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Abstract: - The research presented here utilises a genetic algorithm in a numerical three-dimensional fatigue 
based optimisation study of a 7050-T7451 aluminium structure. Genetic algorithms have rapidly become 
popular due to the robustness and the balance between efficiency and effectiveness in many different 
environments. Genetic algorithm has been utilised in many stress based optimisation applications, however to 
date, it has not been used in a three dimensional structural fatigue based optimisation study involving short 
crack lengths in the threshold region. The generalised Frost-Dugdale law was developed to allow for the 
accurate prediction of fatigue crack growth from short crack lengths. Consequently, design against fatigue 
failure can include the analysis of near-threshold crack propagation. The structural optimisation procedure 
proposed integrates geometrical modelling, structural analysis and optimization into one complete and 
automated computer-aided design process. This paper indicates that the proposed combined procedure 
provides a more accurate and robust optimised solution. It was discovered that the results resembled the 
solutions from other optimisation algorithms. As a result, this procedure illustrates a procedure for the design 
of light weight structures using a fatigue based optimisation in conjunction with a genetic algorithm. 
Furthermore, the possibility of the application of the generalised Frost-Dugdale model in design optimisation 
has been demonstrated. This procedure has the potential to be applied to structures with complex structural 
configurations taking into account crack propagation in the near-threshold. 
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1   Introduction 
The genetic algorithm concept has been growing 
since the early 1970s [1]. However only recently has 
this concept been applied to a variety of disciplines 
and real-world applications, demonstrating its 
commercial potential. The application of genetic 
algorithm to structural optimisation in the 
engineering industry was first studied by Goldberg 
[1, 2]. More recently Annicchiarico and Cerrolaza 
[3-6] developed two- and three- dimensional 
structural stress based optimisation implementing a 
genetic algorithm, and modelled the finite element 
structures using beta-splines. Genetic algorithms 
have rapidly become popular due to the robustness 
and the balance between efficiency and 
effectiveness in many different environments. The 
application of genetic algorithms to stress based 
structural and topology optimisation problems is 
relatively mature. However, the implementation for 
genetic algorithms to a fatigue based structural 
optimisation procedure has received little attention 
and the involvement of initial short cracks within the 

threshold region has yet to be considered. Therefore 
an investigation into the development and 
application of a genetic algorithm into fatigue based 
structural optimisation procedure involving short 
cracks within the threshold region is considered in 
this paper.  
Several structural optimisation algorithms in 
literature have been developed to account for 
damage tolerance issues and initial cracks, but to 
date none have analysed the effect of near-threshold 
crack propagation, i.e. short initial cracks in the low-
to-mid ∆K region. This is mainly due to the fact that 
these structural optimisation algorithms only use 
Paris like laws which are applicable only in Region 
II (Paris region). For these reasons the development 
of an optimisation procedure involving near-
threshold crack propagation was investigated. 

 
 

2   Numerical Formulation 
2.1 Crack Growth Model 
2.1.1   Paris Law 
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Fatigue crack growth has traditionally revolved 
around the belief that the crack growth rate, da/dN 
can be related to the stress intensity factor range, 
∆K, and/or the maximum stress intensity factor Kmax. 
This correlation was first suggested by Paris et al [6] 
and resulted in the well known Paris equation: 

( )mKCdNda Δ=/      (1) 
where C and m are experimentally obtained 
constants that are considered to be constant for a 
particular material. This relationship has had a 
number of modifications to account for various 
observations, such as R ratio (R = Kmin / Kmax), Kmax 
effects [7, 8] and closure effects [9, 10]. The NASA 
fatigue crack growth structural analysis program 
implements Newman’s law, which is a closure effect 
variant of the Paris law. The Paris law, and its 
variants are only applicable in the Paris region, 
Region II. 
 
