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Abstract: The focus of this paper is using nonparametric transfer function models in forecasting. Nonparametric
smoothing methods are used to model the relationship between variables (the transfer function) and the noise is
modeled as an Autoregressive Moving Average (ARMA) process. The transfer function is estimated jointly with
the ARMA parameters. Nonparametric smoothing methods are flexible thus can be used to model highly nonlinear
relationships between variables. In this paper polynomial splines are used to model the transfer function. Modeling
noise term as an ARMA process removes the serial correlation so the transfer function can be estimated efficiently.
As a result, the nonparametric transfer function model can generate accurate forecasts when the transfer function is
highly nonlinear with unknown functional form. The proposed polynomial splines-based estimator is also highly
computationally efficient. The performance of nhonparametric transfer function models is demonstrated in this
paper by forecasting river flow based on temperature and precipitation. A comparison of the results show that the
performance of this model is better than some widely accepted benchmark models.
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1 Introduction nonparametric models have been proposed, including
the functional-coefficient autoregressive (FAR) model
(Chen and Tsay, 1993a; Cai, Fan and Yao, 2000),
d . _ - the nonlinear additive autoregressive model (Chen
relationships between ‘output’ and ‘input’ time se-  and Tsay, 1993b), the adaptive functional-coefficient
ries. EXploring relationShipS between variables has model (|Chimura, 1993; Xia and |_|, 1999; Fan, Yao
been a constant interest of researchers, and extensiveand Cai, 2003), the single index model (e.garéle,
research has been conducted in this area. For ex- Hall, and Ichimura, 1993; Carroll, Fan, Gijbels, and
ample, the linear transfer function model (Box and \wand, 1997; Newey and Stoker, 1993; Heckman,
Jenkins, 1976) has been extensively used in practice |chimura, Smith, and Todd, 1998; Xia, Tong, Li, and

and proven successful in many practical areas. How- zpy, 2002) and the partially linear models&dle,

In this paper we consider a new method to model

ever, in practice we often encounter nonlinear rela-
tionships that cannot be well approximated by linear
models. Consequently, nonlinear parametric models
are introduced (Chen and Tsay, 1996; Tong, 1990;
Haggan and Ozaki, 1981; Engel, 1982; Bollerslev,
1986). One problem with nonlinear parametric model
is, beyond the linear domain there are infinitely many
candidate nonlinear functions, so it is usually diffi-
cult to justify the explicit parametric functional forms

a priori. To avoid the subijectivity in selecting the
parametric models, researchers adopt the principle of
“letting the data speak for themselves” and use non-
parametric smoothing methods to model nonlinear
time series (Robinson, 1983; Auestad and Tjgstheim,
1990; Lewis and Stevens, 1991; Masry, 1996a&b;
Fan and Gilbels, 1996; Smith, Wong, and Kohn,
1998; Aydin and Omay, 2006; ). To overcome the
‘curse of dimensionality’, various specially structured
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Liang and Gao, 2000). The literature about nonlinear
and nonparametric time series analysis is extensive,
reviews can be found in Tjgstheim (1994)addle,
Litkepohl and Chen (1997) and Fan and Yao (2003).
In this paper we consider the following relation-
ship between two time series:

Y = f(Xy) e, (1)
where f(-) is an unknown and smooth function,
{X}, e} are jointly strictly stationary. Recently Xiao,
Linton, Carroll and Mammen (2003), Su and Ullah
(2006), and Liu, Chen and Yao (2008) developed
methods to estimate the transfer function efficiently.
In their studies local polynomial is used to model the
transfer functionf(-). They showed that by model-
ing the serial correlation in the noisg(-) can be es-
timated at the usual rate of convergence &s i$ iid.
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The above methods differs mainly in the treatment of
the noisee;. Xiao, et al. (2003) assumes the noise
is a general linear process and approximates it by an
AR process whose order is allowed to grow to infinity
with the sample size. Su and Ullah (2006) assumes
the noise is a finite-order nonparametric AR process.
Liu, Chen and Yao (2008) models the noise explic-
itly with an ARMA model. The above methods are all
computationally intensive because of the use of local
polynomial. As a result they may be difficult to apply
in certain practical situations, for example, it may re-
quire a very long time to generate multiple step ahead
forecast by simulation.

