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Abstract: The focus of this paper is using nonparametric transfer function models in forecasting. Nonparametric
smoothing methods are used to model the relationship between variables (the transfer function) and the noise is
modeled as an Autoregressive Moving Average (ARMA) process. The transfer function is estimated jointly with
the ARMA parameters. Nonparametric smoothing methods are flexible thus can be used to model highly nonlinear
relationships between variables. In this paper polynomial splines are used to model the transfer function. Modeling
noise term as an ARMA process removes the serial correlation so the transfer function can be estimated efficiently.
As a result, the nonparametric transfer function model can generate accurate forecasts when the transfer function is
highly nonlinear with unknown functional form. The proposed polynomial splines-based estimator is also highly
computationally efficient. The performance of nonparametric transfer function models is demonstrated in this
paper by forecasting river flow based on temperature and precipitation. A comparison of the results show that the
performance of this model is better than some widely accepted benchmark models.
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1 Introduction

In this paper we consider a new method to model
relationships between ‘output’ and ‘input’ time se-
ries. Exploring relationships between variables has
been a constant interest of researchers, and extensive
research has been conducted in this area. For ex-
ample, the linear transfer function model (Box and
Jenkins, 1976) has been extensively used in practice
and proven successful in many practical areas. How-
ever, in practice we often encounter nonlinear rela-
tionships that cannot be well approximated by linear
models. Consequently, nonlinear parametric models
are introduced (Chen and Tsay, 1996; Tong, 1990;
Haggan and Ozaki, 1981; Engel, 1982; Bollerslev,
1986). One problem with nonlinear parametric model
is, beyond the linear domain there are infinitely many
candidate nonlinear functions, so it is usually diffi-
cult to justify the explicit parametric functional forms
a priori. To avoid the subjectivity in selecting the
parametric models, researchers adopt the principle of
“letting the data speak for themselves” and use non-
parametric smoothing methods to model nonlinear
time series (Robinson, 1983; Auestad and Tjøstheim,
1990; Lewis and Stevens, 1991; Masry, 1996a&b;
Fan and Gilbels, 1996; Smith, Wong, and Kohn,
1998; Aydin and Omay, 2006; ). To overcome the
‘curse of dimensionality’, various specially structured

nonparametric models have been proposed, including
the functional-coefficient autoregressive (FAR) model
(Chen and Tsay, 1993a; Cai, Fan and Yao, 2000),
the nonlinear additive autoregressive model (Chen
and Tsay, 1993b), the adaptive functional-coefficient
model (Ichimura, 1993; Xia and Li, 1999; Fan, Yao
and Cai, 2003), the single index model (e.g., Härdle,
Hall, and Ichimura, 1993; Carroll, Fan, Gijbels, and
Wand, 1997; Newey and Stoker, 1993; Heckman,
Ichimura, Smith, and Todd, 1998; Xia, Tong, Li, and
Zhu, 2002) and the partially linear models (Härdle,
Liang and Gao, 2000). The literature about nonlinear
and nonparametric time series analysis is extensive,
reviews can be found in Tjøstheim (1994), Härdle,
Lütkepohl and Chen (1997) and Fan and Yao (2003).

In this paper we consider the following relation-
ship between two time series:

Yt = f(Xt) + et, (1)

where f(·) is an unknown and smooth function,
{Xt, et} are jointly strictly stationary. Recently Xiao,
Linton, Carroll and Mammen (2003), Su and Ullah
(2006), and Liu, Chen and Yao (2008) developed
methods to estimate the transfer function efficiently.
In their studies local polynomial is used to model the
transfer functionf(·). They showed that by model-
ing the serial correlation in the noise,f(·) can be es-
timated at the usual rate of convergence as ifet is iid.
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The above methods differs mainly in the treatment of
the noiseet. Xiao, et al. (2003) assumes the noise
is a general linear process and approximates it by an
AR process whose order is allowed to grow to infinity
with the sample size. Su and Ullah (2006) assumes
the noise is a finite-order nonparametric AR process.
Liu, Chen and Yao (2008) models the noise explic-
itly with an ARMA model. The above methods are all
computationally intensive because of the use of local
polynomial. As a result they may be difficult to apply
in certain practical situations, for example, it may re-
quire a very long time to generate multiple step ahead
forecast by simulation.