 
2.1.1   Generalised Frost-Dugdale Law 
Recent observation has revealed, for constant 
amplitude loading, a near log-linear relationship 
between natural log of the crack length and the 
fatigue life for crack growth lengths as small as a 
few microns in the near-threshold region [11-14]. 
From these observations Barter et al. [11] presented 
a generalised Frost-Dugdale crack growth law to 
describe this relationship. 
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where C, a and m are constants, and ∆Keff is the 
effective stress intensity factor. It has been shown in 
[11-14] that this relationship holds for the 7050-
T7451 aluminium alloy, in which C is 1.78E-10 and 
m is 3.36. Thus, confirming the implementation of 
the generalised Frost-Dugdale law for the 7050-
T7451 aluminium alloy. The NASA fatigue crack 
growth structural analysis program [9] has been 
modified to implement this law. 
  
 
2.1 3D Structural Analysis 
The structural optimisation procedure proposed 
integrates geometrical modelling, structural analysis 
and optimization into one complete and automated 
computer-aided design process, termed an 
‘Integrated Design Optimisation System’. It 
determines the shape of the boundary of the three-
dimensional structural component under geometric 
constraints and structural conditions. The same 
structural analysis, the Finite Element Alternating 
Method (FEAM) as described in [18, 19] was 
implemented in this research, to avoid the finite 

element modelling of a complex three-dimensional 
cracks. FEAM only requires the location of the 
crack centres in its analysis. Therefore, 3D semi-
elliptical cracks, as specified in [9, 18, 19] were 
placed all along the design surface of the model 
allowing for an effective modelling of the stress 
intensity factor variation around the boundary 
surface. Using these stress intensity factor solutions 
the fatigue crack growth structural analysis program 
then uses the appropriate crack growth law to 
calculate the fatigue life at the crack locations.  
 
 
2.2 Genetic Algorithm 
Genetic algorithms search from a randomly selected 
population of design points. Genetic algorithm 
searches many points simultaneously, searching 
many optimal peaks in parallel, thus illuminating the 
probability of finding false local optima. Genetic 
algorithms converge quickly to the optimum 
structure with a minimum effort, having to test only 
a small fraction of the design space to find out either 
the near optimum or the optimum solution. Genetic 
algorithm does not calculate the derivatives or use 
other auxiliary knowledge, but utilises the objective 
function information. An important aspect of genetic 
algorithm is the fact that probabilistic transition 
rules, i.e. probabilistic operators, are implemented to 
guide the search and not deterministic rules. These 
differences contribute to a genetic algorithm’s 
robustness and resulting advantage over other more 
commonly used techniques [1].  
Each design parameter is encoded into a particular 
code, i.e. binary finite-length string, and is termed 
the genotype. The concatenation of each genotype 
creates a binary finite-length string representation 
known as a chromosome. A single chromosome 
represents the total prescription for the construction 
of a particular design. The entire parameter sets is 
termed the population. Therefore, there are two main 
mechanisms that link genetic algorithm to solving a 
particular problem. The first mechanism is the 
method of encoding particular design solutions, 
represented by design parameters, to the problem on 
chromosomes and decoding the chromosome within 
limits of the parameters of the design solution. 
While the second mechanism is the evaluation of a 
function that measures the performance of a 
chromosome in the context of the problem. 
The fitness function is the link between the genetic 
algorithm and the problem to be solved [20]. Since 
each chromosome represents a parameter or 
parameter set for a particular design, the objective 
function of the problem is evaluated to find the 
response of the design parameters. The fitness 
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function is converted from the objective function 
and produces a direct indication of performance for 
each chromosome to solve the optimisation problem 
subjected to the imposed constraints, which is 
termed fitness. This allows the population to be 
ranked according to fitness. 
A top-level description of a simple genetic algorithm 
is as follows. In the initial phase, the population is 
heterogeneous, that is the randomly-generated 
chromosomes that are different. This randomly 
chosen population of chromosomes are copied based 
on their fitness by the operator known as 
reproduction. The chromosomes with the higher 
fitness values have a higher probability of being 
reproduced. Next the operators, crossover and 
mutation are implemented, in which bit 
manipulation, string copying and exchanging of 
partial strings update the chromosomes in the new 
improved population. This result in a new 
generation of chromosomes that are ready to be 
evaluated, selected and reproduced. This process is 
repeated, continuously improving the population, 
until the population becomes homogeneous. The 
definition of a population becoming homogeneous 
as defined by [1], is when the variance or standard 
deviation of the fitness becomes small, or the mean 
of the fitness approaches the maximum fitness of the 
population. I.e. when the population has converged, 
in which the population consists primarily of similar 
individuals. The next section briefly describes the 
three genetic algorithm operators. 
 
