

PARALLEL INTERNET TRAFFIC SIMULATOR WITH

SELF-SIMILAR SCALE-FREE NETWORK MODELS

RADU DOBRESCU, SEBASTIAN TARALUNGA, STEFAN MOCANU

"Politehnica" University of Bucharest, Faculty of Control and Computers,

313 Splaiul Independentei, Bucharest

ROMANIA

radud@isis.pub.ro

25-404.pdf

Abstract. The paper presents a platform, named Parallel Internet Traffic Simulator (PITS), which allows

simulating Internet traffic and accurately replicating appropriate stochastic processes using scale-free models

with self-similar topology. The experiments compare simulation of large-size scale-free networks when using

different number of CPU's running in parallel in the platform cluster and note the differences in simulation
time as well as some characteristics related to the efficiency of the simulation distribution is possible and if

there are limitations in single-CPU simulation. We consider that PITS shows interesting properties when

compared to other traffic generators and therefore it represents a real simulation tool for controlled traffic
generation over real networks which allows to accurately analyze and evaluate the performance of network,

transport, and application-level protocols.

Keywords: scale-free networks, simulation, parallel and distributed processing, self-similar traffic.

1 Introduction
To model a distributed network environment like

the Internet, it is necessary to integrate data

collected from multiple points in a network in order
to get a complete picture of network-wide view of

the traffic. Knowledge of dynamic characteristics is

essential to network management (e.g., detection of
failures/congestion, provisioning, and traffic

engineering like QoS routing or server selections).

However, because of a huge scale and access

rights, it is expensive (sometime impossible) to

measure such characteristics directly. To solve this,

methods and tools for inferencing of unobservable

network performance characteristics are used in

large scale networking environment. The main

previous results refer to the so called network
tomography [1]. Network tomography can be

regarded as a statistical inverse problem that

includes two typical forms: inference of network-

internal characteristics based on end-to-end path

measurements [2], [3] and end-to-end flow

behavior inference from aggregated flows [4], [5].

A model where inference based on self similarity

and fractal behavior can be applied is the scale free

network. Scale-free networks are complex

networks in which some nodes are very well
connected while most nodes have a very small

number of connections. An important characteristic

of scale-free networks is that they are size
independent, that is they preserve the same

characteristics regardless of the network size N.

Scale-free networks have a degree distribution that

follows a power relationship, P(k) = k^(-λ), where
the coefficient λ may vary approximately from 2 to

3 for most real networks. Many real networks have

a scale-free degree distribution, including the
Internet [6].

Simulation of scale-free networks is necessary in

order to study their characteristics. However, large-
scale networks are difficult to simulate due to the

hefty requirements imposed on CPU and memory.

Thus a distributed approach to simulation can be

useful particularly for situations where a single-

processor is not enough.

2 Scale-free topology
All real-life networks are finite so can be

characterized by the degree of connectivity of the

associated graph. But the degree distribution does

not characterize the graph or ensemble in full; other

quantities, such as degree-degree correlation and

spatial correlations are also useful. Several models

have been presented for the evolution of scale-free

networks, each of which may lead to a different

ensemble. The first suggestion was the preferential
attachment model by Barabasi and Albert, which

came to be known as the “Barabasi-Albert (BA)”

model. Several variants have been suggested to this
model. One of them known as the “Molloy-Reed

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Radu Dobrescu, Sebastian Taralunga, Stefan Mocanu

ISSN: 1790-1979
61

Issue 2, Volume 5, February 2008

construction” [7], which ignores the evolution and

assumes only the degree distribution and no

correlations between nodes, will be considered in

the following. Thus, the site reached by following a

link is independent of the origin. This means that a
new node will more probably attach to those nodes

that are already very well connected, i.e. they have

a large number of connections with other nodes
from the network. Poor connected nodes, on the

other hand, have smaller chances of getting new

connections (see fig.1).