Another drawback of the local polynomial-based
estimators is that they are difficult to apply when
the noise{et} is non-stationary, which is common in
practice. When the noise is non-stationary, local poly-
nomial estimators assuming independent noise (the
“conventional” estimators) are no longer consistent.
The consistency of the “conventional” estimator plays
a key role in the local-polynomial based estimators,
without it, these estimators can no longer be used.
One possible solution to handle non-stationarity is to
take differences until the noise becomes stationary
(e.g., Box and Jenkins 1976), however taking differ-
ence in the local polynomial estimator makes the esti-
mation very difficult, if not impossible. New estima-
tors are needed to handle non-stationary noise. In this
paper polynomial spline is used to model the trans-
fer function. The explicit functional form of polyno-
mial splines not only significantly simplifies the esti-
mation, it also makes the extension to non-stationary
noise straightforward. As a result, the noise is allowed
to follow an Autoregressive Integrated Moving Aver-
age (ARIMA) process.

By modeling the transfer functionf(·) nonpara-
metrically, the model is flexible therefore can be used
to model highly nonlinear relationships of unknown
functional forms. By modeling{et} explicitly, the au-
tocorrelation in the data is removed sof(·) can be es-
timated efficiently. Additionally, the explicit correla-
tion structure can be used to improve the forecasting
performance.

This paper is organized as follows. In section 2,
the model is introduced and a short introduction of
polynomial spline is included. The estimation method
is introduced in section 3, the estimator when the
noise is non-stationary is also introduced in this sec-
tion. Section 4 illustrates the finite-sample perfor-
mance of the estimator through simulation. The pro-
posed procedures are applied to forecast river flow and
the results are presented in section 5. Section 6 con-
tains summary and discussion.

2 The model

In this paper we make the assumption that{et} in
model (1) follows a strictly stationary AR(p) process,
et =

∑p
i=1 φiet−i + εt. So model (1) can be rewritten

as

Yt = f(Xt) +
εt

1−∑p
i=1 φiBi

, (2)

whereB is the back-shift operator,BiXt = Xt−i,
{εt} is a sequence of independent random variables
with mean 0 and standard deviationσ. Note that the
assumption of AR(p) noise is mainly for the conve-
nience of discussion, the idea presented in this pa-
per can be extended to more general structures of the
noise, such as the ARMA(p, q) model. We also as-
sume that{Xt} and{εt} are independent. Our inter-
est is in estimating bothf(·) and the AR parameters.

In this paper we use polynomials to model the
transfer functionf . Polynomial splines are piecewise
polynomials defined on disjoint partitions of the sup-
port of X, with the pieces joining smoothly at a set
of interior points (theknots). More precisely, a poly-
nomial spline of degreem ≥ 0 defined on an inter-
val X with knot sequenceλ = {λ0, λ1, · · · , λk+1}
(λ0 < λ1 < · · · < λk+1) is a function consist-
ing of pieces of polynomials of degreem on each of
the intervals[λi, λi+1), i = 0, · · · , k, and[λk, λk+1]
(whereλ0 andλk+1 are the end points ofX ), con-
nected smoothly at the knots. Given knot sequenceλ
and degreem, the collection of spline functions form
a function space spanned by basis functions. Com-
monly used basis functions include the well-known
truncated power basis, which is the set of functions
{1, x, · · · , xm, (x − λ1)m

+ , · · · , (x − λk)m
+}, where

(x)m
+ ≡ (x+)m, the dimension of the spline function

space is given byK = m + k + 1. B-spline is of-
ten used to develop the asymptotic properties because
of its nice theoretical properties (for details please
see de Boor, 2001; Schumaker, 1981), but the result
does not depend on the choice of the basis functions.
Polynomial splines have the flexibility of nonpara-
metric smoothers because they allow the function to
be different polynomial in different intervals. On the
other hand, the explicit functional form of polynomial
splines makes them very computationally efficient.
As a result, they have been studied extensively (e.g.,
Huang 2003; Huang and Shen 2004; Wang and Yang
2007; Wang and Yang 2009; Phokharatkul, Kamnu-
anchai, Kimpan, and Phaiboon, 2006; Gáti and Bede,
2006). Denote a set of basis functions as{Bj(·)}K

j=1,
using the polynomial spline to approximate the trans-
fer functionf(·) in (2), f(Xt) ≈

