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Abstract: - Dynamic programming can be used to solve the optimization problem of optimal matrix 
parenthesization problem, which is discussed in detail in the paper. The results and their analysis reveal that 
there is considerable amount of time reduction compared with simple left to right multiplication, on applying the 
matrix parenthesization algorithm. Time reduction varies from 0% to 96%, proportional to the number of 
matrices and the sequence of dimensions. It is also learnt that on applying parallel matrix parenthesization 
algorithm, time is reduced proportional to the number of processors at the start, however, after some increase, 
adding more processors does not yield any more throughput but only increases the overhead and cost. Foremost 
improvement of the parallel algorithm used is its independency on the number of matrices. Moreover, work has 
been uniformly distributed between processors, besides its confirmation to single processor algorithm results.  
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1 Introduction 
In most systems there are many processes that are 
running simultaneously. Recall that multiplying an     
x x y matrix by a y x z matrix creates an x x z matrix. 
Thus multiplying a chain of matrices from left to right 
might create large intermediate matrices, each taking a 
lot of time to calculate. Matrix multiplication is not 
commutative, but it is associative, so the chain can be 
parenthesized in whatever manner deemed best 
without changing the final product. A standard 
dynamic programming algorithm can be used to 
construct the optimal parenthesization. Note that 
optimizing is over the sizes of the dimensions in the 
chain, not the actual matrices themselves. 
The problem is not actually to perform the 
multiplications, but merely to decide in what order to 
perform the multiplications. For example, if there are 
four matrices A, B, C, and D, there may be: 
((AB)C)D=(AB)(CD)=A((BC)D)=(A(BC))D=A(B(CD))  
However, the order in which the product is 
parenthesized affects the number of simple arithmetic 
operations needed to compute the product, or the 
efficiency. For example, suppose to multiply a 
sequence of matrices with dimensions A(30 × 1),    
B(1 × 40), C(40 × 10) and D(10 x 25). Multiplying an 
X x Y matrix by a Y x Z matrix takes X x Y x Z 
number of multiplications. The number of arithmetic 
operations required for three different 
parenthesizations are: 
((AB)C)D=30x1x40 + 30x40x10 + 30x10x25= 20,700 
(AB)(CD)=30x1x40 + 40x10x25 + 30x40x25= 41,200 
A((BC)D)=1x40x10  + 1x10x25   + 30x1x25 =   1,400 
Clearly the last method is the more efficient. Now that 

the problem is identified, how to determine the 
optimal parenthesization of a product of n matrices? 
One of the way is to go through each possible 
parenthesization (brute force), but this would require 
time O(2n), which is very slow and impractical for 
large n. The solution, is to break up the problem into a 
set of related subproblems. By solving subproblems 
one time and reusing these solutions many times, the 
time required is reduced drastically. This is known as 
dynamic programming [1][2]. 
The matrix-chain multiplication problem can be stated 
as follows: given a chain (Al, A2,…,An) of n matrices, 
where for i = 1, 2,…,n, matrix A; has dimension       
pi-l x pi, fully parenthesize the product Al, A2,…,An, in 
a way that minimizes the number of scalar 
multiplications. Note that in the matrix-chain 
multiplication problem, matrices are not actually 
multiplied; rather the goal is only to determine an 
order for multiplying matrices that has the lowest cost. 
Typically, the time invested in determining this 
optimal order is more than paid for by the time saved 
later on when actually performing the matrix 
multiplications (such as performing only 1,400 scalar 
multiplications instead of 41,200 multiplications). 
Undermentioned standard pseudocode assumes that 
matrix A; has dimensions pi-1 x pi for i = 1,2,…,n. The 
input is a sequence p = (po, pl,…pn), where     
length[p] = n+1. The procedure uses an auxiliary table    
m[1…n, 1…n] for storing the m[i, j] costs and an 
auxiliary table s[l…n,1…n] that records which index 
of k achieved the optimal cost in computing m[i, j]. 
The table s is used to construct an optimal solution 
[3][4][6]. 
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2      Matrix Parenthesization Algorithm 
 
n  length[p]-1 {p is an array containing pi-1 to pj 
         and n is number of matrices in chain} 
for i  1 to n   
   do m[i,j] 0 {Single matrices take 0 multiplications} 
for l  2 to n   {l is length of chain} 
    do for i  1 to n – l + 1    {All possible starting                  
               indices for length l} 

