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Abstract: Location problems have been the focus of considerable attention both in research and practice for 
many years. Numerous extensions have been described to broaden its appeal and enhance its applicability. This 
study proposes a spreadsheet approach for three well-known facility location problems, the p-median problem 
(PMP), capacitated p-median (CPMP), and maximal covering location problem (MCLP). The advantages of the 
method are not only relatively simple but are also effectively used, maintained and updated by users. The 
results show that the spreadsheet approach can generate good solutions, including conditions descriptions of 
location and allocation, within a reasonable process time. For some instances, the solutions obtained by this 
method are better than those by state of the art approaches. In addition, most location problems can also apply 
this approach. 
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location problem, spreadsheets 
 
1 Introduction 

The logistics for distribution of products (or 
services) has been a subject of increasing 
importance over the years. It is a significant part of 
the strategic planning of both public and private 
enterprises. Decisions concerning the best 
configuration for the installation of facilities in 
order to attend demand requests are the subject of a 
wide class of problems, known as location problems 
[1]. These location problems have received a 
considerable amount of attention from scientists 
who have identified various problem types and 
developed variety methodologies to solve these 
problems, subsequently being adopted to make 
decisions belonging to locations of facilities in 
many practical applications. 

Brandeau and Chiu [2] presented a review of 
representative problems that have been studied in 
location research and identify more than fifty 
problem types and indicate how those problem types 
relate to one another. The location problems can be 
described as models in which a number of facilities 
is to be located in the presence of customers, so as 
to meet some specified objectives. Obvious 
applications of the problem occur when facilities 
such as warehouses, plants, hospitals, or fire stations 
are to be located. Although these instances are quite 
different from each other, they share some common 
features. 

Most location problems can be defined as 
follows: given space, distance, a number of 
customers, customers’ demands and mission. The 
distance is defined between any two points in that 
area. The number of customers is located in the area 
under consideration and who have a certain demand 
for a product (or service). The mission is to locate 
one or more facilities in that area that will satisfy 
some or all of the customers’ demands. 

Depending on the objectives, location problems 
can be grouped into two major classes [3]. One class 
treats the minimization of the average or total 
distance between customers and facilities. The 
classic model that represents the problems of this 
class is the p-median problem (PMP). Optimally 
locating public and private facilities such as schools, 
parks and distribution centers are typical examples 
of this problem. The other class deals with the 
maximum distance between any customer and the 
facility designed to attend the associated demand. 
They often used in applications related the location 
of emergency facilities. These problems are known 
as covering problems and the maximum service 
distance is covering distance. 

The p-median is a well-known facility location 
problem which addresses the supply of a single 
commodity from a set of potential facility sites to a 
set of customers with known demands for the 
commodity. The problem consists of finding the 
locations of the facilities and the flows of the 
commodity from facilities to customers such that 
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transportation costs are minimized. The PMP was 
first introduced by Hakimi [4]. It is NP-hard, and so 
optimal solutions to large sized problems are 
difficult to obtain. 

The PMP has received a considerable amount 
of attention from researchers who have developed a 
variety of solution procedures to solve it. Several 
exact and heuristic solution procedures have been 
developed for PMP. The exact procedures include 
the algorithms of Narula et al. [5]; Galvão [6] and 
Galvão and Raggi [7] among others. Heuristic 
solution procedures started with the paper of Teitz 
and Bart [8]. Pizzolato [9] developed a heuristic for 
large weighted graphs and applied it to locate 
schools in the metropolitan area of Rio de Janeiro, 
Brazil. A variety of metaheuristic approaches for the 
PMP have been proposed in recent years. These 
include the two stage construction heuristic [10]; the 
tabu search procedures [11]; the variable 
neighborhood search approaches [12]; the statistical 
analysis of simulated annealing [13] and the genetic 
algorithm [14,15]. 