∑K
i=1 aiBi(Xt), af-

ter “pre-whitening” the noiseet, we have the follow-
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ing regression model

Yt ≈
p∑

i=1

φiYt−i+
K∑

j=1

aj

[
Bj(Xt)−

p∑

i=1

φiBj(Xt−i)
]
+εt ,

(3)
the estimation of the unknown parameters are carried
out by solving the following optimization problem

argaj ,φ min
n∑

t=1

{
Yt −

p∑

i=1

φiYt−i −

K∑

j=1

aj

[
Bj(Xt)−

p∑

i=1

φiBj(Xt−i)
]}2

. (4)

3 Estimation methodology

The optimization of (4) can be carried out by stan-
dard nonlinear optimization methods. In this paper we
consider the following iterative estimation algorithm,
which is equivalent to the commonly used nonlin-
ear optimization methods, such as the Gauss-Newton
method. This algorithm allows us to investigate the
estimators individually, which makes the discussion
of the asymptotic properties more convenient.

1. Obtain preliminary estimates̃ai, i = 1, · · · , K,
which are the solutions of

argai
min

n∑

t=1

{
Yt −

K∑

i=1

aiBi(Xt)
}2

,

a preliminary estimate off is given byf̃(x) =∑K
i=1 ãiBi(x).

2. For givenaj , j = 1, · · · ,K, obtainφ̂1, · · · , φ̂p

by solving

argφi
min

n∑

t=1

{
Yt −

p∑

i=1

φiYt−i

−
K∑

j=1

aj

[
Bj(Xt)−

p∑

i=1

φiBj(Xt−i)
]}2

3. For givenφ1, · · · , φp, obtainâj , j = 1, · · · ,K
by solving

argaj
min

n∑

t=1

{
Yt −

p∑

i=1

φiYt−i

−
K∑

j=1

aj

[
Bj(Xt)−

p∑

i=1

φiBj(Xt−i)
]}2

It can be easily seen that the above algorithm is guar-
anteed to converge. When the noise follows the more
general ARMA process, the convergence is no longer
guaranteed but our experience in the simulation indi-
cates the convergence can be expected in most of the
cases. The terminating values ofφ̂ andâi provide the
final estimates, specifically,̂f(x) =

∑K
j=1 âjBj(x)

is the final estimate off(x). et is assumed to fol-
low a stationary ARMA process, so it is a mixing pro-
cess, and we can expect that the preliminary estimate
f̃ to be consistent. The ARMA parameters can be es-
timated with the parametric rate. By modeling the se-
rial correlation inet, the transfer functionf can be
estimated as ifet is iid and the asymptotic results es-
tablished in Huang (2003) continue to hold.

3.1 Non-stationary Noise

The estimation procedure above can be extended eas-
ily to handle non-stationary noise. Here we focus on
the unit root case and model the noise{et} as an
autoregressive integrated moving average (ARIMA)
processφ(B)∇det = θ(B)εt, where∇d = (1 −
B)d is the d-th power of the difference operator.
When {et} is nonstationary, it is no longer a mix-
ing process so standard nonparametric smoothing re-
sults no longer apply. As a result, the existing local
polynomial-based estimation procedures designed for
stationary{et} (e.g., Xiao et al., 2003; Su and Ullah,
2006; and Liu et al., 2008) can no longer be used. In
time series analysis, one commonly adopted method
to deal with unit root is to take differences so that the
resulting series becomes stationary and standard es-
timation procedures can be applied (Box and Jenk-
ins, 1976). Unfortunately, this idea does not work
well with the local polynomial-based estimation pro-
cedures. To illustrate, consider the following model
in which {et} follows a random walk process,Yt =
f(Xt) + et, et = et−1 + εt, after the first-order dif-
ference, we haveYt−Yt−1 = f(Xt)− f(Xt−1)+ εt.
f can be estimated by solving the following optimiza-
tion problem

inf
f

n∑

t=1

{
Yt − f(Xt)−

[
Yt−1 − f(Xt−1)

]}2
.