 

     do j  i + l – 1{Ending index of chain of length l} 
                      m[i,j]  INF  {Large value to start to 
              find minimum}  
            for k  i  to j –1 {Try all possible splits of 
              this chain} 
      do q  m[i,k]+m[k+1,j]+ pi-1pkpj  

    {Smaller chains are already computed} 
            if q < m[i,j] {If minimum, then store it} 
     then m[i,j]  q  
               s[i,j]  k  

          return m, s 

 
 

Table 1 :     Completed Arrays m and s 
 

m                  s 
 1 2 3 4   2 3 4 

1 0 224 180 216  1 1 1 1 

2  0 84 120  2  2 3 

3   0 63  3   3 

4    0  4    

 

Table 1 represents the application of the algorithm for 
four matrices with dimensions 8 x 4, 4 x 7, 7 x 3 and 3 
x 3. Top most right entry represents the optimal 
parenthesizations. Figure 1 represents the 
corresponding dynamic programming formulation for 
finding an optimal matrix parenthesization for this 
chain. A square node in the figure represents the 
optimal cost of multiplying a matrix chain. A circle 
node represents a possible parenthesization. 
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Figure 1: Optimal Matrix Parenthesization for a Chain of Four Matrices 
 

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus 

1790-1979
211

Issue 10, Volume 4, October 2007



Table 2: Implementation of Matrix Parenthesization Algorithm 
   1-10 

No. of 
Matrices 

Sequence of 
Opti

Arithmetic 
Multiplica- 

Optimal 
Pare ons 

%age 
Reduction of 

(d-c)/d*100 

 No. of Matrices:   1-10,  Sequence of Dimensions:

Dimensions 

mal Left to 

Multiplica-
tions 

Right 

tions 
nthesizati Time 

a b e c d f 
3 6,4,6,6 2  3  A(BC) 88 60 20 
4 8,4,7,3,3 216 464 A((BC)D) 53 
5 9,10,6,6,8,3 )) 702 1512 A(B(C(DE) 54 
6 7,4,4,1,7,6,9 203 861 (A(BC))((DE)F) 76 
7 7,4,2,8,9,6,7,8 ) 616 1736 (AB)((((CD)E)F)G 65 
8 8,7,6,2,5,4,4,2,2 316 896 A(B(C(((DE)(FG))H))) 65 
9 5,2,2,8,3,1,4,5,4,1 100 475 A(B((C(DE))(F(G(HI)))) 79 

 
able 3: Implementation of Matrix Parenthesization Algorithm 

   1-25 

No. of  
Matrices 

Sequence of 
Opti

Arithmetic 
Multiplica- 

Optimal 
Pare ons 

%age 
Reduction of 

(d-c)/d*100 

T
 No. of Matrices:   1-10,  Sequence of Dimensions:

Dimensions 

mal Left to 

Multiplica
-tions 

Right 

tions 
nthesizati Time 

a b e c d f 
3 18,19,7,15 4  4  (AB)C 284 284 0 
4 10,21,7,10,18 3970 3970 ((AB)C)D 0 
5 21,5,19,5,21,25 6250 17220 A(((BC)D)E) 64 
6 5,3,23,21,17,1,2 934 4640 (A(B(C(DE))))F 80 
7 16,23,14,24,24,14,19,17 2   9386 34544 ((AB)(C(DE)))(FG) 15 
8 21,17,6,22,20,14,16,7,5 8235 27825 A(B(C(D(E(F(GH)))))) 70 
9 4,21,11,23,13,18,1,2,9,8 1223 4508 (A(B(C(D(EF)))))((GH)

)
73 

 

 

Implementation of Matrix Parenthesization Algorithm 
   1-100 

  No. of 
 Sequence of Dimensions 

Optim
Arithmetic 

Multiplica-
Optimal 

Pare ons 

%age 
Reduction 

(d-c)/d*100 

Table 4: 
 No. of Matrices:   1-24,  Sequence of Dimensions:

Matrices

al Left to 

Multiplica-
tions 

Right 

tions 
nthesizati of Time 

a b e c d f 
3 9,95,21,78 32 7 32 7 (AB)C 69 69 0 
6 30,10,71,58,9,25,22 56982 183750 A((B(CD))(EF)) 69 
9 94,67,56,17,80,68,10,78,7,5 98220 1273230 A(B(C(D(E(F((GH)I)))))) 92 

