
An Effective Solution for Matrix Parenthesization Problem
through Parallelisation

MUHAMMAD HAFEEZ, DR. MUHAMMAD YOUNUS

Computer Science Department, College of Telecommunication Engineering
(National University of Sciences and Technology), Hamayun Road, Rawalpindi - PAKISTAN

E-mail: chmhafeez11@yahoo.com

Abstract: - Dynamic programming can be used to solve the optimization problem of optimal matrix
parenthesization problem, which is discussed in detail in the paper. The results and their analysis reveal that
there is considerable amount of time reduction compared with simple left to right multiplication, on applying the
matrix parenthesization algorithm. Time reduction varies from 0% to 96%, proportional to the number of
matrices and the sequence of dimensions. It is also learnt that on applying parallel matrix parenthesization
algorithm, time is reduced proportional to the number of processors at the start, however, after some increase,
adding more processors does not yield any more throughput but only increases the overhead and cost. Foremost
improvement of the parallel algorithm used is its independency on the number of matrices. Moreover, work has
been uniformly distributed between processors, besides its confirmation to single processor algorithm results.

Key-Words: - Matrix Parenthesization Problem Parallel Processing Algorithm

1 Introduction
In most systems there are many processes that are
running simultaneously. Recall that multiplying an
x x y matrix by a y x z matrix creates an x x z matrix.
Thus multiplying a chain of matrices from left to right
might create large intermediate matrices, each taking a
lot of time to calculate. Matrix multiplication is not
commutative, but it is associative, so the chain can be
parenthesized in whatever manner deemed best
without changing the final product. A standard
dynamic programming algorithm can be used to
construct the optimal parenthesization. Note that
optimizing is over the sizes of the dimensions in the
chain, not the actual matrices themselves.
The problem is not actually to perform the
multiplications, but merely to decide in what order to
perform the multiplications. For example, if there are
four matrices A, B, C, and D, there may be:
((AB)C)D=(AB)(CD)=A((BC)D)=(A(BC))D=A(B(CD))
However, the order in which the product is
parenthesized affects the number of simple arithmetic
operations needed to compute the product, or the
efficiency. For example, suppose to multiply a
sequence of matrices with dimensions A(30 × 1),
B(1 × 40), C(40 × 10) and D(10 x 25). Multiplying an
X x Y matrix by a Y x Z matrix takes X x Y x Z
number of multiplications. The number of arithmetic
operations required for three different
parenthesizations are:
((AB)C)D=30x1x40 + 30x40x10 + 30x10x25= 20,700
(AB)(CD)=30x1x40 + 40x10x25 + 30x40x25= 41,200
A((BC)D)=1x40x10 + 1x10x25 + 30x1x25 = 1,400
Clearly the last method is the more efficient. Now that

the problem is identified, how to determine the
optimal parenthesization of a product of n matrices?
One of the way is to go through each possible
parenthesization (brute force), but this would require
time O(2n), which is very slow and impractical for
large n. The solution, is to break up the problem into a
set of related subproblems. By solving subproblems
one time and reusing these solutions many times, the
time required is reduced drastically. This is known as
dynamic programming [1][2].
The matrix-chain multiplication problem can be stated
as follows: given a chain (Al, A2,…,An) of n matrices,
where for i = 1, 2,…,n, matrix A; has dimension
pi-l x pi, fully parenthesize the product Al, A2,…,An, in
a way that minimizes the number of scalar
multiplications. Note that in the matrix-chain
multiplication problem, matrices are not actually
multiplied; rather the goal is only to determine an
order for multiplying matrices that has the lowest cost.
Typically, the time invested in determining this
optimal order is more than paid for by the time saved
later on when actually performing the matrix
multiplications (such as performing only 1,400 scalar
multiplications instead of 41,200 multiplications).
Undermentioned standard pseudocode assumes that
matrix A; has dimensions pi-1 x pi for i = 1,2,…,n. The
input is a sequence p = (po, pl,…pn), where
length[p] = n+1. The procedure uses an auxiliary table
m[1…n, 1…n] for storing the m[i, j] costs and an
auxiliary table s[l…n,1…n] that records which index
of k achieved the optimal cost in computing m[i, j].
The table s is used to construct an optimal solution
[3][4][6].