The capacitated p-median problem (CPMP) 
considers capacities for the service to be given by 
each median, and the total service demanded by 
vertices identified by p-median clusters cannot 
exceed their service capacity. This problem is also 
known to be NP-hard and consists of finding the set 
of p medians and the assignment pattern that 
satisfies the capacity constraints with a minimum 
total cost. As a matter of fact, the CPMP is not 
intensively studied as the classical PMP. Recent 
approaches apply metaheuristics, such as simulated 
annealing and tabu search [16]; genetic algorithms 
[17]; scatter search and path relinking [18]. Pirkul et 
al. [19] described a visual interactive decision 
support tool, VisOpt, for CPMP. In a 2006 paper 
Reese [20] summarized the literature on solution 
methods for the uncapacitated and capacitated p-
median problem on a network.   

The maximal covering location problem 
(MCLP) proposed by Church and ReVelle [21] is a 
well-studied problem in the category of models that 
provide coverage to demand areas. MCLP does not 
require that all demand areas be covered; rather the 
objective is to locate p facilities such that the 
maximal population is covered within the service 
distance. Church and ReVelle proposed the linear 
programming relaxation of the 0-1 integer 
programming formulation of the problem and 
greedy-interchange heuristics to solve the MCLP. 
Schilling et al. [22] provide a detailed review of the 
covering models in facility location. Galvão and 
ReVelle [23] developed a lagrangean heuristic for 
the MCLP. Dwyer and Evans [24] developed an 

exact method for the particular case where all 
demand areas have equal weights. Downs and 
Camm [25] have reported an extensive 
computational evaluation of their method, dual-
based algorithm, in terms of both variety of 
applications and problem size. More recently, 
Lorena and Pereira [26] present results obtained 
with a lagrangean/surrogate heuristic using a 
subgradient optimization method. Maric et al. [27] 
used genetic algorithm to find out the solutions of 
the two-level hierarchical covering location 
Problem. 

It is hard to select an optimization tool that 
could not only be more easily understood but also 
effectively used, maintained and updated by users. 
Spreadsheets are inherently form-free and impose 
no particular structure on the way problems are 
modeled. All of the major spreadsheet products (e.g. 
Excel, Lotus, and Quattro) are supplied with 
optimization capability. Most commercial 
spreadsheets contain a “Solver” tool that requires no 
code to be written, and requires little knowledge 
about the optimization algorithms themselves, and 
so are extremely easy to use. The main advantage of 
these software packages is their wide availability 
and ease of use because they do not require custom 
coding. Traditional dedicated OR software packages 
(e.g. Lindo, GAMS, AMPL, CPLEX) have quite the 
opposite characteristic and impose fairly rigid rules 
or structures for modeling problems, not to mention 
the need to learn an algebraic modeling language. 
Spreadsheet models allow us to build more detailed 
and more complex models than traditional 
mathematics allows. In spite of their huge 
popularity, little has been written about how one 
should develop an optimization model using 
spreadsheets. In addition, they also have the 
advantage of being pervasive in problem analysis. 
Therefore, this present study built spreadsheet 
models rather than using a specialized mathematical 
modeling package. 
Since their introduction over 15 years ago, 
electronic spreadsheet programs like Excel have 
become the most common tool business people use 
to model and analyze quantitative problems [28]. 
Many authors consider spreadsheets the tool of 
choice for today’s managers since they provide a 
convenient way for business people to build 
computer models, including optimization models 
[29]. Rasmussen [30] indicated that spreadsheet 
solvers could very well be the preferred software for 
solving quadratic assignment problem, compared to 
other general purpose optimization software. Based 
on the above reasoning, this work set out to develop 
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a spreadsheet method to solve the location 
problems. 
 
2 The Problem Formulations 

The mathematical models of the PMP, CPMP 
and MCLP are presented as following. They have 
all been reformulated by this work to fit spreadsheet 
models. 