12 42,54,49,22,62,46,93,97,82,59,
24,86,56 

970214 1777734 ((A(BC))((((((DE)F)G)H)I)J)
)(KL)

45 

15 27,98,89,40,36,82,6,11,3,23,15, 101322 816480 (D(E(F((GH)((IJ)(K(
91,87,35,3,43 

(A(B(C
L(MN)))))))))))O 

88 

18 ,10,6,13,93,97,3, 139845 3518984 (IJ)))))))94,30,63,79,52
8,67,40,38,6,89,61,71 

(A(B(C(D(E(F(G(H )
)(((((((KL)M)N)O)P)Q)R) 

96 

21 7,3,67,8 166938 2827257 ( 94 57,92,76,77,28,13,47,2
9,14,93,16,24,34,14,83,89,92,3
3,19 

(A(B(C(D(E(F(GH)))))))((((
(((((((IJ)K)L)M)N)O)P)Q)R)
S)T)U) 

24 ,62,22,98,35,62,99,21,39,
91,79,81,31,11,4,87,90,90,72,5
7,92,36,72,59 

377216 6688377 D(E(F(G(H(I(J(K(L79,68 (A(B(C( (
M(NO))))))))))))))((((((((PQ)
R)S)T)U)V)W)X) 

94 
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2.1 A  of  
Parenthe

 Table 2, number 

s considerable amount of time 
reduction proportional to the number of matrices 

multiplying with all of the rest of the dimensions. 

ct f dimensions is 
continuo g; as verified in 
serial 9, e table. 

nalysis of Implementation
sization Algorithm 

 Matrix

The results for implementation of algorithm for 
optimal solution to matrix parenthesization problem 
are shown in Table 2, 3 and 4. In
of matrices and sequence of dimensions varies from 
1-10. In Table 3, number of matrices and sequence 
of dimensions varies from 1-10 and 1-25 
respectively, whereas in Table 4, number of 
matrices and sequence of dimensions varies from 1-
24 and 1-100 respectively. Figures include the 
graph showing the time reduction in the optimal 
solution. In Figure 2, number of matrices and 
sequence of dimensions varies from 1-10. In Figure 
3, number of matrices and sequence of dimensions 
varies from 1-10 and 1-25 respectively, whereas in 
Figure 4, number of matrices and sequence of 
dimensions varies from 1-24 and 1-100 
respectively. Input includes number of matrices and 
then the dimensions of each matrix. The column of 
matrix A must be equal to the row of matrix B for 
all the dimensions. 

Analyzing Tables and Graphs 2,3 and 4, it is 
evident that there i

and the sequence of dimensions on applying the 
Matrix Parenthesization Algorithm. It also seems 
that percentage of time reduction to the linear left to 
right arithmetic operations is less, if the first 
dimension is smaller. Similarly, if the first 
dimension is larger, percentage of time reduction to 
the linear left to right arithmetic operations is more.  

It is because of the reason that in linear left to right 
arithmetic multiplication, first dimension keeps on 

So if the first dimension is larger, it gives larger 
linear left to right arithmetic multiplication value. 
Table 5 shows the confirmation of the analysis. In 
serial 5, 6, 7 and 8, the fact is verified by getting 
sample values in such a manner that only the first 
value of the dimension has been increased. It is also 
observed that the percentage of time reduction has 

no effe  if the values of sequence o
usly increasing or decreasin
10, 11 and 12 of th

Reductions of Arithmetic Operations
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Figure 2:Reductions of Operations in Optimal Solution 
               No. of Matrices:1-10, Sequence of Dimensions:1-10 
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Figure 3:Reductions of Operations in Optimal Solution 
               No. of Matrices:1-10, Sequence of Dimensions:1-25 
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Figure 4:Reductions of Operations in Optimal Solution 
              No. of Matrices:1-24,Sequence of Dimensions:1-100