However, the twof ’s must be restricted to be the
same during the estimation. This task is very difficult,
if not impossible, for local polynomial-based estima-
tors. On the other hand, because of the explicit para-
metric form of polynomial splines (given the order
of the polynomial and knot sequence), to impose the
same restrictions onf(·) one only needs to restrict the
coefficients to be the same. For identifiability we must
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assumeE(f(·)) = 0. Let α = (α1, · · · , αK)τ and
β = (φ1, · · · , φp, θ1, · · · , θq)τ , the estimation is car-
ried out by solving the following optimization prob-
lem,

argα,β min
n∑

t=1

{φ(B)∇d

θ(B)

[
Yt −

K∑

i=1

αiBi(Xt)
]}2

.

After differencing the noise becomes an ARMA(p, q)
process and the estimation can be carried out using
previous results. Thus polynomial spline provides
a viable solution to the problem of modeling non-
stationary noise.

4 Numeric Properties

Simulation is conducted to illustrate the finite sample
properties of the proposed estimator. In the simula-
tion below, we usef(x) = x + 2 exp(−16x2), Xt is
generated from an AR(1) process,Xt = 0.3Xt−1 +
at, at ∼ N(0, 0.52), and et is generated from an
AR(1) model with different values ofφ: et = φet−1+
εt, εt ∼ N(0, 0.52). For the ease of implementation
the truncated power basis is used. In the simulation we
used a cubic spline, i.e.,m = 3. The knots are placed
at the percentile points such that there are equal num-
ber of observations between two adjacent knots. The
number of knots is set as a multiple of the theoretically
optimal number[n1/2m+3]. Three sample sizes (200,
500, and 1000) are used and the simulations are run
200 replications. In the simulation the mean squared
errors

MSE =
1
n

n∑

t=1

{
f(Xt)− f̂(Xt)

}2
,

of the proposed estimator are averaged over the repli-
cations and compared to that of the “conventional”
estimator in whichet is assumed to be iid. The
simulation results are summarized in Table 1 below.
In this table MSE1 is the average mean squared er-
ror of conventional estimator assuming iid noise, and
MSE2 is the average MSE of the proposed estima-
tor. RLMSE=MSE2/MSE1 is the relative MSE which
shows the gain in efficiency in estimatingf . To illus-
trate the results, a histogram ofφ̂ and a plot off̂ are
given in Figure 1.

From the above results, we have the following ob-
servations:

1. The relative MSE in most of the cases is less than
one, which shows that modeling the serial corre-
lation in the noise can improve the efficiency in
estimatingf .

Table 1: Simulation results when{et} follows AR(1)
models

φ n mean(̂φ) s
φ̂

MSE1 MSE2 RLMSE

200 -.7959 .0409 .0389 .0095 .2433
-.8 500 -.8016 .0264 .0151 .0036 .2388

1000 -.8016 .0206 .0083 .0019 .2238
200 -.5171 .0608 .0193 .0122 .6305

-.5 500 -.5064 .0365 .0079 .0051 .6437
1000 -.5045 .0271 .0042 .0026 .6043
200 -.2075 .0799 .0159 .0152 .9531

-.2 500 -.2081 .0449 .0067 .0062 .9298
1000 -.2032 .0315 .0035 .0033 .9429
200 -.0084 .0802 .0163 .0170 1.040

0 500 -.0013 .0487 .0067 .0068 1.007
1000 .0000 .0331 .0033 .0034 1.006
200 .1905 .0753 .0184 .0176 .9605

.2 500 .2015 .0461 .0072 .0068 .9435
1000 .1997 .0322 .0039 .0037 .9383
200 .5066 .0649 .0262 .0180 .6846

.5 500 .4988 .0388 .0111 .0075 .6769
1000 .4989 .0296 .0059 .0040 .6717
200 .7955 .0414 .0796 .0454 .5703

.8 500 .7999 .0259 .0320 .0169 .5270
1000 .7966 .0211 .0166 .0085 .5082
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Figure 1: φ = −0.5, n=500. Left panel: histogram
of φ̂, right panel:f (solid) andf̂ (dashed) in a typical
simulation.
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2. The relative MSE is closely related to the
strength of correlation inet, the stronger the
correlation, the smaller the RLMSE, hence the
larger the gain in efficiency.