 
2.2.1   Genetic Algorithm Operators 
The reproduction of a new population begins with 
the selection procedure. The concept of reproduction 
is to create another population based on the fitness 
values of each chromosome. The selection process 
chooses chromosomes to be paired for reproduction, 
which will be used by the crossover and mutation 
operators. Chromosomes with a higher fitness value 
have a higher probability of being selected and 
contributing to one or more chromosomes in the 
next generation. There are a number of algorithmic 
implementations of this selection operator. The 
selection operators investigated include 
deterministic sampling, stochastic sampling with 
replacement, remainder stochastic sampling methods 
with and without replacement and stochastic 
tournament procedure.  
The crossover operator exchanges bits between 
chromosomes selected by the selection operator 
according to the type of crossover algorithm. The 
selection operator selects two chromosomes from 
the population termed the parents from the 

population; next the crossover operator creates two 
children from the two parents and begins to create a 
new population. This process is repeated until the 
new population is filled. The crossover operator is 
assigned a probability of being performed with the 
genetic algorithm. The three common crossover 
algorithms investigated are single, double and 
uniform crossover. Single crossover involves the 
exchange of bits between two chromosomes from a 
randomly selected point, termed the crossover site, 
in the chromosome. For example if a chromosome 
has a length of n, a crossover site position k between 
0 and n is randomly chosen to indicate the point 
after which all the bits from both chromosomes are 
exchanged, i.e. exchanging all the bits between k+1 
and n inclusively. The double crossover operator is 
similar to the single crossover operator, however 
there are two exchange points. The bits between the 
two parent chromosomes are exchanged between the 
two exchange points. For example if a chromosome 
has a length of n, crossover site positions of k and m 
are randomly chosen between 0 and n. Therefore the 
bits between k+1 and m are exchanged between the 
two parent chromosomes to produce two new 
chromosomes. The uniform crossover follows a 
different principle from that of the single and double 
crossover. For each bit of the children 
chromosomes, it is randomly selected which parent 
contributes its bit value to a child. This leads to the 
random generation of a binary code template. I.e. a 
template is randomly created of 1 and 0’s. The 
template indicates which parent will contribute to 
the first child, leaving the remaining parent bit to 
contribute to the second parent. The selection and 
crossover operators give genetic algorithms much of 
their power. 
The mutation operator involves the alteration of a 
randomly selected bit in a chromosome according to 
a probability value. The alteration of a randomly 
selected bit in a chromosome simply involves the 
exchange of a bit to a randomly selected bit 
depending on the probability. Therefore the 
mutation operator goes through each bit in a 
chromosome, replacing each bit by a randomly 
selected bit if the probability of exchange is met. 
 
 
3   Numerical Analysis 
A simple benchmark problem of a ‘through-hole in a 
rectangular block under biaxial loading’ was 
considered. It consisted of a 10 mm thick 7050-
T7451 Aluminium alloy with a length and height of 
200 mm and a centrally located hole with a radius of 
10 mm. The block was subjected to a uniform 
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biaxial tensile stress field of 100 MPa × 50 MPa as 
illustrated in Fig. 17b. Due to the symmetry of the 
model, only an eighth of the structure was modelled 
to increase the efficiency of the optimisation 
procedure (i.e. a quarter of the structure and half its 
thickness, illustrated by the model in Fig. 1b). The 
material properties used were Young’s modulus = 
71.7 GPa and Poisson’s ratio = 0.30. The objective 
of this problem was to obtain the optimal geometry 
of the centrally located through-hole, therefore the 
hole boundary was considered the design boundary. 
The optimisation domain constrained the shape of 
the hole within the lines KM and LN as illustrated in 
Fig. 1a.  
 