rix Parenthesization Algorithm 
ence of Dimensions:   1-100 

ial 
. of 

Matrices iplica

%age Reduction 
of Time 

(d-c)/d*100 

 
Table 5: Analysis of Implementation of Mat
 No. of Matrices:   1-24,  Sequ

 
No

Optimal 
Ser- Sequence of 

Dimensions 
Arithmetic 
Mult -

Left to Right 
Multiplications

Optimal 
Parenthesizations 

tions 
 a b c d e f 

1 3 9,95,21,78 32697 32697 (AB)C 0 
2 3 18,19,7,15 4284 (AB)C 0 4284 
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3 4 10,21,7,1 3  3  ((AB)C)D0,18 970 970  0 
4 3 9,95,21,78 32697 32697 (AB)C 0 
5 6 7,34,8,32,30,30,40 )D)E)F 25116 25116 ((((AB)C 0 
6 6 50,34,8,32,30,30,40 1  E)F) 54080 79400 (AB)(((CD) 70 
7 6 75,34,8,32,30,30,40 D)E)F) 68880 269100 (AB)(((C 74 
8 6 100,34,8,32,30,30,40 83680 358800 (AB)(((CD)E)F) 77 
9 6 50,15,16,20,25,30,40 71550 150500 A((((BC)D)E)F) 52 

10 6 50,45,40,35,30,25,20 145000 275000 A(B(C(D(EF)))) 47 
11 6 7,45,40,35,30,25,20 38500 38500 ((((AB)C)D)E)F 0 
12 6 7,15,16,20,25,30,40 21070 21070 ((((AB)C)D)E)F 0 

 

3 Par lel al tion 
o Matrix Parenthesization Problem 

e 
e 

ows the same Table 1 with the sequence 
egins by 
atrices.  

    al ization of Optim  Solu
t

Refer to the time required to find an optimal 
product sequence for a chain of matrices as th
ordering time and the time required to execute th
product sequence as the evaluation time [7]. Many 
parallel algorithms aimed at reducing the evaluation 
time have been studied.  Sascha Hunold proposed 
“Multilevel Hierarchical Matrix Multiplication on 
Clusters” [8]. Manojkumar Krishnan proposed 
“Memory Efficient Parallel Matrix Multiplication 
Operation for Irregular Problems” [9] and Qingshan 
Luo gives “A Scalable Parallel Strassen’s Matrix 
Multiplication Algorithm for Distributed Memory 
Computers” [10].  Any of the mentioned approach 
to reduce evaluation time can be used along with 
the parallel algorithm aimed at reducing the 
ordering time.  Some of the parallel algorithms to 
reduce ordering time have been studied using the 
dynamic programming method and the convex 
polygon triangulation method [11] [12], however 
the research is scarce. Figure 5 shows the filling of 
m and s table diagonally for optimal matrix 
parenthesization problem using pn processors, 
proposed by Grama and Gupta [5]. One of the 
major drawbacks of the approach is that it requires 
number of processors equal to the number of 
matrices, difficult to fulfil in most of the cases. 
Moreover, the processors do not share the uniform 
work load. Although Strate [13] introduced an 
important idea and provided a clue that the goal 
should always be to minimize the idle time of all 
the processors, but not exploited in the mentioned 
approach. 

3.1      Parallel Processing Algorithm 

Table 6 sh
of calculations. The sequential algorithm b
solving all  subproblems   of length   two  m

Diagonal 1

Diagonal 2

Diagonal 7

Diagonal 6

(2,8)

(3,8)

(4,8)

(5,8)

(8,8)

(2,7)

(3,7)

4,7)

(5,7)

(6,6)

(5,6)

4,6)

(3,6)

(2,6)(2,5)

(3,5)

4,5)(4,4)

(3,4)

(2,4)(2,3)(2,2)

(3,3)

(7,8)(7,7)

(6,7) (6,8)

Diagonal 0

 
P1 P5 P6 P

(1,8)(1,7)

((

(1,6)

(

(5,5)

(1,2)

P0 P2 P3 P4 7

(1,4)(1,3) (1,5)(1,1)

 
Figure 5: Using pn Processors Proposed by 

Grama and Gupta 
Table    6:   Sequence of Calculations of Array m 
 

 1 2 3 4  
1 0 224 180 216  
2  0 84 120 Diagonal 3 
3   0 63 Diagonal 2 
4  Diagonal 1   0 

 