Fig. 1. Graphic representation of the generated

network for 200 network nodes and λ=2.35

Besides following the repartition law mentioned

above, some other restrictions (for example those
related to cycles and long chains) had to be applied

in order to make the generated model more realistic

and similar to the Internet. Another obvious

restriction is the lack of isolated components (see

fig.2).

Fig. 2. Graphic representation of the generated

network for 200 network nodes and λ=2.85

A more subtle restriction is related to the TTL

(Time-to-living) which is a way to avoid routing

loops in a real Internet. This translates in a

restriction for our topology – there can be no more

that 30 nodes to get from any node to any other
node. Another restriction is that the generated

network will also have redundant paths, multiple

possible routes between nodes.
The algorithm used for the generation of the scale-

free network topology is generating networks with

a cyclical degree that can be controlled, in our case,

approximately 4% of the added nodes form a cycle.

One more restriction is that we try to avoid long-

line type of scale-free networks – a succession of

several interconnected nodes – structure that does

not have a real-life Internet equivalent.

3. Self-similarity in traffic

3.1 Self-similar processes
In 1965, Benoit Mandelbrot introduces the self-

similar (SS) processes (another wide-spread name

is fractal processes). This is a model which finally

captures the power-law behavior described above

[8]. Referring directly to the increment process Xs,t
= Xt-Xs, he defines stochastic self-similarity as:

Xt0,t0+rt = r
H
 Xt0, t0+t, ∀t0, t, ∀r>0 (1)

Mandelbrot constructs his SS process (fractional

Brownian motion, fBm) starting with two

properties of the usual Brownian motion (Bm):

• Bm has independent increments.

• Bm is self-similar with Hurst parameter H= 0.5

Denoting Bm as B(t) and fBm as BH(t), here is a

simplified version of Mandelbrot’s definition of the

fBm: BH(0) = 0, H ∈ [0,1] and

[]








−+−−−
+Γ

= ∫ ∫
∞−

−−−
0

0

2/12/12/1)()()()()(
)5.0(

1
)(

t

HHH

H sdBstsdBsst
H

tB (2)

The integral in eq.(2) points to another important

property of SS processes: long-range dependence

(LRD). The SS process is called LRD if there are

constants α∈(0,1) and C>0 such that

1
)(

 → ∞→
−

k

kC

k
α

ρ

(3)

which we write simply ρ#(k)&'~ k

–α
 where ρ#(k)&' is the

autocorrelation of lag k. When represented in
logarithmic coordinates, eq.(3) is called the

correlogram of the process, and has an asymptote

of slope -α. This property can be used to estimate α
either graphically or through some analytic fitting

procedure (e.g. least squares). It is to note that SS

and LRD are not overlapping properties. There are

SS processes which are not LRD (the simple Bm is

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Radu Dobrescu, Sebastian Taralunga, Stefan Mocanu

ISSN: 1790-1979
62

Issue 2, Volume 5, February 2008

an example), and, conversely, there are LRD

processes which are not SS. However, the fBm

with H>0.5 is both SS and LRD.

3.2 Self-similarity in network traffic
In a landmark paper [9] from 1993, Leland et al.

report the discovery of self-similarity in local area
network (LAN) traffic, more precisely Ethernet

traffic. To be precise, they studied two separate

processes: number of bytes arriving per time

interval and number of IP packets. Since packets

can vary widely in size (from 40 byte to 1500 byte

in the case of Ethernet), it is in principle

conceivable for the two processes to be quite

different. However, the paper shows that they are

both SS, with H estimated in the range (0.6 – 0.9)
according to the changing network conditions. As a

main critique of this approach, we note that all

methods used in [9] (and in numerous papers that
followed) detect and estimate LRD rather than SS.

“Self-similarity” (actually LRD) has since been

reported in various types of data traffic: LAN,

WAN, Variable-Bit-Rate video, SS7 control,

HTTP etc. (see [10] for an extensive bibliography).