Another drawback of the local polynomial-based
estimators is that they are difficult to apply when
the noise{e; } is non-stationary, which is common in
practice. When the noise is non-stationary, local poly-
nomial estimators assuming independent noise (the
“conventional” estimators) are no longer consistent.
The consistency of the “conventional” estimator plays
a key role in the local-polynomial based estimators,
without it, these estimators can no longer be used.
One possible solution to handle non-stationarity is to
take differences until the noise becomes stationary
(e.g., Box and Jenkins 1976), however taking differ-
ence in the local polynomial estimator makes the esti-
mation very difficult, if not impossible. New estima-
tors are needed to handle non-stationary noise. In this
paper polynomial spline is used to model the trans-
fer function. The explicit functional form of polyno-
mial splines not only significantly simplifies the esti-
mation, it also makes the extension to non-stationary
noise straightforward. As a result, the noise is allowed
to follow an Autoregressive Integrated Moving Aver-
age (ARIMA) process.

By modeling the transfer functiofi(-) nonpara-
metrically, the model is flexible therefore can be used
to model highly nonlinear relationships of unknown
functional forms. By modelinge, } explicitly, the au-
tocorrelation in the data is removed £0) can be es-
timated efficiently. Additionally, the explicit correla-
tion structure can be used to improve the forecasting
performance.

This paper is organized as follows. In section 2,
the model is introduced and a short introduction of
polynomial spline is included. The estimation method
is introduced in section 3, the estimator when the
noise is non-stationary is also introduced in this sec-
tion. Section 4 illustrates the finite-sample perfor-
mance of the estimator through simulation. The pro-
posed procedures are applied to forecast river flow and
the results are presented in section 5. Section 6 con-
tains summary and discussion.
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2 The model

In this paper we make the assumption tkat} in
model (1) follows a strictly stationary AR) process,
et = YF | ¢ier—; + . So model (1) can be rewritten
as

Et

Yth(XtH'W,

(2)

where B is the back-shift operato3'X; = X;_;,

{e:} is a sequence of independent random variables
with mean 0 and standard deviatien Note that the
assumption of ARf) noise is mainly for the conve-
nience of discussion, the idea presented in this pa-
per can be extended to more general structures of the
noise, such as the ARMA(q) model. We also as-
sume thaf X, } and{e;} are independent. Our inter-
est is in estimating botlfi(-) and the AR parameters.

In this paper we use polynomials to model the
transfer functionf. Polynomial splines are piecewise
polynomials defined on disjoint partitions of the sup-
port of X, with the pieces joining smoothly at a set
of interior points (the&knot9. More precisely, a poly-
nomial spline of degree» > 0 defined on an inter-
val X with knot sequence\ = { Ao, A1, -, Agr1}

(Mo < A1 < -+ < Agy1) is a function consist-
ing of pieces of polynomials of degree on each of
the intervalsA;, \i+1), i = 0,---, k, and[Ag, A\g+1]
(where Ay and A\, are the end points aok’), con-
nected smoothly at the knots. Given knot sequexce
and degreen, the collection of spline functions form

a function space spanned by basis functions. Com-
monly used basis functions include the well-known
truncated power basis, which is the set of functions
{va e ,xm’ (CL‘ - )‘1):-”’ T (CL‘ - )‘ky—ﬁ}’ where
()T = (x4)™, the dimension of the spline function
space is given by = m + k + 1. B-spline is of-