That is, the cost of multiplying matrices A A , 1 2
A2A3, d A4 e determined. The cost is 224, 84 
and 63 respectively. These s are entered in the 
above table along the fir a  
sequence of top to bo m a eft e next 
diagonal, entr 1A 2A ulated 

 results. The process 

an  A3  ar
value
st m in diagonal with

tto nd l  to right. Th
ies A 3 and A 4 are calc

based on the previous
continues until finally the A1A4 entry in the table is 
determined. This is the optimal solution. The 
sequential algorithm solves all subproblems on the 
main diagonal of the table, followed by each of the 
upper diagonals until a solution is determined in the 
upper right comer of the table. Under mentioned 
parallel algorithm for allocating tasks for the 
optimal solution to matrix parenthesization problem 
views the table as shown in Figure 6. 
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TASKING PROCESSORS (P) 
t    (n*n)-n)/2        {Total calculations for n matrices} 
trcountbottom(m)  1    {Temp row count from bottom} 
trcounttop(m)  n-1    {Temporary row count from top} 
p  number of processors  {Total number of processors} 
Avcalc  t/p  {Average calculations for each processor} 
for m  0 to p-1              {For all processors} 

lcula      tcalc(m)  0        {Temporary ca
      while calcp(m)<Avcalc      {calcs

tions for p(m)} 

      
      

End for  

 

(0), p(1), p(2)…p(n) are the processors numbered 
 botto  

i.e. 

j 
 

 for each processor} 
     do  calcp(m)  tcalcp(m){Calcs for p(m)} 
           tcalcp(m)  tcalcp(m) + trcountbottom 

rcountbottom(m)  trcountbottom(m)   
{Row count from bottom} 
rcounttop(m)  trcounttop(m)      
{ unt fro  top} Row co m

      trcountbottom(m) ++ 
       trcounttop(m) - -        

End while 
return rcounttop(m),calcp(m) 

3.2 Functioning of Parallel Algorithm 

p
from m to top. The rows are allocated numbers
from top to bottom as i and also bottom to top 
matching to processors p(0) to p(n). Processor 1 
will calculate the bottom set of rows in the table, 
processor 2 will calculate the next set of rows, until 
processor n calculates the topmost set of rows and 
will finally determine the solution. Each processor 
simultaneously calculates the entries in the portion 
of the table it is assigned. The entries in the table 
are processed diagonally left to right, top to bottom. 
As in traditional sequential algorithm. Each time 
processor i, (i = 0...n), completes an entire diagonal, 
the entries is sent to processor i+1. Furthermore, 
each time processor i, begins to work on a new 
diagonal, it receives entries for the same column 
previously calculated from   processor i - 1. Figure 
6 illustrated these principles.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 Processors/  16 Rows from Bottom 

1 x x x x x x x x x x x x x x x x x 250 1 5 9 x x x x x 

2  0 2 6 10 x x x x x x x x x x x x x x x x x x x x x 24          P(3)
3   0 3 7 x x x x x x x x x x x x x x x x x x x x x 23

4    0 4 8 x x x x x x x x x x x x x x x x x x x x 22      

94 calcs 

      

5     0 1 5 9 x x x x x x x x x x x x x x x x x x 21

6      0 2 6 10 x x x x x x x x x x x x x x x x x 20           P(2)
7       0 3 7 x x x x x x x x x x x x x x x x x 19

8       0 4 8 x x x x x x x x x x x x x x x x 18

9        0 1 6 x x x x x x x x x x x x x x x 17

10         0 2 7 x x x x x x x x x x x x x x 16

11          0 3 8 x x x x x x x x x x x x x 15          P(1)
12           0 4 9 x x x x x x x x x x x x 14

13           0 5 x x x x x x x x x x x x 13

14           0 1 13 x x x x x x x x x x 12

15           0 2 14 x x x x x x x x x 11

16           0 3 15 x x x x x x x x 10

17           0 4 16 x x x x x x x 9 

18           0 5 x x x x x x x 8 

19           0 6 x x x x x x 7             P(0)
20           0 7 x x x x x 6 

21           0 8 x x x x 5 

22           0 9 x x x 4 

23           0 10 x x 3 

24            0 11 x 2 

25             0 12 1 

26              0  
 

quences of Calculations and Partitioning of Task
       No. of Matrices:  26, No. of Processors:  4

Figure 6:    Se s into Rows 

7

75 l   ca cs

78 calcs 

i 

8 l   ca cs
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probl m  is used 
 is used for all 

er pr ce so
standard matri

of matrices in chain } 
r i  1 to n   

} 

e  are mentioned below. First algorithm
for processor p(0). Second algorithm
oth  o s rs p(i). Major changes from the 

x pare are nthesization algorithm 
underlined. Figure 8 reveals  the result with the 
application of the mentioned algorithms with Number 
of Matrices:  26,  Number of Processors:  3 and 
Sequences of Dimensions: 9,8,7,6,5,4,3,2,2,3,4,5, 
6,7,8,9,9,8,7,6,5,4,3,2,2,3,4. 
 