 
 

(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Figure 1. a) Full Schematic of the 7050-T7451 
aluminium alloy model. b) Meshed structure of the 
optimisation problem 
 
This genetic algorithm implementation relies on a 
simple coding of model design parameters such as 
the parameters of an equation describing the design 
boundary. The geometric representation of the 

design boundary of the centrally located through-
hole was chosen so that an effective geometry could 
be represented by the least possible amount of 
parameters. In order to maintain the simplicity of the 
problem and reduce computational efficiency, the 
number of parameters was kept at a minimum.  
The papers [18-22], have shown that the three-
dimensional stress optimised solution for the 
problem of a through-hole in a 3D rectangular block 
under biaxial loading is approximately a 2:1 ellipse. 
Therefore, the general polar equation of an ellipse 
was considered to describe the design boundary of 
the hole.  
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It is clear from the equations that there are three 
variables a, b and p. These represent the design 
parameters for the optimisation procedure. The 
parameters a and b represent the maximum size of 
the hole in the x and y directions in the X-Y plane. 
However, due to a geometric constraint of the 
problem (as illustrated in Fig. 17a) the hole is 
constrained in the x-direction by ±10mm. Therefore, 
parameter a was kept at a constant value of 10mm in 
the symmetrical model. The parameter b represented 
the height of the ellipse and the parameter p 
described the curvature of the hole. This resulted in 
a two parameter (b and p) geometric representation 
of the hole.  
The chromosomes represented the parameters of the 
equation that describes the design boundary. Since 
two parameters (b & p) are required for the 
optimisation, the problem is considered a multi-
parameter optimisation. Therefore two 
chromosomes of length 15 were concatenated to 
form a chromosome of length 30. Each 15 bit 
chromosome (l=15) represented a parameter mapped 
to an un-signed integer ranging between 0 and 2l 
[0,2l], to a specified interval [Smin, Smax]. In this case 
the first 15 bits of the chromosome represented the b 
parameter ranging from 10 – 30, while the final 15 
bits of the chromosome represented the p parameter 
ranging from 2 – 3. 
 
 
3.1 Stress Optimisation Results 
The genetic algorithm developed was initially 
verified by implementing a stress based 
optimisation, since the optimal solution was known 

B 

A 

100 MPa 

50 MPa 
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to be an approximate 2:1 ellipse along the design 
boundary. The objective function was to minimise 
the maximum tangential principal stress along the 
design boundary. Therefore the evaluation function 
was the maximum tangential principal stress along 
the design boundary and the fitness function was the 
normalised value of the evaluation function for each 
particular population. Eq. (5) describes the fitness 
function implemented: 

max

)(1)(
eval

ievalifitness −=      (5) 

For i = 1, population size. Where eval(i) represents 
evaluation value for chromosome (parameter set) i 
and evalmax is the maximum evaluation value in the 
current population.It was found that in this 
application the genetic parameters and operators 
indicated in Table 1 was sufficient. 

 
Table 1. Genetic algorithm parameters 

Probability of mutation 0.0333 
Probability of crossover 0.8 
Chromosome length 30 
Population size 30 
Number of generations 50 
Selection Operator RSSWR
Crossover Operator Double 