An overview of the above studies shows link

speeds ranging from 10 Mbps (Ethernet) to 622

Mbps (OC-12), link type being “access” (typically

connecting a university campus or research lab to
an Internet Service Provider), average bandwidths

between 1.4 and 42 Mbps, minimum time-scale of

1ms and at most 6 orders of magnitude for time-
scales. Lack of access to high-speed, high-

aggregation links, and lack of devices capable of

measuring such links have until recently prevented
similar studies from being performed on Internet

backbone links. Actually, some researches have

claimed that aggregating Internet traffic causes

convergence to a Poisson limit [11]. For reasons

presented in the next section, based on the remarks

that on shorter time scales effects due to the

network transport protocols are believed to

dominate traffic correlations, although this property

has not been definitively established and on longer

time scales, effects such as diurnal traffic load

patterns become significant, we disagree.

3.3 Relevance of self-similarity in network

operation

In virtually all areas of communications

networking it is of great importance to understand
the characteristics of packet traffic. In a packet-

switched environment, there are no resources

reserved for a connection, which creates the
possibility of packets arriving at a node at a rate

higher than the processing rate. Packets arriving on

any of a number of input ports can be destined for

the same output port. Although there could be in

general many operations to be performed, they are

broadly divided into two classes: serialization the

process of transmitting the bits out on the link) and
internal processing (i.e. everything else that

happens inside the node - classification, routing

table and access list look-ups, policing, shaping
etc). Serialization delays are deterministic and

given by the speed of the output link. Internal

processing delays are essentially random but

advanced algorithms and data structures are doing

in general a good job of maintaining overall

deterministic performance. As a consequence, the

only truly random part of the delay is the time a

packet spends waiting for service. The internal

workings of a node are relatively well understood

(by either analysis or direct measurement) and
controllable. In contrast, the (incoming) traffic

flows are neither completely understood nor easily

controllable. The focus is therefore on accurately

modeling these flows and predicting their impact

on network performance.

It is has been shown time and again that the high

variability associated with LRD and SS processes

can greatly deteriorate network performance,

creating for instance queuing delays orders of
magnitude higher than those predicted by

traditional models. We make this point once again

with the plot shown in fig.3: the average queue
length created in a queuing simulation by the actual

packet trace is widely divergent from the average

predicted by a simple queueing model (M/D/1).

COMPARISON OF THEORETICAL AND

EMPIRICAL QUEUEING MODELS

100

1000

10000

100000

1000000

10000000

100000000

0.5 0.6 0.7 0.8 0.9 1

UTILIZATION

B
U
F
F
E
R
 L
E
N
G
T
H

[B
Y
T
E
S
]

M/D/1

Trace

 Fig. 3 Comparison between the queue lengths

The notation is easily explained: “M” stands for the

(unique) input process, which is assumed

Markovian, i.e. a Poisson process; “D” stands for

the service, assumed Deterministic; and “1” means

that only one facility is providing service (no

parallel service). In view of our simple model of a

node discussed above, hypotheses “D” and “1”
seem reasonable, so we would like to identify “M”

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Radu Dobrescu, Sebastian Taralunga, Stefan Mocanu

ISSN: 1790-1979
63

Issue 2, Volume 5, February 2008

as the cause of the massive discrepancy. The

question then is: Is there an “fBm/D/1” queuing

model? The answer “almost” will be argued in the

next section.

4 Proposed Internet model
The generated topology consists of three types of

nodes: Routers, defined as nodes with one or
several links. Routers do not initiate traffic and do

not accept connections. Routers can be one of the

following types: routers that connect primarily

customers, routers that connect primarily servers

and routers that connect primarily other routers.