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION
Manuscript received Aug. 2, 2007; revised Oct. 3, 2007

Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
210

Issue 10, Volume 4, October 2007

mailto:chmhafeez11@yahoo.com

2 Matrix Parenthesization Algorithm

n length[p]-1 {p is an array containing pi-1 to pj
 and n is number of matrices in chain}
for i 1 to n
 do m[i,j] 0 {Single matrices take 0 multiplications}
for l 2 to n {l is length of chain}
 do for i 1 to n – l + 1 {All possible starting
 indices for length l}

 do j i + l – 1{Ending index of chain of length l}
 m[i,j] INF {Large value to start to
 find minimum}
 for k i to j –1 {Try all possible splits of
 this chain}
 do q m[i,k]+m[k+1,j]+ pi-1pkpj

 {Smaller chains are already computed}
 if q < m[i,j] {If minimum, then store it}
 then m[i,j] q
 s[i,j] k

 return m, s

Table 1 : Completed Arrays m and s

m s
 1 2 3 4 2 3 4

1 0 224 180 216 1 1 1 1

2 0 84 120 2 2 3

3 0 63 3 3

4 0 4

Table 1 represents the application of the algorithm for
four matrices with dimensions 8 x 4, 4 x 7, 7 x 3 and 3
x 3. Top most right entry represents the optimal
parenthesizations. Figure 1 represents the
corresponding dynamic programming formulation for
finding an optimal matrix parenthesization for this
chain. A square node in the figure represents the
optimal cost of multiplying a matrix chain. A circle
node represents a possible parenthesization.

8x4

A

7x3

C

3x3

D

4x7
B

224

 8x4x7

224

84

63

18

216

120

=8x7x3+224

 392

 180

=8x4x3+84
=4x3x3+84
 120

 147

=4x7x3+63

 =8x3x3+180
 252

 455

=8x7x3
+224+63

 216
=8x4x3+120

84

 4x7x3

 8x4x7

63

Figure 1: Optimal Matrix Parenthesization for a Chain of Four Matrices

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
211

Issue 10, Volume 4, October 2007

Table 2: Implementation of Matrix Parenthesization Algorithm
 1-10

No. of
Matrices

Sequence of
Opti

Arithmetic
Multiplica-

Optimal
Pare ons

%age
Reduction of

(d-c)/d*100

 No. of Matrices: 1-10, Sequence of Dimensions:

Dimensions

mal Left to

Multiplica-
tions

Right

tions
nthesizati Time

a b e c d f
3 6,4,6,6 2 3 A(BC) 88 60 20
4 8,4,7,3,3 216 464 A((BC)D) 53
5 9,10,6,6,8,3)) 702 1512 A(B(C(DE) 54
6 7,4,4,1,7,6,9 203 861 (A(BC))((DE)F) 76
7 7,4,2,8,9,6,7,8) 616 1736 (AB)((((CD)E)F)G 65
8 8,7,6,2,5,4,4,2,2 316 896 A(B(C(((DE)(FG))H))) 65
9 5,2,2,8,3,1,4,5,4,1 100 475 A(B((C(DE))(F(G(HI)))) 79

able 3: Implementation of Matrix Parenthesization Algorithm

 1-25

No. of
Matrices

Sequence of
Opti

Arithmetic
Multiplica-

Optimal
Pare ons

%age
Reduction of

(d-c)/d*100

T
 No. of Matrices: 1-10, Sequence of Dimensions:

Dimensions

mal Left to

Multiplica
-tions

Right

tions
nthesizati Time

a b e c d f
3 18,19,7,15 4 4 (AB)C 284 284 0
4 10,21,7,10,18 3970 3970 ((AB)C)D 0
5 21,5,19,5,21,25 6250 17220 A(((BC)D)E) 64
6 5,3,23,21,17,1,2 934 4640 (A(B(C(DE))))F 80
7 16,23,14,24,24,14,19,17 2 9386 34544 ((AB)(C(DE)))(FG) 15
8 21,17,6,22,20,14,16,7,5 8235 27825 A(B(C(D(E(F(GH)))))) 70
9 4,21,11,23,13,18,1,2,9,8 1223 4508 (A(B(C(D(EF)))))((GH)