 
2.1 The PMP model 

The p-median model is a location/allocation 
model, which locates p facilities among n demand 
points and allocates the demand points to the 
facilities. The objective is to minimize the total 
demand-weighted distance between the demand 
points and the facilities. For an n vertex network and 
a symmetric distance matrix D = [dij] n×n, the PMP 
can be formulated as the following binary integer 
programming problem: 

∑∑
= =

n

i

n

j
ijjii xdw

1 1
min                               

(1) 

s.t.      1
1

=∑
=

n

i
jix i∀           

(2) 

                

jji yx ≤        ji,∀                   

(3) 

     

py
n

i
j =∑

=1

                                    

(4) 
ijx = {0, 1}    ji,∀                        

(5) 
yj = {0, 1}    j∀               

(6) 
            

where 
n = total number of demand points 
wi = demand at point i 
dij = travel distance between point i and j 
xij = 1 if point i is assigned to facility located at 

point j; 0 otherwise 
yj = 1 if facility is located at node j; 0 otherwise 
p = number of facilities to be located 

This is an uncapacitated facility location model 
where every demand point is served by one facility 
and trips to demand points are not combined. The 
constraints in a standard p-median model are fairly 
simple. Each demand point must be assigned to 
exactly one median (facility), represented by (2). 
Constraints (4) guarantee that exactly p medians are 
located. The computational difficulties regarding 
optimality are made complex by the fact that the 

variables are binary variables. The PMP is an 
integer programming problem, and constraint (5) 
and (6) provide the integer conditions.  
 
2.2 The CPMP model 
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where 

cj = capacity of facility (or point) j  
This is a CPMP model where every demand 

point is served by one facility and total median 
capacity must be respected. The objective of CPMP 
is also to minimize the total demand-weighted 
distance between the demand points and the 
facilities as well. Constraint (7) ensures that the 
capacity of every selected median is not exceeded, 
and the other constraints ((2), (4), (5), and (6)) are 
the same with the standard p-median model.  
 
2.3 The MCLP model 

The MCLP model is also a location/allocation 
model. The mathematical programming of the 
MCLP can be formulated as below: 
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where 
n = total number of demand points 
wi = demand at point i 
dij = travel distance between point i and j 
xij = 1 point i is covered by facility located at 

point j; 0 otherwise 
yj = 1 if facility is located at node j; 0 otherwise 
p = number of facilities to be located 
ds = distance beyond which a demand area is 

considered uncovered 
sij = 1 if dij ≤ ds; 0 otherwise 

The objective function (8) maximizes the 
coverage level within the maximum critical 
distance, ds. The constraint (2), (3), (4), (5), and (6) 
impose the equal restriction as the p-median model. 
The MCLP is also an integer programming and NP-
hard problem which means very difficult to solve as 
the number of n is large. 

 
3 A simple spreadsheet example 
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A problem from [31] with n = 5 and p = 3 was 
used to provide a numerical instance. This work 
proposes three small examples to show how to solve 
and view the results for these problems. 

Figure 1 shows the binary representation of the 
PMP. The cost function from Eq. (9) is 
implemented, and it therefore can use the Standard 
LP/Quadratic Solver engine provided by Excel. The 
Solver settings are also shown in Figure 1. The 
matrix U was started with a null matrix (all entries 
zero). A SUMPRODUCT function is then used to 
compute the matrix W, D and U. SUMPRODUCT is 
one of the most versatile functions provided in 
Excel. In its most basic form, SUMPRODUCT 
multiplies corresponding members in given arrays, 
and returns the sum of those products. The demand 
is transformed into the matrix W because 
SUMPRODUCT only deal with the same size of 
arrays.  