 
Kristensen et. al. [23] calculated that the stress 
optimised shape of a hole in an infinite plate under a 
biaxial stress field is an ellipse with an aspect ratio 
equal to the biaxial stress ratio. Therefore, the total 
tangential stress = (1+k)σ1, where k = σ2/ σ1. σ1 
represents the stress field in the x-direction and σ2 
represents the stress field in the y-direction. 
Therefore the two-dimensional stress optimised 
solution for this case, with σ1=50MPa and 
σ2=100MPa, is a 2:1 ellipse with a constant 
tangential stress of σ1 + σ2 = 100 + 50 = 150MPa 
along the design hole boundary edge. Table 2 
contains the optimal design parameters for the 
analytical and genetic solution and clearly indicates 
that the genetic algorithm solution is similar, i.e an 
approximate 2:1 ellipse. These results are 
graphically illustrated in Fig. 2, in which the design 
boundary of the hole in a two-dimensional X-Y 
plane for the analytical solution and the genetic 
algorithm solution is shown. Table 2 indicates the 
maximum tangential principal stress for the 3D 
analytical and genetic solution and indicates that 
both produce a similar solution to the 2D analytical 
solution of 150 MPa. In conclusion, it is clear that 
the genetic algorithm produced an optimal solution 
similar to the analytical solutions. These results 
verify the accuracy of the genetic algorithm in the 

implementation to finite element engineering 
structural optimisation problems. 

 
Figure 2. 2-D representation of the analytical and 
genetic algorithm solution 
 
Table 2. Optimal design parameters and maximum 
tangential principal stress of the initial structure, 
analytical and genetic optimised structure 

 Initial 
Structure 

3D 
Analytical 
Solution 

3D 
Genetic 
Solution

 Hole 
height (b) 

10 20 19.88 

Curvature 
(p) 

2 2 2.07 

Stress 
(MPa) 

258.13 155.74 156.54 

 
Fig. 3 illustrate the convergence of the design 
parameters b (hole height) to 19.88 and p (curvature) 
to 2.05 throughout the generations of the genetic 
algorithm, respectively. In the same manner, Fig. 4 
contains the convergence of maximum tangential 
principal stress to 156.54 MPa. Each graph contains 
the maximum, minimum and average values for 
each generation and indicates the convergence of 
these values to a near optimum solution as the 
population becomes homogeneous. The population 
becomes homogeneous when the standard deviation 
of the fitness becomes small, or the mean of the 
fitness approaches the maximum fitness of the 
population. I.e. when the population has converged, 
in which the population consists primarily of similar 
individuals. The graphs indicate a rapid convergence 
towards the near optimal solution. The rapid 
convergence is due to the fact that the solution space 
for this problem is relatively flat with a single peak, 
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therefore once the genetic algorithm locates the peak 
the convergence occurs quick, thus highlighting the 
advantage of genetic algorithm. The mutation 
operator of the genetic algorithm can account for the 
bumps in the graph. After approximately 40 
generations the near optimal solution remains at a 
steady state. 
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Figure 3. Convergence of design parameter b and p 
implementing the genetic algorithm 
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Figure 4. Convergence of the maximum tangential 
principal stress implementing the genetic algorithm 
 
 
3.2 Fatigue Optimisation Results 
The objective function was to maximise the 
minimum fatigue life of the cracks along the design 
boundary. Therefore the fitness function 
implemented is described by Eq. (23): 

max

)(1)(
eval

ievalifitness −=      (6) 

For i = 1, population size. Where eval(i) represents 
evaluation value for chromosome (parameter set) i 
and evalmax is the maximum evaluation value in the 
current population. The same genetic algorithm 
parameters (Table 1) that were used in the stress 
based optimisation problem (section 6.1.1) was 
implemented and found to be sufficient.  
Molent et al. [12] states that “the multi-scale nature 
of the Frost-Dugdale hypothesis is evident from the 
fact that it appears to apply to flaws with sizes that 

range from 0.01 mm to tens of mm’s”. Therefore 
following from Molent’s paper, the current research 
implemented a lower limit of 0.01 mm for the short 
crack category and an upper limit of 6 mm for the 
large crack category. The final crack size remained a 
constant 8 mm in all cases.  
Through the implementation of the generalised 
Frost-Dugdale law, the accurate prediction of the 
fatigue life is possible for short cracks within the 
threshold region as the generalised Frost-Dugdale 
law is applicable in the threshold region, while 
Newman’s law is not. [18, 19] discovered that for 
the case of a ‘through-hole in a plate’ problem, 
when the crack size is short (threshold region) a 
stress based solution (assuming no cracks) will 
produce an identical optimised geometry to a fatigue 
based solution. Ultimately, this solution will prove 
to be another verification of the accuracy of the 
genetic algorithm 
 