)
73

Implementation of Matrix Parenthesization Algorithm
 1-100

 No. of
 Sequence of Dimensions

Optim
Arithmetic

Multiplica-
Optimal

Pare ons

%age
Reduction

(d-c)/d*100

Table 4:
 No. of Matrices: 1-24, Sequence of Dimensions:

Matrices

al Left to

Multiplica-
tions

Right

tions
nthesizati of Time

a b e c d f
3 9,95,21,78 32 7 32 7 (AB)C 69 69 0
6 30,10,71,58,9,25,22 56982 183750 A((B(CD))(EF)) 69
9 94,67,56,17,80,68,10,78,7,5 98220 1273230 A(B(C(D(E(F((GH)I)))))) 92

12 42,54,49,22,62,46,93,97,82,59,
24,86,56

970214 1777734 ((A(BC))((((((DE)F)G)H)I)J)
)(KL)

45

15 27,98,89,40,36,82,6,11,3,23,15, 101322 816480 (D(E(F((GH)((IJ)(K(
91,87,35,3,43

(A(B(C
L(MN)))))))))))O

88

18 ,10,6,13,93,97,3, 139845 3518984 (IJ)))))))94,30,63,79,52
8,67,40,38,6,89,61,71

(A(B(C(D(E(F(G(H)
)(((((((KL)M)N)O)P)Q)R)

96

21 7,3,67,8 166938 2827257 (94 57,92,76,77,28,13,47,2
9,14,93,16,24,34,14,83,89,92,3
3,19

(A(B(C(D(E(F(GH)))))))((((
(((((((IJ)K)L)M)N)O)P)Q)R)
S)T)U)

24 ,62,22,98,35,62,99,21,39,
91,79,81,31,11,4,87,90,90,72,5
7,92,36,72,59

377216 6688377 D(E(F(G(H(I(J(K(L79,68 (A(B(C((
M(NO))))))))))))))((((((((PQ)
R)S)T)U)V)W)X)

94

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
212

Issue 10, Volume 4, October 2007

2.1 A of
Parenthe

 Table 2, number

s considerable amount of time
reduction proportional to the number of matrices

multiplying with all of the rest of the dimensions.

ct f dimensions is
continuo g; as verified in
serial 9, e table.

nalysis of Implementation
sization Algorithm

 Matrix

The results for implementation of algorithm for
optimal solution to matrix parenthesization problem
are shown in Table 2, 3 and 4. In
of matrices and sequence of dimensions varies from
1-10. In Table 3, number of matrices and sequence
of dimensions varies from 1-10 and 1-25
respectively, whereas in Table 4, number of
matrices and sequence of dimensions varies from 1-
24 and 1-100 respectively. Figures include the
graph showing the time reduction in the optimal
solution. In Figure 2, number of matrices and
sequence of dimensions varies from 1-10. In Figure
3, number of matrices and sequence of dimensions
varies from 1-10 and 1-25 respectively, whereas in
Figure 4, number of matrices and sequence of
dimensions varies from 1-24 and 1-100
respectively. Input includes number of matrices and
then the dimensions of each matrix. The column of
matrix A must be equal to the row of matrix B for
all the dimensions.

Analyzing Tables and Graphs 2,3 and 4, it is
evident that there i

and the sequence of dimensions on applying the
Matrix Parenthesization Algorithm. It also seems
that percentage of time reduction to the linear left to
right arithmetic operations is less, if the first
dimension is smaller. Similarly, if the first
dimension is larger, percentage of time reduction to
the linear left to right arithmetic operations is more.