Routers that connect primarily customers have

hundreds or thousands of type one connections

(leaf nodes) and a reduced number of connections

to other routers.
Routers that connect primarily servers have a

reduced number of connections to servers in the

order of tenths and reduced number (2 or 3)

connections to other routers. Routers that connect

primarily routers have a number in the order of

tenths of connections to other routers and do not

have connections to neither servers nor customers.
Servers are defined as nodes with one connection

but sometimes could have two or even three

connections. Servers only accept traffic
connections but do not initiate traffic.

Customers (end-users) defined as nodes that have

only one connection, very seldom two connections.
Customers initiate traffic connections towards

servers at random moments but usually in a time

succession. For our proposed model, we chose a

20:80 customers to servers ratio.

4.1 Scale-free network design algorithm
We designed and implemented an algorithm that

generates those subsets of the scale-free networks

that are close to a real computer network such as

the Internet. Our application is able to handle very
large collections of nodes, to control the generation

of network cycles, and the number of isolated

nodes. The application was written in Python
being, as such, portable. It runs very fast on a

decent machine (less than 5 minutes for 100.000

nodes model).

Network generation algorithm:

1. set node_count and λ
2. compute the optimal number of nodes per degree

3. create manually a small network of 3 nodes

4. for each node from 4 to node_count

 4.1. call add_node procedure

 4.2. while adding was not successful

 4.2.1. call recompute procedure

 4.2.2. call add_node procedure

5. save network description file

add_node procedure

1. according to the preferential attachment,
compute the degree of the parent node

2. if degree could be chosen then exit procedure

3. compute the number of links that the new node

shall establish with descendants of its future parent,

according to copy model

4. chose randomly a parent from the nodes having

the degree as computed above

5. compute the descendant_list, the list of

descendants of the newly chosen parent

6. create the new node and links
7. for each descendant of the descendant_list

 7.1. create the corresponding links

8. exit procedure with success code

recompute procedure

1. for each degree category

 1.1. calculate the factor needed to increase

the optimal count of nodes per degree

 1.2. if necessary increase the optimal
number of nodes per degree

2. exit procedure

The algorithm starts with a manually created

network of several nodes, then using preferential

attachment and growth algorithms, new nodes are
added. We introduced an original component, the

computation in advance of the number of nodes on

each degree-level. The preferential attachment rule

is followed by obeying to the restriction of having

the optimal number of nodes per degree.

We noticed that the power law is difficult to follow

while the network size is growing, as a result we

calculate again the optimal number of nodes per

degree-level at given points in the algorithm. This
is necessary because the bigger the network the

higher the chance that a new node will be attached

only to some specific very-connected nodes. In a
real network such as Internet this will not happen.

If only the preferential and growth algorithms are

followed, then the graph will have no cycles, which

is not realistic, therefore we introduced a

component from the “copy model” for graph

generation in order to make the network graph

include cyclical components.

This component ensures that each new node is also

attached to some of its parent-node descendants

using a calibration method. The calibration method

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Radu Dobrescu, Sebastian Taralunga, Stefan Mocanu

ISSN: 1790-1979
64

Issue 2, Volume 5, February 2008

computes the number of additional links that a new

node must have with the descendants of its parent.

This number depends on how well-connected is the

parent and it also includes a random component.

The output of the application is a network
description file that can be used by several tools

like for instance a tool to display the power law.

This file is stored using a special format needed in
order to reduce the amount of disk writes.

Fig. 4. Graphic representation of the distribution

law for a scale-free network model and for a
randomized network with 10000 nodes

In Fig. 3 we compare an almost random network
distribution law and a free-scale distribution law.

On the Y axis we represent the number of

connections and on the X axis the number of nodes
having this number of connections. It was

impossible to obtain a completely random network

given the limitations imposed by the Internet

model. In this paper we further describe only the

scale-free network model since we think that such a

model can lead to a better balancing based on the

preferential attachment mechanism.