PARALLEL MATRIX PARENTHESIZATION(P(0)) 
n  length[P]-1  {p is an array containing pi-1 to pj and n 
  is the number 
fo
       do m[i,j]  0   {Single matrices take 0 multiplications
for l  2 to n-rcounttop(1) {l is length of chain starting 
     from top of the processor p(o)}
  

 
 do for  rcoui nttop(1)+1 to n–l+1 {All possible starting 

       indices for length l} 

m}  
          for k  i  j   {Tr

  {Sma r chain

        re

ESIZATION(P(i)) 

   
          do j  i + l – 1       Ending index of chain of length l} 
          m[i,j]  INF  {Large value to start to find minimu
   to y all possible splits of this chain} 
     do q  m[i,k]+m[k+1,j]+ pi-1pkpj               
    lle s are already computed} 
           if q < m[i,j]         {If minimum, then store it} 
     then m[i,j]  q  
               s[i,j]  k  
  turn m, s 
 
 
PARALLEL MATRIX PARENTH

for l  2 to n-rcounttop(m+1) {l is length of chain starting  
  from top of the processor p(m)}    

 
 if l < (n – rcounttop(m))+2   then ilimit  =  rcounttop(m) 
       else    ilimit  =  n-l+1 
      for i = rcounttop(m+1)+1 to ilimit  
   l – nding index of chain of length l}           do j  i + 1   {E

                m[i,j]  INF   {Large value to start to find min}  
 

computed} 

     retu

3 
of parallel algorithm 

solution to matrix parenthesization 
roblem are shown in Table 7. In the Table 7, number 

atr s   

num er f rocessors a h 
matrix. The column of matrix A mu e equal to the 

 

  
      for k  i  to j   {Try all possible splits of chain}
     do q  m[i,k]+m[k+1,j]+ pi-1pkpj  
     {Smaller chains are already 
           if q < m[i,j]         {If minimum, then store it} 
     then m[i,j]  q  
              s[i,j]  k  
  rn m, s 
 

3. I entation of Pamplem rallel Algorithm 
The results for implementation 
for optimal 
p
of m ices are  20 – 100 with number of processor
1 – 10. Figure 7 includes the graph showing the 
reduction of computations in the parallel algorithm as 
compared to single processor with different numbers 
of processors. Input includes number of matrices, 

 of Parallel Processing Algorithm  
 No. of Processors: 1-4,   No. of Matrices:  20-100 
 

Maximum Computations by 
any Processor Using 

b  o p nd the dimensions of eac
st b

row of matrix B for all the dimensions.
 
Table 7: Implementation

No. of Processors 
No. of 

Matrices

Total 
Computations 

with Single 
Processor 2 3 4 6 8 10

20 190 99 85 54 54 70 70 
30 435 225 159 135 110 110 135
40 780 402 284 219 185 219 150
50 1225 630 445 364 322 279 279
60 331770 909 642 495 444 392 9
70 2415 1239 875 645 524 462 462
80 3160 1620 1080 882 745 604 532
90 4005 2052 684 1377 1079 845 684

100 4950 2535 8551710 1380 945 855
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Figure 7:  Reductions of Computations in Pa allel 
    No. of Processors:  1-10, No. of Matrices:  20-100 

3.4    Analysis of Parallel Processing Algorithm 
Analyzing Table 7 with graph of Figure 7, it is 
obvious that there is considerable amount of time 
reduction proportional to the number of processors at 
the start. However, after some increase it is just the 

rocessors without any gain. One should 
ation 

oint f

 

r

increase of p
be mindful of that number and may call it a satur
p or that input. After that point adding more 
processors does not yield any more throughput but 
only increases the overhead and cost. Therefore, the 
number of processors must be used economically to 
get the optimal results.  
For number of matrices between 26 and 104, best 
results are found till number of processors nine. With 
number of matrices 26, best results are received with 
number of processors seven. Therefore, one can say 
that algorithm is best suited for processors 2 to 10 for 
number of matrices till 100. Moreover, the results of 
parallel algorithm confirm the results of single 
processor algorithm. 
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4 Conclusion 
There is substantial amount of reduction in arithmetic 
operations on applying matrix parenthesization 
algorithm proportional to the number of matrices and 
the sequence of dimensions. It also seems that 
percentage of time reduction compared to the linear 
left to right arithmetic operations is less, if the first 
dimension is smaller. Similarly, if the first dimension 

 larger, percentage of time reduction to the linear left 
to right arithmetic operations is more. Time reduction 

rtional to the number of 

] Thomas H. Cormen, Charles E. Leiserson, 
Ronald L. Rivest, Clifford Stein, Introduction to 

hms, The MIT Press, Cambridge, 

an 
Francisco St. Louis Montreal Toronto, 2004 

[4] 
gp), Department of 

Computer Science, University of Toronto, CSC 

[5] 