It is because of the reason that in linear left to right
arithmetic multiplication, first dimension keeps on

So if the first dimension is larger, it gives larger
linear left to right arithmetic multiplication value.
Table 5 shows the confirmation of the analysis. In
serial 5, 6, 7 and 8, the fact is verified by getting
sample values in such a manner that only the first
value of the dimension has been increased. It is also
observed that the percentage of time reduction has

no effe if the values of sequence o
usly increasing or decreasin
10, 11 and 12 of th

Reductions of Arithmetic Operations

2000

0
200
400
600
800

1000
1200
1400
1600
1800

3 4 5 6 7 8 9

Number of Matrices

A
rit

hm
et

ic
 O

pe
ra

tio
ns

Left to Right
Multiplication
Optimal
Multiplication

Figure 2:Reductions of Operations in Optimal Solution
 No. of Matrices:1-10, Sequence of Dimensions:1-10

 Reductions of Arithmetic Operations

0
5000

10000
15000

20000
25000

30000
35000

40000

3 4 5 6 7 8 9

Number of Matrices

A
rit

hm
et

ic
 O

pe
ra

tio
ns

Left to Right
Multiplication
Optimal
Multiplication

Figure 3:Reductions of Operations in Optimal Solution
 No. of Matrices:1-10, Sequence of Dimensions:1-25

 Reductions of Arithmetic Operations

0
1000000

2000000
3000000

4000000
5000000

6000000
7000000

8000000

3 6 9 12 15 18 21 24

Number of Matrices

A
rit

hm
et

ic
 O

pe
ra

tio
ns

Left to Right
Multiplication
Optimal
Multiplication

Figure 4:Reductions of Operations in Optimal Solution
 No. of Matrices:1-24,Sequence of Dimensions:1-100

rix Parenthesization Algorithm
ence of Dimensions: 1-100

ial
. of

Matrices iplica

%age Reduction
of Time

(d-c)/d*100

Table 5: Analysis of Implementation of Mat
 No. of Matrices: 1-24, Sequ

No

Optimal
Ser- Sequence of

Dimensions
Arithmetic
Mult -

Left to Right
Multiplications

Optimal
Parenthesizations

tions
 a b c d e f

1 3 9,95,21,78 32697 32697 (AB)C 0
2 3 18,19,7,15 4284 (AB)C 0 4284

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
213

Issue 10, Volume 4, October 2007

3 4 10,21,7,1 3 3 ((AB)C)D0,18 970 970 0
4 3 9,95,21,78 32697 32697 (AB)C 0
5 6 7,34,8,32,30,30,40)D)E)F 25116 25116 ((((AB)C 0
6 6 50,34,8,32,30,30,40 1 E)F) 54080 79400 (AB)(((CD) 70
7 6 75,34,8,32,30,30,40 D)E)F) 68880 269100 (AB)(((C 74
8 6 100,34,8,32,30,30,40 83680 358800 (AB)(((CD)E)F) 77
9 6 50,15,16,20,25,30,40 71550 150500 A((((BC)D)E)F) 52

10 6 50,45,40,35,30,25,20 145000 275000 A(B(C(D(EF)))) 47
11 6 7,45,40,35,30,25,20 38500 38500 ((((AB)C)D)E)F 0
12 6 7,15,16,20,25,30,40 21070 21070 ((((AB)C)D)E)F 0

3 Par lel al tion
o Matrix Parenthesization Problem

e
e

ows the same Table 1 with the sequence
egins by
atrices.

 al ization of Optim Solu
t

Refer to the time required to find an optimal
product sequence for a chain of matrices as th
ordering time and the time required to execute th
product sequence as the evaluation time [7]. Many
parallel algorithms aimed at reducing the evaluation
time have been studied. Sascha Hunold proposed
“Multilevel Hierarchical Matrix Multiplication on
Clusters” [8]. Manojkumar Krishnan proposed
“Memory Efficient Parallel Matrix Multiplication
Operation for Irregular Problems” [9] and Qingshan
Luo gives “A Scalable Parallel Strassen’s Matrix
Multiplication Algorithm for Distributed Memory
Computers” [10]. Any of the mentioned approach
to reduce evaluation time can be used along with
the parallel algorithm aimed at reducing the
ordering time. Some of the parallel algorithms to
reduce ordering time have been studied using the
dynamic programming method and the convex
polygon triangulation method [11] [12], however
the research is scarce. Figure 5 shows the filling of
m and s table diagonally for optimal matrix
parenthesization problem using pn processors,
proposed by Grama and Gupta [5]. One of the
major drawbacks of the approach is that it requires
number of processors equal to the number of
matrices, difficult to fulfil in most of the cases.
Moreover, the processors do not share the uniform
work load. Although Strate [13] introduced an
important idea and provided a clue that the goal
should always be to minimize the idle time of all
the processors, but not exploited in the mentioned
approach.