 
3.1 The PMP example 

In the general case, it has a symmetric matrix 
D[n×n] of distances between nodes i and j, and a 
matrix W[n×n] expanded from W[n×1] of demands of 
node i with a total of n nodes. Let i, j ∈ {1, . . . , n} 
be indexes for the nodes. Finally, defining the 
matrix of decision variables U[n×n] as xjj=1 if a 
facility is located in node j; otherwise xjj= 0. In 
addition, xij=1 (i≠ if a node i is assigned to facility 
j; otherwise xij= 0. The computation of the costs as 
described in Eq. (1) and there is a simpler way of 
representing the total cost C: 

j) 
The result is shown in Figure 2. The minimum 

total demand-weighted distance is 120 which is the 
same as the result given by [31]. In addition, three 
facilities are located at node 1, 3 and 4; node 2 and 5 
are assigned to facility located in 3 and 4 
respectively. 

min C＝  ∑∑
= =

n

i

n

j
ijiji xdw

1 1

min

＝  SUMPRODUCT(W ． D ． U)         
(9) 

 

 

 
Figure 1. A small example of the PMP 
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Figure 2. The computational result of the PMP example 

 
3.2 The PMP example 

Figure 3 illustrates the format implementing a 
simple CPMP example. In terms of CPMP, the 
format and settings are the same with the case PMP 
except that the capacity of each facility (or point) 
and one more constraint equation “S8:W8 ≤ S9:W9” 
need to be set. The matrix L which is the products of 

loading in each facility. The capacity of the facilities 
was 100 units. 

As can be seen in Figure 4, the cost is 200 
under the capacity constrain. The result reveals that 
the facilities are located at node 1, 3 and 4. The 
facility located at node 1 services node 1 and 5 and 
their demands are totally 100 units which satisfied 
the capacity constrain. 

matrix D and matrix U presents the conditions of 

Figure 3. A small example of the CPMP example
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Figure 4. The computational result of the CPMP example 

3.3 The MCLP example 
In a similar way, the objective function of the 

MCLP can be represented as below: 

max G＝  ∑∑
= =

n

i

n

j
ijiji xsw

1 1
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＝ SUMPRODUCT(W．S．U)        (10) 
 

Defining the matrix of decision variables S[n×n] 
as sij=1 if the distance between node i and j, dij, is no 
longer than the maximum covering distance, ds; 
otherwise xjj= 0. The representation of the MCLP 
and the Solver setting can be seen in Figure 5.  

As shown in Figure 6, the facilities are located 
at node 1, 3 and 5. The node 2 and 4 is covered by 
the facility at node 1 and 5 respectively. The total 
covering demands is 240 units. 

 
Figure 5. A small example of the MCLP
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Figure 6. The computational result of the MCLP example 

4 Computational Results 
All test runs were processed on a laptop 

computer with an Intel Pentium M processor 
operating at 1.73GHz. The operating system was 
Microsoft XP and Excel 2007 was the spreadsheet 
software. The standard Solver comes bundled with 
Microsoft Excel. For nonlinear problems, it is 
limited to problems of up to 200 decision variables 
and 100 constraints in addition to bounds on the 
variables. The problems solved far exceed the 
limits, hence, this study adopted the Premium Solver 
Platform V7.0 as the Solver and chose the large 
scale LP/Quadratic as the Solver engine. The 
Premium Solver Platform, a product by Frontline, is 
an upgrade for the Solver that comes with Microsoft 
Excel and includes speed and accuracy 
improvements to the standard Excel Solver. There 
are several Solver engine provided by Premium 
Solver Platform which can be selected to solve 
problems, however, none is better than the large 
scale LP/Quadratic for these problems in terms of 
efficiency. All settings of the Solver were the same 
as those described in Section 3.  
 
4.1 The experimental results of PMP 

Sixteen problems from [23] with n = 100 and n 
= 150 and various values of p were solved and the 
results are shown in Tables 1 and 2. The column 
values of SM are computational results obtained 
using this approach. In addition, the results were 
compared with those presented by [15]. They 
proposed an efficient genetic algorithm (GA) for the 
PMP, hence, it means that the solutions are not 
consistent every time. In the instance of n = 100, the 
average gap of the solutions by Solver is 1.38 %, 

and the performance is inferior to GA. The process 
times of these instances (n = 100) are within 30 
seconds. In the instance of n = 150, the average gap 
is 0.89 % and the computational times are no longer 
than 3 minutes. The solutions using this approach 
are better than those of GA in the instance where the 
value of p is large. Although the results show 
differences in the optimal values, this approach can 
obtain best solutions for the PMP that the n is small 
than 55 in seconds. 
 