ten used to develop the asymptotic properties because
of its nice theoretical properties (for details please
see de Boor, 2001; Schumaker, 1981), but the result
does not depend on the choice of the basis functions.
Polynomial splines have the flexibility of nonpara-
metric smoothers because they allow the function to
be different polynomial in different intervals. On the
other hand, the explicit functional form of polynomial
splines makes them very computationally efficient.
As a result, they have been studied extensively (e.g.,
Huang 2003; Huang and Shen 2004; Wang and Yang
2007; Wang and Yang 2009; Phokharatkul, Kamnu-
anchai, Kimpan, and Phaiboon, 200&tGand Bede,
2006). Denote a set of basis functions{as; (-) ]Kzl,
using the polynomial spline to approximate the trans-
fer functionf(-) in (2), f(X;) ~ X, a;B;(X}), af-

ter “pre-whitening” the noise;, we have the follow-
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ing regression model

Z(bz Xt i :|+€t )
©)

the estimation of the unknown parameters are carried
out by solving the following optimization problem

P K
Y=Y Yty a [
i=1 =1

3 Estimation methodology

The optimization of (4) can be carried out by stan-
dard nonlinear optimization methods. In this paper we
consider the following iterative estimation algorithm,
which is equivalent to the commonly used nonlin-
ear optimization methods, such as the Gauss-Newton
method. This algorithm allows us to investigate the
estimators individually, which makes the discussion
of the asymptotic properties more convenient.

1. Obtain preliminary estimates, i =
which are the solutions of

K
Z CLZ'B
i=1

1, K,

2
Xt)} )
a preliminary estimate of is given byf(x) =
Zi]il a; Bi(x).

2. For givena;, j =1,---
by solving

arg,, min i {Y} —
t=1

K, obtaingy, - - -, b,

P

argg, minzn: {Yt - Z OiYi—

. =1 - 2
- Zl aj [ Z ¢z Xt 7 } }
J:
K

3. For givengy, - - -
by solving

, ¢p, Obtaina;, j =1,---

p

n
arg,. min Z {Yt - Z ¢iYii
t=1 =1
) j 2
_Zaj[ Z¢sz th}}
j=1

ISSN: 1109-9526

211

Jun M. Liu

It can be easily seen that the above algorithm is guar-
anteed to converge. When the noise follows the more
general ARMA process, the convergence is no longer
guaranteed but our experience in the simulation indi-
cates the convergence can be expected in most of the
cases. The terminating values&nhndc@ provide the
final estimates, specificallyf(z) = ZK 16;Bj(x)

is the final estimate of (z). e is assumed to fol-
low a stationary ARMA process, so it is a mixing pro-
cess, and we can expect that the preliminary estimate
f to be consistent. The ARMA parameters can be es-
timated with the parametric rate. By modeling the se-
rial correlation ine;, the transfer functiory can be
estimated as i¢; is iid and the asymptotic results es-
tablished in Huang (2003) continue to hold.

3.1 Non-stationary Noise

The estimation procedure above can be extended eas-
ily to handle non-stationary noise. Here we focus on
the unit root case and model the noisg} as an
autoregressive integrated moving average (ARIMA)
processp(B)Vie; = 0(B)e;, where Ve = (1 —

B)? is the d-th power of the difference operator.
When {e;} is nonstationary, it is no longer a mix-
ing process so standard nonparametric smoothing re-
sults no longer apply. As a result, the existing local
polynomial-based estimation procedures designed for
stationary{e; } (e.g., Xiao et al., 2003; Su and Ullah,
2006; and Liu et al., 2008) can no longer be used. In
time series analysis, one commonly adopted method
to deal with unit root is to take differences so that the
resulting series becomes stationary and standard es-
timation procedures can be applied (Box and Jenk-
ins, 1976). Unfortunately, this idea does not work
well with the local polynomial-based estimation pro-
cedures. To illustrate, consider the following model
in which {e;} follows a random walk proces$; =
f(Xy) + et, er = e;—1 + &4, after the first-order dif-
ference, we hav®, — Y, = f(Xy) — f(Xi—1) + &4

f can be estimated by solving the following optimiza-
tion problem

mfz {Y}

However, the twof’s must be restricted to be the
same during the estimation. This task is very difficult,
if not impossible, for local polynomial-based estima-
tors. On the other hand, because of the explicit para-
metric form of polynomial splines (given the order
of the polynomial and knot sequence), to impose the
same restrictions ofi(-) one only needs to restrict the
coefficients to be the same. For identifiability we must