3.1 Parallel Processing Algorithm

Table 6 sh
of calculations. The sequential algorithm b
solving all subproblems of length two m

Diagonal 1

Diagonal 2

Diagonal 7

Diagonal 6

(2,8)

(3,8)

(4,8)

(5,8)

(8,8)

(2,7)

(3,7)

4,7)

(5,7)

(6,6)

(5,6)

4,6)

(3,6)

(2,6)(2,5)

(3,5)

4,5)(4,4)

(3,4)

(2,4)(2,3)(2,2)

(3,3)

(7,8)(7,7)

(6,7) (6,8)

Diagonal 0

P1 P5 P6 P

(1,8)(1,7)

((

(1,6)

(

(5,5)

(1,2)

P0 P2 P3 P4 7

(1,4)(1,3) (1,5)(1,1)

Figure 5: Using pn Processors Proposed by

Grama and Gupta
Table 6: Sequence of Calculations of Array m

 1 2 3 4
1 0 224 180 216
2 0 84 120 Diagonal 3
3 0 63 Diagonal 2
4 Diagonal 1 0

That is, the cost of multiplying matrices A A , 1 2
A2A3, d A4 e determined. The cost is 224, 84
and 63 respectively. These s are entered in the
above table along the fir a
sequence of top to bo m a eft e next
diagonal, entr 1A 2A ulated

 results. The process

an A3 ar
value
st m in diagonal with

tto nd l to right. Th
ies A 3 and A 4 are calc

based on the previous
continues until finally the A1A4 entry in the table is
determined. This is the optimal solution. The
sequential algorithm solves all subproblems on the
main diagonal of the table, followed by each of the
upper diagonals until a solution is determined in the
upper right comer of the table. Under mentioned
parallel algorithm for allocating tasks for the
optimal solution to matrix parenthesization problem
views the table as shown in Figure 6.

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
214

Issue 10, Volume 4, October 2007

TASKING PROCESSORS (P)
t (n*n)-n)/2 {Total calculations for n matrices}
trcountbottom(m) 1 {Temp row count from bottom}
trcounttop(m) n-1 {Temporary row count from top}
p number of processors {Total number of processors}
Avcalc t/p {Average calculations for each processor}
for m 0 to p-1 {For all processors}

lcula tcalc(m) 0 {Temporary ca
 while calcp(m)<Avcalc {calcs

tions for p(m)}

End for

(0), p(1), p(2)…p(n) are the processors numbered
 botto

i.e.

j

 for each processor}
 do calcp(m) tcalcp(m){Calcs for p(m)}
 tcalcp(m) tcalcp(m) + trcountbottom

rcountbottom(m) trcountbottom(m)
{Row count from bottom}
rcounttop(m) trcounttop(m)
{ unt fro top} Row co m

 trcountbottom(m) ++
 trcounttop(m) - -

End while
return rcounttop(m),calcp(m)

3.2 Functioning of Parallel Algorithm

p
from m to top. The rows are allocated numbers
from top to bottom as i and also bottom to top
matching to processors p(0) to p(n). Processor 1
will calculate the bottom set of rows in the table,
processor 2 will calculate the next set of rows, until
processor n calculates the topmost set of rows and
will finally determine the solution. Each processor
simultaneously calculates the entries in the portion
of the table it is assigned. The entries in the table
are processed diagonally left to right, top to bottom.
As in traditional sequential algorithm. Each time
processor i, (i = 0...n), completes an entire diagonal,
the entries is sent to processor i+1. Furthermore,
each time processor i, begins to work on a new
diagonal, it receives entries for the same column
previously calculated from processor i - 1. Figure
6 illustrated these principles.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 Processors/ 16 Rows from Bottom

1 x x x x x x x x x x x x x x x x x 250 1 5 9 x x x x x

2 0 2 6 10 x 24 P(3)
3 0 3 7 x 23

4 0 4 8 x 22

94 calcs

5 0 1 5 9 x x x x x x x x x x x x x x x x x x 21

6 0 2 6 10 x x x x x x x x x x x x x x x x x 20 P(2)
7 0 3 7 x x x x x x x x x x x x x x x x x 19