4.2 Traffic generation
Traffic generation is an essential part of the

simulation as such, we decided to initiate randomly
between 1 and 3 simultaneous traffic connections

from “customer” nodes and for the sake of

simplicity we used ftp sessions to randomly chosen

destination servers. We also decided that the links

connecting routers should have higher speeds than

lines connecting customers to routers, for example
- server-router 1 Gbps, client-router 10 Mbps,

router-router 10, 100 Mbps or 1Gbps depending on

the type of router. The code generated respecting
these two conditions is added to the network

description file, being ready to be processed by the

simulator.

4.3 Single-CPU simulation
We used a modular approach that allows us to later

reuse components for different parts of the

simulation. For example, the same network model

generated by the initial script can be used for both

single-CPU and distributed simulations, allowing a

comparison between the two types of simulation.
Standalone simulations were run under University

of California Berkeley's NS2 network simulator.

NS2 (The Network Simulator) is a very complex

open source discrete event simulator targeted at

networking research [12]. The simulator is actually

an OTcl interpreter, which also makes it quite easy

to use.

We noticed that on a single machine, as network

size increases, very soon we hit the limit of the
network sizes that can be simulated due to

resources limitations mostly memory but also high

CPU load. In case of small size network models,
such as with a few nodes, simulations can be run

on a single machine. One of the models generated

with a number of 10000 nodes and a lot of traffic

connections could not be simulated on an AMD

Athlon(tm) 64 Processor 3200+ with only 512

Megabytes of RAM available.

The results provided by NS2 were visualised using

the nam (network animator) software package. The

topology generator gives different colours to
different type of nodes: server, client, router.

Details about the networking traffic through each

network node are parsed from the simulator output.

4.4 Multi-CPU simulations
Unfortunately NS was not designed to run on

parallel machines. Only in the NS version 3, now

under alpha development, there are discussions

about distributed processing. The main obstacle in

running ns in a distributed/parallel environment is

related to the description of objects in the
simulation.

As such we ran our distributed simulations under

Georgia Tech's extension to NS2, pdns [13], which
uses syntax close to that of NS2, the main

differences being a number of extensions needed

for the parallelization so that different instances of

pdns can communicate with each other and create

the global image of the network to be simulated.

Each simulator running on different nodes needs to

know the status of other simulators. Furthermore, if

we try to split the network description file into

separate files and run each of these in separate
simulation contexts, we need to find a way to

communicate parameters between the simulation

nodes.

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Radu Dobrescu, Sebastian Taralunga, Stefan Mocanu

ISSN: 1790-1979
65

Issue 2, Volume 5, February 2008

The simulation process consists of a number of

steps, of which, defining network nodes links,

queue and topology must take into consideration

the fact that other nodes may not reside under the

same simulator. All simulations are running 40
seconds of simulated traffic scenarios.

4.5 Cluster description
In order to create a parallel/distributed environment

we have built a cluster using commodity hardware

and running Linux as operating system [14]. We

have written and tested applications using PVM

(Parallel Virtual Machine) which is a framework

consisting of a number of software packages that

accomplish the task of creating a single machine

that spans across multiple CPU's, by using the
network inter-connection and a specific library

[15]. Another framework that can be used to run

applications in a distributed manner is MPI -
Message Passing Interface [16].

Our cluster consists of a “head” machine and a

number of six cluster nodes. The “head” provides

all services for the cluster nodes – IP allocation,

booting services, File System (NFS) for storage of

data, facilities for updating, managing and

controlling the images used by the cluster nodes as

well as access to the cluster. The “head” computer

provides an image for the operating system that is
loaded by each of the cluster nodes since the

cluster nodes do not have their own storage media.

As this image resides in the memory of each cluster
node, we took special steps to reduce the size of

this image and to make most of the memory

available to the running processes.
The application partition is mounted read-only

while the partition where data is stored is mounted

read-write and accessible to the users on all

machines in a similar manner providing transparent

access to user data. In order to access the cluster,

users must connect to a virtual server located on a

head machine. This virtual server can also act as a

node in the cluster when extra computation power

is needed.