 
3.2.1   Short Crack Category 
The results indicated in Table 3 illustrate that when 
the crack was short and within the threshold region 
the fatigue optimal solution of the design boundary 
is approximately a 2:1 ellipse, which is similar to the 
stress based solution. These results are graphically 
illustrated in Fig. 5. Table 3 indicates the minimum 
fatigue life for the 3D genetic stress solution and 3D 
genetic fatigue solution and indicates a 7.07% 
difference. Table 4 illustrates that the results 
produced by several different optimisation 
techniques from [18, 19] produce a similar solution 
as the genetic algorithm. These results provide 
further evidence of the accuracy of the genetic 
algorithm in the application of a fatigue based finite 
element engineering structural optimisation 
problems.  
 
Table 3. Comparison of the optimised solution 
between initial, stress and fatigue optimised 
structures 

 Initial Stress G. Frost-
Dugdale 

 b (mm) 10 19.88 21.26 
p 2 2.07 2.05 

Life 
(Cycles) 991956 4967890 

 
5345589 

 
Fig. 6 illustrates the convergence of the two design 
variables, b and p, to a near optimal solution of b = 
21.26 mm and p = 2.05. Fig. 7 illustrates the 
convergence of the fatigue life to the near optimal 
solution of 5345589 cycles. Each graph contains the 
maximum, minimum and average values for each 
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generation and indicates the convergence of these 
values to a near optimum solution as the population 
becomes homogeneous. The graphs indicate a rapid 
convergence due to the fact that the solution space 
for this problem is relatively flat with a single peak. 
The solution space for this case is graphically 
illustrated in [18, 19]. 

 

 
Figure 5. 2-D representation of the initial, stress and 
fatigue algorithm solution for the short crack 
category. 
 
Table 4 – Comparison of genetic solution with other 
optimisation algorithms using the generalised Frost-
Dugdale law 

 Objective 
Functions 

Design 
Parameters 

Optimisation 
Algorithm 

Minimum 
Fatigue 

Life 
(Cycles) 

b 
(mm) 

p 

Gradient-less 3882000 20.65 2.00 
Gradient based 5311846 20.71 2.09 

Enumeration 4707360 20.70 2.00 
Genetic 5345589 21.26 2.05 

 
 
3.2.2   Large Crack Category 
Since the accuracy of the genetic algorithm has been 
proven to be sufficient for the use in a fatigue based 
optimisation study, a larger crack comparing two 
different crack growth laws was investigated. A 
fatigue based optimisation solution within the 
common Paris region (i.e. Region II) was  
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Figure 6. Convergence of design parameter b and p 
implementing the G. Frost Dugdale 
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Figure 7. Convergence of the fatigue life 
implementing G. Frost Dugdale 
 
considered. The common Paris-like law, termed the 
Newman law was implemented and compared to the 
solution produced by the generalised Frost-Dugdale 
law. Table 5 directly compares the optimal results 
produced by the genetic algorithm between each law 
and indicates that there is little difference between 
the solutions. Since Paris like laws have been proven 
to predict well in Region II of the standard crack 
growth curve, it can be assumed that the Newman 
law prediction is accurate. Therefore, the results 
indicate that when the crack length is large the 
generalised Frost-Dugdale law produces a similar 
result to the Newman law. This result is expected as 
the large crack is within region II of the standard 
crack growth curve in which the generalised Frost-
Dugdale law tends towards the Newman law 
solution. The near optimal geometry of the design 
boundary in a 2D X-Y plane for both crack growth 
laws is graphically illustrated in Fig. 8. Fig. 8 also 
illustrates the initial and stress optimal solutions and 
indicates that the fatigue based optimal solutions 
produces a considerably lighter structure than both 
the initial and stress based solutions. This fact by 
itself illustrates the need for fatigue based analysis 
with an optimisation study. The convergence history 
for both laws indicates a rapid convergence similar 
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to the stress and short crack results. Table 6 and 7 
illustrates that the results produced by several 
different optimisation techniques [18, 19] and 
indicate a similar solution as the genetic algorithm. 
These results provide further evidence of the 
accuracy of the genetic algorithm in the application 
of a fatigue based finite element engineering 
structural optimisation problems. 
 