8 0 4 8 x x x x x x x x x x x x x x x x 18

9 0 1 6 x x x x x x x x x x x x x x x 17

10 0 2 7 x x x x x x x x x x x x x x 16

11 0 3 8 x x x x x x x x x x x x x 15 P(1)
12 0 4 9 x x x x x x x x x x x x 14

13 0 5 x x x x x x x x x x x x 13

14 0 1 13 x x x x x x x x x x 12

15 0 2 14 x x x x x x x x x 11

16 0 3 15 x x x x x x x x 10

17 0 4 16 x x x x x x x 9

18 0 5 x x x x x x x 8

19 0 6 x x x x x x 7 P(0)
20 0 7 x x x x x 6

21 0 8 x x x x 5

22 0 9 x x x 4

23 0 10 x x 3

24 0 11 x 2

25 0 12 1

26 0

quences of Calculations and Partitioning of Task
 No. of Matrices: 26, No. of Processors: 4

Figure 6: Se s into Rows

7

75 l ca cs

78 calcs

i

8 l ca cs

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
215

Issue 10, Volume 4, October 2007

probl m is used
 is used for all

er pr ce so
standard matri

of matrices in chain }
r i 1 to n

}

e are mentioned below. First algorithm
for processor p(0). Second algorithm
oth o s rs p(i). Major changes from the

x pare are nthesization algorithm
underlined. Figure 8 reveals the result with the
application of the mentioned algorithms with Number
of Matrices: 26, Number of Processors: 3 and
Sequences of Dimensions: 9,8,7,6,5,4,3,2,2,3,4,5,
6,7,8,9,9,8,7,6,5,4,3,2,2,3,4.

PARALLEL MATRIX PARENTHESIZATION(P(0))
n length[P]-1 {p is an array containing pi-1 to pj and n
 is the number
fo
 do m[i,j] 0 {Single matrices take 0 multiplications
for l 2 to n-rcounttop(1) {l is length of chain starting
 from top of the processor p(o)}

 do for rcoui nttop(1)+1 to n–l+1 {All possible starting

 indices for length l}

m}
 for k i j {Tr

 {Sma r chain

 re

ESIZATION(P(i))

 do j i + l – 1 Ending index of chain of length l}
 m[i,j] INF {Large value to start to find minimu
 to y all possible splits of this chain}
 do q m[i,k]+m[k+1,j]+ pi-1pkpj
 lle s are already computed}
 if q < m[i,j] {If minimum, then store it}
 then m[i,j] q
 s[i,j] k
 turn m, s

PARALLEL MATRIX PARENTH

for l 2 to n-rcounttop(m+1) {l is length of chain starting
 from top of the processor p(m)}

 if l < (n – rcounttop(m))+2 then ilimit = rcounttop(m)
 else ilimit = n-l+1
 for i = rcounttop(m+1)+1 to ilimit
 l – nding index of chain of length l} do j i + 1 {E

 m[i,j] INF {Large value to start to find min}

computed}

 retu

3
of parallel algorithm

solution to matrix parenthesization
roblem are shown in Table 7. In the Table 7, number

atr s

num er f rocessors a h
matrix. The column of matrix A mu e equal to the

 for k i to j {Try all possible splits of chain}
 do q m[i,k]+m[k+1,j]+ pi-1pkpj
 {Smaller chains are already
 if q < m[i,j] {If minimum, then store it}
 then m[i,j] q
 s[i,j] k
 rn m, s

3. I entation of Pamplem rallel Algorithm
The results for implementation
for optimal
p
of m ices are 20 – 100 with number of processor
1 – 10. Figure 7 includes the graph showing the
reduction of computations in the parallel algorithm as
compared to single processor with different numbers
of processors. Input includes number of matrices,

 of Parallel Processing Algorithm
 No. of Processors: 1-4, No. of Matrices: 20-100

Maximum Computations by
any Processor Using

b o p nd the dimensions of eac
st b

row of matrix B for all the dimensions.