[6] 
of Algorithms, COSC 483, Lecture 10, 
Department of Computer and Information 
Sciences Towson University, 8000 York Road, 
Towson, Maryland, Fall 2006 

, ieeexplore isnumber = 26889, 
2003 

[8] 
al Matrix 

Multiplication on Clusters, ICS 04, Saint Malo, 

[9] 

roblems, Pacific 
Northwest National Laboratory, Richland, 

[10] 

thm for Distributed Memory Computers, 
The University of South, ACM 0-89791-658-1, 

[11] 
hain Ordering in Polylog 

Time, SIAM J. Computing, vol. 27, no. 2, 

[12] 

itute of 

[13] 

, The University of Tulsa, 1990  

 

 

 

 

 

 

 

is

varies from 0% to 96%, propo
matrices and the sequence of dimensions. It is also 
learnt that on applying parallel matrix 
parenthesization algorithm, the amount of time 
reduction varies 50% and more, proportional to the 
number of processors at the start, however, after some 
increase, adding more processors does not produce 
any more reduction in time; rather increasing cost and 
effort. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Processors/  
Rows from Bottom

1 0 504 768 850 800 660 464 476 530 572 630 708 810 940 1102 1264 1390 1484 1550 1592 1614 1620 1586 1594 1648 1690 25 
2  0 336 490 512 444 320 332 380 420 476 552 652 780 940 1102 1230 1326 1394 1438 1462 1470 1442 1450 1498 1538 24      P(2) 
3   0 210 288 276 208 220 262 300 354 428 526 652 810 972 1102 1200 1270 1316 1342 1352 1330 1338 1380 1418 23   {115 calcs} 
4    0 120 150 124 136 172 208 260 332 428 552 708 870 1002 1102 1174 1222 1250 1262 1246 1254 1290 1326 22             
5     0 60 64 76 106 140 190 260 354 476 630 792 926 1028 1102 1152 1182 1196 1186 1194 1224 1258 21 
6      0 24 36 60 92 140 208 300 420 572 734 870 974 1050 1102 1134 1150 1146 1154 1178 1210 20 
7       0 12 30 60 106 172 262 380 530 692 830 936 1014 1068 1102 1120 1122 1130 1148 1178 19 
8        0 12 36 76 136 220 332 476 638 782 894 978 1038 1078 1102 1110 1118 1130 1154 18      P(1) 
9         0 24 64 124 208 320 464 626 770 882 966 1026 1066 1090 1102 1110 1122 1146 17  {105 calcs} 

10          0 60 150 276 444 660 903 1119 1287 1413 1503 1563 1599 1090 1102 1120 1150 16 
11           0 120 288 512 800 1124 1412 1636 1804 1924 2004 1563 1066 1078 1102 1134 15    
12            0 210 490 850 1255 1615 1895 2105 2255 1924 1503 1026 1038 1068 1102 14  
13             0 336 768 1254 1686 2022 2274 2105 1804 1413 966 978 1014 1050 13 
14              0 504 1071 1575 1967 2022 1895 1636 1287 882 894 936 974 12 
15               0 648 1224 1575 1686 1615 1412 1119 770 782 830 870 11 
16                0 648 1071 1254 1255 1124 903 626 638 692 734 10 
17                 0 504 768 850 800 660 464 476 530 572 9      P(0) 
18                  0 336 490 512 444 320 332 380 420 8   {105 calcs} 
19                   0 210 288 276 208 220 262 300 7       
20                    0 120 150 124 136 172 208 6   
21                     0 60 64 76 106 140 5 
22                      0 24 36 60 92 4 
23                       0 12 30 60 3 
24                        0 12 36 2 
25                         0 24 1 
26                          0 

Figure 8:    Partitioning of Tasks into Rows, No. of Processors:  3, No. of Matrices:  26, 
                  Sequences of Dimensions:  9,8,7,6,5,4,3,2,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,2,3,4
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