3. The histogram in Figure 1 shows the sampling
distribution ofφ̂ is close to a normal distribution.

4. The performance of the estimators improves with
the sample size.

Similar observations are made in Liu et.al. (2008),
but the polynomial splines used in this paper greatly
simplifies the estimation. For example, in Liu et. al.
(2008), with a sample size of400, it normally takes
several minutes to complete the estimation, while the
same estimate only takes about ten seconds with the
spline-based approach proposed in this paper. As a
result, much larger sample sizes become more afford-
able. Computational efficiency is of special impor-
tance in time series forecasting, because time series
under consideration are typically long, especially in
financial data. Being able to generate forecasts in a
timely manner when sample size is large has a direct
impact in the applicability of the model.

An important application of the proposed method
is to estimate nonparametric transfer function models
with non-stationary noise. To study the finite sample
properties under such situations, we consider a simple
random walk process for the noise, i.e.,et = et−1+εt.
Note that in this case because of the differencing in
the estimation, the constant term is not estimable so
f can only be estimated up to a constant. In practice
the constant may be estimated using the mean of the
observationsYt, this is also the approach we adopt in
the simulation below. Similar comparison of the av-
erage mean squared errors between the proposed and
the conventional estimators is made and the results are
summarized in Table 2 below. The estimated transfer
functions in six simulations are plotted in Figure 2.

Table 2: Simulation results when{et} is a random
walk

n MSE1 MSE2 RLMSE
200 .5162 .0206 .0399
500 .4702 .008 .0171
1000 .4512 .0038 .0085
2000 .4407 .0021 .0048
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Figure 2:f (solid) andf̂ (dashed) in six typical simu-
lations.

5 Forecasting river flow

River flow forecasting is an important issue in many
practical areas. For example, accurate and efficient
forecast of river flow is important to the safety of river
transportation and river structures such as river dams
and bridges, it also enables us to manage water re-
sources more efficiently and helps protect the envi-
ronment. A typical difficulty in river flow modeling
is that many factors affect the river flow, usually in a
highly nonlinear fashion. Non-linear parametric mod-
els have been developed to address this issue (some
highly-regarded models include Tong, Thanoon and
Gudmundsson, 1985; Chen and Tsay, 1993b). A dif-
ficulty in nonlinear parametric models is, with the in-
definitely many functions in the nonlinear domain, it
is very difficult to identify the best candidate function
a priori, therefore there is usually more subjectivity in
the model selection. The subjectivity can be avoided
by using nonparametric methods, because of the “let
the data speak for themselves” property.

In this section we use the proposed nonparamet-
ric transfer function model to study the effects of tem-
perature and precipitation on the flow rate of River
Jökulśa eystri in Iceland. The data consists of daily
records of river flowYt (in m3/sec), temperatureXt

(in ◦C), and precipitationZt (in mm) from January 1,
1972 to December 31, 1974. An interesting feature
of this river is that there is a glacier in its drainage
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area, so we expect that the temperature effect on river
flow is more than melting snow. Tong et. al. (1985)
used the threshold autoregressive model (TAR) to an-
alyze this data set. Chen and Tsay (1993b) used it
as an example of the nonlinear additive ARX model
(NAARX). For more detailed information of the data,
see Tong, et.al. (1985).

To apply the proposed approach, we first check
the stationarity of the data. The sample ACF and
PACF ofYt show indications of non-stationarity, (Fig-
ure 3), however the result of Augmented Dicky-Fuller
(ADF) test rejects the hypothesis that a unit root
exists. Similar analysis shows that the exogenous
variablesXt and Zt are stationary. The details of
the ADF tests are omitted to save space. To ob-
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Figure 3: Upper panel: The sample ACF ofYt. Lower
panel: The sample PACF plot ofYt.

tain some rough idea about the candidate variables of
the model, as an initial step of model identification,
we estimated the linear transfer function weights us-
ing the linear transfer function method (Liu, 1982).
The estimated linear transfer function weights are
plotted against the lags in Figure 4, with the 95%
confidence band plotted in the dashed lines. The
estimated transfer function weights suggest the fol-
lowing variables are good candidates of the model:
{Xt, Xt−1, Xt−2, Xt−3, Xt−4, Zt, Zt−1, Zt−6}.