Table 7: Implementation

No. of Processors
No. of

Matrices

Total
Computations

with Single
Processor 2 3 4 6 8 10

20 190 99 85 54 54 70 70
30 435 225 159 135 110 110 135
40 780 402 284 219 185 219 150
50 1225 630 445 364 322 279 279
60 331770 909 642 495 444 392 9
70 2415 1239 875 645 524 462 462
80 3160 1620 1080 882 745 604 532
90 4005 2052 684 1377 1079 845 684

100 4950 2535 8551710 1380 945 855

 Reductio u n

0

1000

20 30 40 50 60 70 80 90 100

Number of Matrices

N
um

be
r o

f C
om

pu
ta

tio
ns

n in Comp tatio s

2000

3000

4000

5000

6000

Figure 7: Reductions of Computations in Pa allel
 No. of Processors: 1-10, No. of Matrices: 20-100

3.4 Analysis of Parallel Processing Algorithm
Analyzing Table 7 with graph of Figure 7, it is
obvious that there is considerable amount of time
reduction proportional to the number of processors at
the start. However, after some increase it is just the

rocessors without any gain. One should
ation

oint f

r

increase of p
be mindful of that number and may call it a satur
p or that input. After that point adding more
processors does not yield any more throughput but
only increases the overhead and cost. Therefore, the
number of processors must be used economically to
get the optimal results.
For number of matrices between 26 and 104, best
results are found till number of processors nine. With
number of matrices 26, best results are received with
number of processors seven. Therefore, one can say
that algorithm is best suited for processors 2 to 10 for
number of matrices till 100. Moreover, the results of
parallel algorithm confirm the results of single
processor algorithm.

1 Pro

o s

o s

6 Processors
8 Processors
10 Processors

cessor

2 Pr

cessor

3 Pr
4 Processors

cessor

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
216

Issue 10, Volume 4, October 2007

4 Conclusion
There is substantial amount of reduction in arithmetic
operations on applying matrix parenthesization
algorithm proportional to the number of matrices and
the sequence of dimensions. It also seems that
percentage of time reduction compared to the linear
left to right arithmetic operations is less, if the first
dimension is smaller. Similarly, if the first dimension

 larger, percentage of time reduction to the linear left
to right arithmetic operations is more. Time reduction

rtional to the number of

] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, Clifford Stein, Introduction to

hms, The MIT Press, Cambridge,

an
Francisco St. Louis Montreal Toronto, 2004

[4]
gp), Department of

Computer Science, University of Toronto, CSC

[5]

[6]
of Algorithms, COSC 483, Lecture 10,
Department of Computer and Information
Sciences Towson University, 8000 York Road,
Towson, Maryland, Fall 2006

, ieeexplore isnumber = 26889,
2003

[8]
al Matrix

Multiplication on Clusters, ICS 04, Saint Malo,

[9]

roblems, Pacific
Northwest National Laboratory, Richland,

[10]

thm for Distributed Memory Computers,
The University of South, ACM 0-89791-658-1,

[11]
hain Ordering in Polylog

Time, SIAM J. Computing, vol. 27, no. 2,

[12]

itute of

[13]

, The University of Tulsa, 1990

is

varies from 0% to 96%, propo
matrices and the sequence of dimensions. It is also
learnt that on applying parallel matrix
parenthesization algorithm, the amount of time
reduction varies 50% and more, proportional to the
number of processors at the start, however, after some
increase, adding more processors does not produce
any more reduction in time; rather increasing cost and
effort.

References:
[1] Nikos Drakos, Introduction to Dynamic

Programming, Computer Based Learning Unit,
University of Leeds, Lecture 12, Feb 5, 1996

[2] Dr. Sanath Jayasena, Dynamic Programming
Algorithms, CS222, Lecture 11, University of
Moratuwa, November 2003

[3

Algorit
Massachusett London, England, McGraw-Hill
Book Company, Boston Burr Ridge, IL
Dubuque, IA Madison, WI, New York S

Fundamental Data Structures and Techniques,
Dynamic Graphics Project (d

270, Fall 2002

Ananth Grama, Anshul Gupta, George Karypis
and Vipin Kumar, Introduction to Parallel
Computing, Addison Wesley, 2003

Dr. Harry Hochheiser, The Design and Analysis

[7] Heejo Lee, Jong Kim, Sung Je Hong, and
Sunggu Lee, Processor Allocation and Task
Scheduling of Matrix Chain Products on
Parallel Systems