4.6 Network Splitting
In order to use PDNS simulation, we needed to

split the network into several quasi-independent

sub-networks [17]. Each instance of PDNS handles

a specific sub-network, thus the dependencies

between them need to be minimal, i.e. there shall

be as few as possible links between nodes located
in different sub-networks.

We chose to have a federated simulation approach.

We designed and implemented a federalization

algorithm in order to split the original generated

network into several small ones. The algorithm that

generates n federative components chooses the

most n linked nodes, assigned them to an empty

federation and starts a procedure similar to the
breadth-first search algorithm. Each node is

marked as being owned by a federation.

The pdns script generator takes as input the
generated network description and the generated

federations, respectively. Depending on the

connectivity of nodes, they are assigned the role of

routers, servers, end-users and corresponding

traffic scenario are associated with them. We also

used a different approach to partitioning a ns script

into several pdns scripts by using autopart [18], a

simulation partitioning tool based on the graph

partitioning package called METIS [19]

5 Simulation results

5.1. Testing SFN models parallel processing
We have decided to run simulations for 40 seconds

of traffic for a scale-free network model with

10000 nodes. At such a scale, a one-node

processing is impossible because the cluster node

runs out of memory. Still, to get valid results we
had run the simulation on a much more powerful

machine with plenty of memory and virtual

memory.
We chose two different scenarios, one with a

moderate network traffic and another scenario with

a heavy network traffic. Each scenario was

simulated five times under similar load conditions,

using two to six CPU's and we noted the time used

for the actual simulation (in seconds, see Table 1).

Table 1. Scale-free network model with 10000

nodes and moderate network traffic (40 seconds)

For the first scenario we noted that there is a point

where adding more nodes in the simulation does
not help but rather increases the simulation time. In

this scenario, the optimum number of nodes is 5.

The second scenario requires much more resources
as can be seen from the single-processor simulation

which again failed on the cluster nodes but was

Number of cluster nodes used
1 2 3 4 5 6

Run 1 failed 68 46 32 29 40

Run 2 failed 68 41 31 30 37

Run 3 failed 67 43 32 33 31

Run 4 failed 68 45 30 29 43

Run 5 failed 67 45 32 31 40

Aver age 135 67.6 44 31.4 30.4 38.2

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Radu Dobrescu, Sebastian Taralunga, Stefan Mocanu

ISSN: 1790-1979
66

Issue 2, Volume 5, February 2008

successful on a more powerful machine, although it

takes a longer time. Also in this simulation we see

that adding more nodes (in our case more than 4)

the simulation process is slower (see Table 2).

Table 2 Scale-free network model with 10000

nodes and heavy network traffic (40 seconds)

Another observation is that the 2-CPU simulation

is actually faster than the 3-CPU simulation,

although the optimal number of nodes is not 2.

5.2. Testing self-similarity in traffic
The method used for self-similarity testing is

named Rescaled Range Statistics [20], and it is

based on long range dependencies. The analyzed

data describes the investigated traffic as time

series. To find long range dependencies, measured
data in the simulation model has to be evaluated in

different time-scales. The same sample of cell

numbers versus time has to be cut into lags. Cuts

have to be done several times, varying the number

and length of lags. The length of the lags n is the

time base for further investigations and also it is
the number of observations in the lag. For each n, a

number of lags are selected randomly. This number

of lags must be the same for all values of n. For
selected lags, two parameters are calculated:

• R(n) = max(0, W1, W2,..., Wn) - min(0, W1, W2,...,

Wn) with Wi = (X1 + X2 + ... + Xi) - i X (n) is the
sample range of the lag.

• S(n) is the variance of the set {X1 + X2 +... + Xn}

of one lag.

For short range dependent sets of observations the

expected value E[R(n)/S(n)] is about c0n
1/2.

Contrary to that, for long range dependent sets of
observations E[R(n)/S(n)] is about c0n

H with 0.5 <

H < 1. H is the Hurst parameter and c0 is a constant

of minor importance [21].