Table 5 – Comparison between Newman and 
generalised Frost-Dugdale laws 

Categorised Crack Length 
Large 

 Newman G. Frost-Dugdale 

Difference 
(%) 

  
hole height (b) 23.20 23.60 1.72 
Curvature (p) 2.08 2.11 1.44 
Life (Cycles) 2506 2745 9.54 
 

 
Figure 8. 2-D representation of the Newman and 
generalised Frost-Dugdale solution 
 
 
4   Conclusion 
The paper has presented and verified a fatigue based 
optimisation procedure implementing a genetic 
algorithm developed in FORTRAN for a numerical 
three-dimensional structural optimisation study of a 
7050-T7451 aluminium structure. The 7050-T7451 
aluminium structure analysed was the simple 
benchmark problem of a ‘through-hole in a 
rectangular block under biaxial loading’, in which 
the hole geometry was the design boundary. The 
genetic algorithm implementing a stress based  

Table 6– Comparison of genetic solution with other 
optimisation algorithms using G. Frost-Dugdale law. 

 Objective 
Functions 

Design 
Parameters 

Optimisation  
Algorithm 

Minimum 
Fatigue 

Life 
(Cycles) 

b (mm) p 

Gradient-less 2451 23.90 2.00 
Gradient based 2756 23.59 2.11 

Genetic 2745 23.60 2.11 
 
Table 7 – Comparison of genetic solution with other 
optimisation algorithms using the Newman law. 

 Objective 
Functions 

Design 
Parameters 

Optimisation 
Algorithm 

Minimum 
Fatigue 

Life 
(Cycles) 

b (mm) p 

Gradient-less 2271 23.78 2.00 
Gradient based 2411 22.87 2.09 

Genetic 2506 23.20 2.08 
 
solution produced similar results to the analytical 
optimal stress solution. For the fatigue optimised 
solution involving short cracks, the genetic solution 
produced was similar to the stress based solution 
which was expected. This is due to the fact that if 
the crack size is very small in comparison to the 
length scale associated with the cut out, the local 
rework or the structural detail being optimised, then 
the stress intensity factors will be directly related to 
the tangential stress around the cut out. The 
implementation of the generalised Frost-Dugdale 
law was required due to the fact that Paris-like laws 
were not applicable in any other region other than 
region II. These two solutions provided the 
necessary validation of the developed genetic 
algorithm. 
A fatigue based optimisation study with large cracks 
compared solutions between a Paris like law 
(Newman’s Law) and the generalised Frost-Dugdale 
law. In general it should be stressed that solutions 
obtained are best thought of as “better”, or local 
optima, rather than true optimal solutions. The 
results indicated that the optimised geometry and 
predicted fatigue lives were similar, due to the fact 
that the crack size was within Region II. As with the 
other cases convergence to a near optimal solution 
was quick due to the flat solution space. The results 
generated from the genetic algorithm for the short 
and large crack case category produced similar 
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results as the gradient-less, gradient based and 
enumeration algorithms, thus verifying the solutions. 
These findings offer the potential for the design of 
light weight structures, in which a fatigue based 
optimisation implementing a genetic algorithm 
provide a more robust methodology. Furthermore, it 
has the potential to be applied to structures with 
complex structural configurations with multiple 
optimum peaks taking into account crack 
propagation in the near-threshold 
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