Sascha Hunold, Thomas Rauber and Gudula
Runger, Multilevel Hierarchic

France, Jun 2004

Manojkumar Krishnan, Jarek Nieplocha,
Memory Efficient Parallel Matrix Multiplication
Operation for Irregular P

ACM, CF 06, Ischia, Italy, May 2006

Qingshan Luo and John B. Drake, A Scalable
Parallel Strassen’s Matrix Multiplication
Algori

1995

P.G. Bradford, G.J. Rawlins, and G.E. Shannon,
Efficient Matrix C

pp.466-490, 1998

A. Czumaj, Parallel Algorithm for the Matrix
Chain Product and the Optimal Triangulation
Problems, Research Paper in Inst
Informatics, Warsaw University, ul Banacha,
Warszawa, Poland, 1993
Steve A. Strate and Roger L. Wainwright,
Parallelization of the Dynamic Programming
Algorithm for the Matrix Chain Product on a
Hypercube

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
217

Issue 10, Volume 4, October 2007

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Processors/
Rows from Bottom

1 0 504 768 850 800 660 464 476 530 572 630 708 810 940 1102 1264 1390 1484 1550 1592 1614 1620 1586 1594 1648 1690 25
2 0 336 490 512 444 320 332 380 420 476 552 652 780 940 1102 1230 1326 1394 1438 1462 1470 1442 1450 1498 1538 24 P(2)
3 0 210 288 276 208 220 262 300 354 428 526 652 810 972 1102 1200 1270 1316 1342 1352 1330 1338 1380 1418 23 {115 calcs}
4 0 120 150 124 136 172 208 260 332 428 552 708 870 1002 1102 1174 1222 1250 1262 1246 1254 1290 1326 22
5 0 60 64 76 106 140 190 260 354 476 630 792 926 1028 1102 1152 1182 1196 1186 1194 1224 1258 21
6 0 24 36 60 92 140 208 300 420 572 734 870 974 1050 1102 1134 1150 1146 1154 1178 1210 20
7 0 12 30 60 106 172 262 380 530 692 830 936 1014 1068 1102 1120 1122 1130 1148 1178 19
8 0 12 36 76 136 220 332 476 638 782 894 978 1038 1078 1102 1110 1118 1130 1154 18 P(1)
9 0 24 64 124 208 320 464 626 770 882 966 1026 1066 1090 1102 1110 1122 1146 17 {105 calcs}

10 0 60 150 276 444 660 903 1119 1287 1413 1503 1563 1599 1090 1102 1120 1150 16
11 0 120 288 512 800 1124 1412 1636 1804 1924 2004 1563 1066 1078 1102 1134 15
12 0 210 490 850 1255 1615 1895 2105 2255 1924 1503 1026 1038 1068 1102 14
13 0 336 768 1254 1686 2022 2274 2105 1804 1413 966 978 1014 1050 13
14 0 504 1071 1575 1967 2022 1895 1636 1287 882 894 936 974 12
15 0 648 1224 1575 1686 1615 1412 1119 770 782 830 870 11
16 0 648 1071 1254 1255 1124 903 626 638 692 734 10
17 0 504 768 850 800 660 464 476 530 572 9 P(0)
18 0 336 490 512 444 320 332 380 420 8 {105 calcs}
19 0 210 288 276 208 220 262 300 7
20 0 120 150 124 136 172 208 6
21 0 60 64 76 106 140 5
22 0 24 36 60 92 4
23 0 12 30 60 3
24 0 12 36 2
25 0 24 1
26 0

Figure 8: Partitioning of Tasks into Rows, No. of Processors: 3, No. of Matrices: 26,
 Sequences of Dimensions: 9,8,7,6,5,4,3,2,2,3,4,5,6,7,8,9,9,8,7,6,5,4,3,2,2,3,4

9

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Muhammad Hafeez, Dr. Muhammad Younus

1790-1979
218

Issue 10, Volume 4, October 2007

	[4] Fundamental Data Structures and Techniques, Dynamic Graphics Project (dgp), Department of Computer Science, University of Toronto, CSC 270, Fall 2002

