optimal solution for the 3-CPU scenario 

thus the processing times higher than 2-CPU.  

The results of the tests on the traffic obtained by 

Hurst parameter examination shown that self-

similarity manifests in slowly decaying variances 

and a slowly decaying autocorrelation function. 

The most serious consequence of self-similar 

traffic concerns the size of bursts: the burst lengths 

on different time scales become predictable. 

Further work is necessary to confirm the results 
observed, processing on more than six processors 

and the study of other federalization algorithms. 

We are currently developing a program that can be 

used to study the efficiency of the parallel 

processing and help us understand the interlocking 

mechanisms and further help us improve the 

efficiency of the simulation. 
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