4.2 The experimental results of CPMP 

A set of six problems used by [18] that 
correspond to real data from the Brazilian city of 
São José dos Campos were used. Their dimensions 
(n, p) were (100, 10), (200, 15), (300, 25), (300, 30), 
(402, 30) and (402, 40), respectively. The 
computational results of these problems are shown 
in Table 3. The data of the best known also are from 
Díaz and Fernández. Most solutions have a 
difference with the best known and the average gap 
is 1.08 %. However, the objective value (51508.41) 
is smaller than the best known (52541.72) in the 
SJC4b problem. For the problem (n = 402) they 
were left to run for two hours. 
 
4.3 The experimental results of MCLP 

Lorena and Pereira [26] proposed a 
lagrangean/surrogate (L/S) heuristic for the MCLP. 
This current work solves some problems, SJC324, 
SJC402 and SJC500, from their paper and compares 
the different results (shown in Tables 4, 5 and 6). 
The number of facilities range from 1 to the 
minimum needed to obtain full coverage. The 
service distances, ds, are designated as 800, 1200 
and 1600. The positive gap value means that the 
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solution obtained by this approach is covering more 
demands than it is by L/S. This approach performs 
better than L/S in case of (n, ds) = (402, 1200) and 
(500, 800). As the problem size grew, the solution 
time increased dramatically. The CPU times were 
about 8 hours for the largest problem (n = 500). In 
addition, Tables 7 and 8 present the solutions of the 
problems when the p value is bigger and the ds is 
short. 
 
5 Discussion 

One of the most important discussions in 
operation planning is facility planning, in which 
facility location and layout are considered. Selecting 
a facility location is a very important decision for 
firms because they are costly and difficult to 
reverse, and they entail a long term commitment. 
Furthermore location decisions have an impact on 

operating costs and revenues. For instance, a poor 
choice of location might result in excessive 
transportation costs, lack of qualified labor and 
supplies of raw materials, lost of competitive 
advantage, or some condition that would be 
unfavorable to operations. 

In this work a spreadsheet approach for the 
PMP, CPMP and MCLP was proposed. There are a 
number of benefits associated with using Excel to 
solve location problems. Excel is the most widely 
distributed spreadsheet package in the world. It 
provides a user-friendly environment for setting up 
and solving various optimization problems and a 
robust set of built-in data analysis tools and features 
that can be used to sort, summarize, and display 
important information used for decision making. A 
motivating factor for this study was to provide 

Table 1. The compared results of the PMP on the Galvão problem (100 nodes) 
     Gap (%) 

No. n p Optimal SM SM GA(best) GA(worst) 
1 100 5 5703 5869 2.91 0.00 0.00 
2 100 10 4426 4518 2.08 0.32 2.76 
3 100 15 3893 3968 1.93 0.00 0.23 
4 100 20 3565 3622 1.60 0.00 0.25 
5 100 25 3291 3335 1.34 0.03 0.15 
6 100 30 3032 3066 1.12 0.00 0.07 
7 100 35 2784 2813 1.04 0.00 0.18 
8 100 40 2542 2570 1.10 0.00 0.12 

Gap = 100* (test value – optimal value) / optimal value 
 

Table 2. The compared results of the PMP on the Galvão problem (150 nodes) 
     Gap (%) 

No. n p Optimal SM SM GA(best) GA(worst) 
1 150  5 10839  11027 1.73  0.00 0.62 
2 150 15 7390  7491 1.37  0.00 0.77 
3 150 20 6454  6569 1.78  0.12 0.67 
4 150 25 5875  5996 2.06  0.00 0.70 
5 150 35 5192  5197 0.10  0.04 0.37 
6 150 45 4636  4637 0.02  0.11 0.26 
7 150 50 4374  4377 0.07  0.14 0.21 
8 150 60 3873  3873 0.00  0.08 0.21 

 

Table 3. The computational results of the CPMP 
Problem n p Best Known SM Gap (%) 