The tests were executed on simulated video traffic:

two different video encoders (H.261, JPEG) were

used to encode a video stream from a camera. For

all experiments, the predefined frame rate and

transmission rate have been selected for the highest

quality transmission that is 30 fps frame rate and

3072 kbps transmission rate. The lag size ranges

from 5 seconds to a size where at least 7 non

overlapping lags could be built from the measured

data. The streams were multiplexed in order to be

processed in parallel on the cluster. In theory, when

sequences of the same H are multiplexed, the same
H should result for the multiplexed sequence. We

applied this as follows: each data set of 8 hours

length was cut into 10 pieces first and then these 10
streams were multiplexed. The cut of the original

stream results in streams of approximately the

same H. On the multiplexed stream, the same

procedure for self-similarity testing as for the

original data was applied. After that, the same has

been done cutting the original data into 100 pieces,

simulating the multiplex of 100 cell streams. Table

3 summarizes all experiment statistics and results.

One can observe that the Hurst parameters of the

multiplexed streams are more or less in the same
range as for the single streams.

Table 3 Simulation results for self-similarity tests

H values Encoder Measure

time (s) single

stream

10 mux.

streams

100 mux.

streams

H261 50094 0.685 0.717 0.705

JPEG 28782 0.842 0.857 0.862

6 Conclusions
Although the traffic processes in high-speed

Internet links exhibit asymptotic self-similarity,

their correlation structure at short time-scales

makes their modeling as exact self-similar

processes (like the fractional Brownian motion)

inaccurate. This causes existing queueing results to
be poor predictors of network performance;

nevertheless, based on statistical and queueing

analysis of data traces from high-speed Internet
links, we conclude that Internet traffic retains its

self-similar properties even under high aggregation.

Running pdns is more efficient than running NS2
especially on large size network models where

sometimes pdns is the only solution. However,

there are limitations in the number of cluster nodes

that could process a given network model since

more nodes are used, more traffic links between

different cluster nodes are to be simulated and
therefore more time is spent on inter-processor

communication.

It is very important to split the network model
correctly into smaller sub networks (federations)

since there is a trade-off between the degree of

Number of c luster nodes used
1 2 3 4 5 6

Run 1 failed 319 338 135 173 165

Run 2 failed 343 357 140 176 171

Run 3 failed 347 351 134 177 166

Run 4 failed 316 347 139 177 165

Run 5 failed 308 320 138 178 163

Average 1139 326.6 342.6 137.2 176.2 166

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Radu Dobrescu, Sebastian Taralunga, Stefan Mocanu

ISSN: 1790-1979
67

Issue 2, Volume 5, February 2008

separation and federation balancing - the more

separated the sub networks are, the more

unbalanced they become.

We assume that the results observed in scenario

number two where the 2-CPU simulation is
actually faster than the 3-CPU simulation although

not being the optimal number of cluster nodes, is

related to the federalization algorithm which failed
to reach an optimal solution for the 3-CPU scenario

thus the processing times higher than 2-CPU.

The results of the tests on the traffic obtained by

Hurst parameter examination shown that self-

similarity manifests in slowly decaying variances

and a slowly decaying autocorrelation function.

The most serious consequence of self-similar

traffic concerns the size of bursts: the burst lengths

on different time scales become predictable.

Further work is necessary to confirm the results
observed, processing on more than six processors

and the study of other federalization algorithms.

We are currently developing a program that can be

used to study the efficiency of the parallel

processing and help us understand the interlocking

mechanisms and further help us improve the

efficiency of the simulation.

ACKNOWLEDGEMENTS
This work was partially supported by the

Romanian Ministry of Education and Research

under Grant CNCSIS No. I 121/2007

References:

[1] Y. Vardi, Network tomography: estimating

source-destination traffic intensities from link data.