A common problem with high-dimensional non-
parametric smoothing is thecurse of dimensionality.
As the dimension of the model increases, the sample
size needed to obtain stable “local” estimate increases
exponentially with the sample size. Because of this
problem, with the sample sizes typically available in
practice, the dimension of nonparametric smoothing
models are typically low in practice. Without any re-
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Figure 4:The estimated linear transfer function weights

striction, a nonparametric regression model contain-
ing all the above variables is difficult to estimate.
To overcome this problem, we consider an additive
model

Yt =
4∑

i=0

fi(Xt−i) + g0(Zt) + g1(Zt−1)

+ g6(Zt−6) + et,

where each additive component is approximated by
regression spline. The truncated power basis is used
in the spline approximation. To simplify discussion,
we assume that the orders and the number of knots of
the spline functions are the same, thus the model can
be written as

Yt = a0 +
4∑

i=0

[ k∑

j=1

aijX
j
t−i +

m∑

r=1

air(Xt−i − λr)k
+

]

+
1∑

i=0

[ k∑

j=1

bijZ
j
t−i +

m∑

r=1

bir(Zt−i − λr)k
+

]
+ et.

We further assume that the knots are placed on the
percentile points so that there are equal number of ob-
servations between any two adjacent knots. A grid
search is conducted to determine the number of inte-
rior knotsk and spline degreem. In the grid search
k is in the interval [1, int(5n1/(2m+3))], where the
upper limit is a multiple of the theoretical optimum
number of knots (Huang, 2003). We consider lin-
ear, quadratic and cubic splines, (m = 1, 2, 3, re-
spectively). The valuesk and m that minimizes
BIC=log(MSE) + log(n)[1 + (k + m)(dx + dz)]/n
is the optimal number of knots, wheredx anddz are
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the number of lags inXt andZt, respectively. The
results suggest a linear spline model withk = 1. Sim-
ilar to the case ofYt, the sample ACF and PACF of
the partial residual̃et show indications of nonstation-
arity, however the ADF test results again reject the
existence of a unit root. As a result, an AR(4) model
is selected using the BIC criterion, the sample PACF
(Figure 5) also suggests such a model. Based on the
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Figure 5: Sample ACF and PACF of the preliminary
residual̃et

above preliminary information about the underlying
model, we refine the model by selecting the knots lo-
cations to minimize the residual sum of squares. The
results show thatZt andZt−1 have such large knots
that beyond these knots there are only a few obser-
vations, this indicates that their effects are essentially
linear, also,Xt−4 andZt−6 are found to be insignifi-
cant. As a result, the model simplifies further to

Yt = c +
3∑

i=0

[
ai1Xt−i + ai2(Xt−i − λi)+

]

+
1∑

j=0

bjZt−j +
εt

1−∑4
i=1 φiBi

. (5)

The optimized knots are -1.3, 0.5, 0.2, and -0.2 for
Xt, Xt−1, Xt−2, andXt−3, respectively, and the esti-
mated parameters and their stand deviations are given
in Table 3.

The sample ACF and PACF in Figure 6 show that
the residual series is roughly “white”.

To put the performance of the proposed NPTF
model in perspective, we consider two widely-
accepted “benchmark” models that were used to an-
alyze the same data set. The first model is the TAR

Table 3: Parameter Estimates

Parameter c a0 a01 a11 a12

Estimate 29.67 .03 .47 -.11 2.44
StdErr. .08 .18 .08 .17 .03
Parameter a21 a22 a31 a32 b0

Estimate .05 1.42 .03 .61 .32
StdErr. 2.24 .08 .16 .08 .18
Parameter b1 φ1 φ2 φ3 φ4

Estimate .17 1.15 -.40 .25 -.09
StdErr .03 .03 .05 .05 .03
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Figure 6:The estimated residual ACF and PACF
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model used by Tong, et.al.(1985, page 658),