SJC1 100 10 17288.99 17288.99 0.00    
SJC2 200 15 33270.94 34416.98 3.44    
SJC3a 300 25 45338.01 46811.56 3.25    
SJC3b 300 30 40635.90 40896.16 0.64    
SJC4a 402 30 61928.91 62609.72 1.10    
SJC4b 402 40 52541.72 51508.41 -1.97    
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Gap = 100* (test value – best known value) / best known value 
 

Table 4. The compared results of the MCLP (324 nodes) 
   Demand attended   

n p ds L/S SM Gap (%) Coverage (%) 
324 1 800   5461  5325  -2.49  43.82    
324 2 800   8790  9126  3.82  75.10    
324 3 800   11604  11269  -2.89 92.73    
324 4 800   12106  12061  -0.37 99.25    
324 5 800   12152  12152  0.00 100.00    
324 1 1200   9932  9720  -2.13 79.99    
324 2 1200   11555  11885  2.86 97.80    
324 3 1200   12152  12152  0.00 100.00    
324 1 1600   12123  11929  -1.60 98.16    
324 2 1600   12152  12152  0.00 100.00    

Gap = 100* (test value – L/S value) / L/S value 
Coverage = 100* (demand attended value / total demand value) 

Table 5. The compared results of the MCLP (402 nodes) 
    Demand attended   

n p ds L/S SM Gap (%) Coverage (%) 
402 1 800   6555  6555  0.00  41.01   
402 2 800   11339  11339  0.00 70.94   
402 3 800   14690  14690  0.00 91.90   
402 4 800   15658  15658  0.00 97.96   
402 5 800   15970  15970  0.00 99.91   
402 6 800   15984  15984  0.00 100.00   
402 1 1200   10607  12260  15.58 76.70   
402 2 1200   14832  15450  4.17 96.66   
402 3 1200   15984  15984  0.00 100.00   
402 1 1600   15438  15438  0.00 96.58   
402 2 1600   15984  15984  0.00 100.00   

 

Table 6. The compared results of the MCLP (500 nodes) 
   Demand attended   

n p ds L/S SM Gap (%) Coverage (%) 
500 1 800   7944  7944  0.00 40.31    
500 2 800   12454  12454  0.00 63.20    
500 3 800   15730  15730  0.00 79.82    
500 4 800   17794  17851  0.32 90.58    
500 5 800   18859  18938  0.42 96.10    
500 6 800   19525  19525  0.00 99.08    
500 7 800   19692  19692  0.00 99.92    
500 8 800   19707  19707  0.00 100.00    
500 1 1200   10726  10726  0.00 54.43    
500 2 1200   18070  18070  0.00 91.69    
500 3 1200   19393  19384  -0.05 98.36    
500 4 1200   19707  19707  0.00 100.00    
500 1 1600   14804  14804  0.00 75.12    
500 2 1600   19668  19668  0.00 99.80    
500 2 1600   19707  19707  0.00 100.00    
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Table 7. The computational results of the MCLP (324 nodes) 
n p ds Demand attended Coverage (%) 

324 20 150 7485       61.59      
324 30 150 9302       76.55      
324 40 150 10485       86.28      
324 50 150 11311       93.08      
324 60 150 11840       97.43      
324 80 150 12152       100.00      

 

Table 8. The computational results of the MCLP (402 nodes) 
n p ds Demand attended Coverage (%) 

402 20 150 9007      56.35      
402 30 150 11141      69.70      
402 40 150 12721      79.59      
402 50 150 13985      87.49      
402 60 150 14985      93.75      
402 80 150 15984      100.00      

readers with a methodology that is easy to 
understand, flexible, and allows them to take 
advantage of numerous built-in features associated 
with a readily available software package. The 
candidate solution generated for each scenario is 
reevaluated against all of the other randomly 
generated scenarios in the model. The user can 
compare and contrast numerous alternatives and 
view key metrics associated with each candidate  
 
solution – such as average cost, the maximum value 
of a particular variable across a range of possible 
scenarios, and the average level of service. 
Spreadsheets have many advantages, which do not 
limit themselves to the large number of 
reprogrammed functions, the power of the graph 
module or the editing possibilities. Using Excel, 
these results can easily be presented in both 
graphical and tabular formats. In addition, a major 
asset of spreadsheets resides in the speed with which 
a model may be designed. 