J. Amer. Stat. Assoc., 1996, p.365-377

[2] M. Coates and R. Nowak, Network delay

distribution inference from end-to-end unicast

measurement, Proc. IEEE Int. Conf. Acoust.,

Speech and Signal Proc., May 2001.

[3] A. Bestavros, K. Harfoush and J. Byers, Robust

identification of shared losses using end-to-end
unicast probes, Proc. IEEE Int. Conf. Network

Protocols, Osaka, Japan, Nov.2000.

[4] J. Cao, S. Van der Wiel, B. Yu and Z. Zhu, A
scalable method for estimating network traffic

matrices, Bell Labs Tech. Report, 2000.

[5] J. Cao, D. Davis, S. Wiel and B. Yu, Time-

varying network tomography : Router link data,

The Journal of American Statistics Association,

95(452), 2000, p. 1063–1075

[6] S. da Silva and P. R. Guardieiro, Studying

Traffic Engineering in Next Generation Internet,

WSEAS Transactions on Systems, Issue 1, Volume

2, 2003, p.107-112

[7] M, Molloy and B. Reed, “The size of the giant

component of a random graph with a given degree

sequence”, Combin. Probab. Comput. 7, 1998, p.

295–305

[8] B. B. Mandelbrot and J. W. Van Ness,
“Fractional Brownian Motions, Fractional Noises

and Application”, SIAM Review, Vol.10, No.4,

October 1968
[9] W. Leland, M. Taqqu, W. Willinger, and D.

Wilson, On the self-similar nature of Ethernet

Traffic, Proceedings of ACM SIGCOMM’93, 1993,

p.183-193

[10] R. Dobrescu, M. Dobrescu and St.

Mocanu, Using Self Similarity To Model Network

Traffic, WSEAS Transactions on Computers, Issue

6, Vol3, dec.2004, p. 1752-1757

[11] B. H. He, H.L. Zhang, W.Zhang and M.Hu,

Designing a Framework for Worm Detection
Based on Similarity, WSEAS Transactions on

Comm., Issue 8, Volume 4, 2005, p.570-578

[12] J. Chung, NS by example, www.isi.edu/

[13] http://www.cc.gatech.edu/computing/ pdns

[14] S. Mocanu and S. Taralunga, Cluster based

simulations of Scale-Free Networks Immunization

Strategies,, WSEAS Transactions on Computers,

Issue 2, vol. 6, 2007, p. 268-275

[15] A. Grama, A. Gupta, G. Karpys and V.
Kumar, Introduction to Parallel Computing,

Prentice Hall, 2003

[16] M. M. Balas, V. E. Balas and L. R. Szantho,
The Fuzzy-Interpolative Concept Applied In Soft

Computing,. Proc. of the 7th WSEAS Int. Conf. on

Automation and Information, 2006, pag.95-100

[17] B. Wilkinson and M.A Pearson, Parallel

Programming, Prentice Hall, 2005

[18] G. Riley, M. Ammar, R.Fujimoto, A. Park, K.

Perumalla and D. Xu, A Federated Approach to

Distributed Network Simulation, ACM Trans. on

Modeling and Computer Simulation (TOMACS),

Vol. 14(2), April 2004

[19] METIS - Serial Graph Partitioning and Fill-

reducing Matrix, glaros.dtc.umn.edu/
[20] M. Dobrescu and S. Mocanu, Resource

management for real time parallel processing in a

distributed system. WSEAS Transactions on
Computers, Issue 3, vol.2, 2004, p.732-737

[21] R. Dobrescu, S. Taralunga and S. Mocanu,

Web Traffic Simulation With Scale-Free Network

Models, Proceedings of the 7 th WSEAS Int.

Conference on Applied Informatics and

Communications, AIC 07, pp.277-282

WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION

Radu Dobrescu, Sebastian Taralunga, Stefan Mocanu

ISSN: 1790-1979
68

Issue 2, Volume 5, February 2008