Yt = c1 + (1, · · · , 6)Yt + (0, · · · , 5)Zt

+(0, · · · , 3)Xt + e1t, if Xt ≤ −2
= c2 + (1, · · · , 8)Yt + (0, · · · , 7)Zt

+(0, · · · , 7)Xt + e2t, if Xt > −2, (6)

where(1, · · · , 6)Yt means thatYt−1, · · · , Yt−6 are in-
cluded in the model, other terms are similarly defined.
The second model is the NARRX model used by Chen
and Tsay (1993b, page 963),

Yt = c + φ1,1Yt−1 + φ1,2Yt−1I(Yt−1 ≥ c1)
+ φ1,3Yt−1I(Yt−1 ≥ c2) + φ2Yt−2 + φ3Yt−3

+ φ4Yt−4 + β1Zt + β2Zt−1 + ω1,1Xt−1

+ ω1,2Xt−1I(Xt−1 ≥ c3) + ω3,1Xt−3

+ ω3,2Xt−3I(Xt−3 ≥ c4) + εt (7)

The residual variances of the NPTF model, together
with the residual variances of the NAARX and the
TAR (Chen and Tsay 1993b) are shown in the last row
of Table 4. We can see while the within-sample per-
formance of NPTF, NAARX and TAR are similar, the
NPTF model has the smallest residual variance in the
three models. Although the NPTF model uses two
more parameters than the NAARX model, it is still
preferred by the AIC criterion. It is interesting to see
that the NPTF model (5) and the NAARX model re-
veals similar features of the underlying process, for
example, in both models piecewise linear functions
are found to well describe the relationship between
temperature and river flow; in both models the precip-
itation effect is linear. The main difference is that in
the NPTF model (5) an AR model is used to model
the noise to account for the serial correlation, while in
the NAARX model lags ofYt is used.

To study the forecasting performance of the pro-
posed model, we consider the following post-sample
forecast scheme: model (5) is re-estimated using the
first two years of data, one-step to 12-step ahead post-
sample forecasts are conducted using the data of the
third year. This forecasting scheme is similar to the
one used in Chen and Tsay (1993b), the main differ-
ence is that in Chen and Tsay (1993b), actual observa-
tions ofXt, Zt and their lags are used in the forecasts,
while here the forecast values are used. Two simple
AR(1) models are found appropriate for this purpose:
Xt = φxXt−1 + a1t andZt = c0 + φzZt−1 + a2t.
The mean squared errors (MSE) are calculated and
shown in Table 4 under “NPTF”. For the purpose of
comparison we produce the forecasts using the afore-
mentioned NAARX model (7) and the TAR model (6)
under the same setting and report the MSE in Table 4.

Table 4: MSE of the post-sample forecasts

Lead Time NPTF NAARX TAR
1 68.38 70.06 72.84
2 164.38 169.49 183.35
3 229.10 242.17 262.32
4 291.03 303.28 336.04
5 337.66 349.77 390.82
6 366.83 382.34 421.13
7 386.43 406.94 443.02
8 391.70 418.05 457.87
9 400.98 431.81 476.08
10 408.22 439.77 490.63
11 419.27 453.05 506.71
12 440.58 477.45 536.99

In-sample 31.65 33.15 31.74

The results in Table 4 show that the forecast MSE
of the nonparametric transfer function (NPTF) model
are consistently smaller than those of the NARRX
model and the TAR model. In this example, the pro-
posed NPTF model performances well in both within-
sample and post-sample, this shows the good potential
of the NPTF model in analyzing nonlinear time series
data.

6 Summary and Discussion

In this paper we introduce the regression spline-based
nonparametric transfer function model. This method
is flexible and ideal for modeling highly nonlinear
relationships between time series. Efficient estima-
tion of the transfer function model is achieved by in-
corporating the correlation structure of the noise in
nonparametric smoothing. Compared with the lo-
cal polynomial-based methods, the explicit functional
form of polynomial splines makes estimation much
less intensive computationally. The finite sample
properties of the estimators are studied through sim-
ulation. The proposed model is used to model river
flow based on temperature and precipitation and found
successful when compared with widely-accepted non-
linear parametric models.
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