When developing professional models with a 
spreadsheet, one has to cope with the limits of the 
spreadsheet. In previous versions of Excel, the 
limits were 256 columns and 65,536 rows. When 
used with Excel 2007, the Premium Solver Platform 
V7.0 supports worksheets with up to 16,384 
columns and 1,048,576 rows. The complete model 
must be held in RAM, which may be a problem if 
you do not have a machine with enough memory. 

The solution search stops if one of several 
termination conditions as following is met. (1) 
Declaring “optimality”, due to the optimality criteria 
have been met to within a specified tolerance. (2) 
Declaring that a default (or user-specified) time or 
iteration limit has been exceeded. In practice, 

running solver again from its stopping point took 
care of this problem. (3) Terminating on “fractional 
change”, which means that the algorithm is making 
very slow progress - the difference between the 
objective values at successive points is less than 
some tolerance for a specified number of 
consecutive iterations. (4) Declaring that a feasible 
point cannot be found or that a feasible nonoptimal 
point has been obtained but a direction of 
improvement cannot be found. The first of these is a 
good outcome, indicating location of a local 
optimum, the second often occurs quite close to a 
true optimum, and the third is easily corrected by 
increasing the maximum iterations or time allowed. 
The fourth outcome may indicate a poorly specified 
model. 

A useful trick to accelerate the search time and 
improve the quality of solution is to provide Solver 
with a feasible starting point in that the default 
initial guess (where all control variables are set to 
zeros) is not feasible to problems. Spreadsheet 
solvers require the user to specify starting values for 
the decision variables. The chosen values will 
determine which local optimum is reached when the 
algorithm terminates. Bad starting values can cause 
an algorithm to fail or to make slow progress. Using 
other initial values and tuning the solver options 
may improve the solution. Excel’s binomial random 
number generator was used to assign starting values 
automatically. It is advisable to try several starting 
values for the decision variables. When the same 
solution is produced from each, one can have more 
confidence that a global minimum is actually 
obtained. However, this work set the initial values 
of matrix U to zeros to find the results in section 4 
and did not adopt this trick. Theoretically, the trick 
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helps the Solver to find optimal solutions if there is 
a great deal of test time. 

Though solvers interfaced to spreadsheets do 
not allow the user as much control as standalone or 
algebraic modeling system solvers, there are a 
number of options that the user can invoke to aid in 
solving problems. Among these are options for 
computing derivatives and for setting various 
tolerances, which would otherwise be set to defaults 
by the system. The feasibility tolerance (“precision” 
option in Excel’s solver) controls how accurately a 
constraint must be satisfied. The fractional change 
tolerance (“convergence” option in Excel) specifies 
the amount by which the objective value must differ 
from (on a relative basis) its previous value in a 
specified number of iterations in order for the 
algorithm to continue.  

 
6 Conclusions 

This study introduces a spreadsheet 
method to solve PMP, CPMP and MCLP and 
provides examples of how spreadsheets can be 
used to implement this method. The 
implementation of the matrix formula 
formulation of the models of these three 
presented problems makes them easily adapted 
to spreadsheets. The tool, spreadsheets, is very 
easy to understand and use, and related data is 
also easy to update. Computational experiments 
have been carried out with different specimen 
data sets and have been compared with other 
methods in order to evaluate the performance of 
the approach. The obtained results show that the 
approach can generate good quality solutions 
within a reasonable computational time. The 
solutions of this method are better than those of 
state of the art approaches for some instances. 
The mathematical model of other location 
problems is similar with PMP, CPMP or 
MCLP, hence, they can also apply this approach 
to find solutions. 
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