[Yt 1— f(Xt—l)} }2-
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assumeF(f(-)) = 0. Leta = (a1,---,ak)” and
B = (g1, bp,01,---,0,4)7, the estimation is car-
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ried out by solving the following optimization prob- Tabdlellz Simulation results whefe; } follows AR(1)
|em’ moaeis

d K
argaﬂman{ 7 {Yt—;aiBi(Xt)Hz.

n meano) 55 MSE, MSE, RLMSE
200 -.7959 .0409 .0389 .0095 .2433
After differencing the noise becomes an ARMA{) 500 ~ -8016  .0264 .0151 .0036  .2388
process and the estimation can be carried out using 1000 -8016 .0206 .0083 .0019 .2238
previous results. Thus polynomial spline provides 200 -5171 .0608 .0193 .0122 ~ .6305
a viable solution to the problem of modeling non- 150%% "g’gig '83?? '8823 'gggé 'ggi’g
stationary noise. 200 -2075 .0799 .0159 .0152 .9531
500 -.2081 .0449 .0067 .0062 .9298
4 Numeric Properties 1000 -.2032 .0315 .0035 .0033 9429
200 -.0084 .0802 .0163 .0170 1.040
Simulation is conducted to illustrate the finite sample °00  -.0013  .0487 .0067 .0068  1.007
properties of the proposed estimator. In the simula- 1000 0000 0331 .0033 .0034 1.006
tion below, we usef(r) = z + 2exp(—16x?), X; is 288 2%22 812‘?1 8(1;;; géég gigg
generated frz)m an2 )AR(lgl process; = 0.:(31| X];t,l 4 1000 -1997 .0322 .0039 _0037 _9383
at, a; ~ N(0,0.5%), ande; is generated from an - - - - -
AR(1) model with different values af: ¢, = ¢e;_1 + 200 Oooe oo 002 100 0848
et, € ~ N(0,0.52). For the ease of implementation 1000 -4989 .0296 '0059 '0040 .6717
the truncated power basis is used. In the simulation we 500 _'7955 :0414 ..0796 "0454 .'5703
used a cubic s_pline_, i.en = 3. The knots are placed 500 7999 0259 0320 0169 5270
at the percentllg points such that the_re are equal num- 1000 7966 0211 .0166 .0085 5082
ber of observations between two adjacent knots. The
number of knots is set as a multiple of the theoretically
optimal numberfn'/2™+3], Three sample sizes (200,
500, and 1000) are used and the simulations are run
200 replications. In the simulation the mean squared mean and estimated mean Alpha
errors 257 % —
1 n . 2 oL 451
MSE= —>"{f(Xy) - F(xo)} —
n;{ (X0) )}
of the proposed estimator are averaged over the repli- | 3 B
cations and compared to that of the “conventional” ol -
estimator in whiche; is assumed to be iid. The sl
simulation results are summarized in Table 1 below. 2|
In this table MSE is the average mean squared er- of
ror of conventional estimator assuming iid noise, and 207
MSE; is the average MSE of the proposed estima--0sf sl
tor. RLMSE=MSE/MSE; is the relative MSE which
shows the gain in efficiency in estimatirfg To illus- i 10}
trate the results, a histogram @fand a plot off are
given in Figure 1. i
From the above results, we have the following ob- ‘ ‘ ‘ ] ‘
Servatlons -2 -1 1 2 -06 -055 -05 -045 -04
1. The relative MSE in most of the cases is less than Figure 1:¢ = —0.5, n=500. Left panel: histogram

one, which shows that modeling the serial corre- Of &, right panel:f (solid) andf (dashed) in a typical
lation in the noise can improve the efficiency in ~ simulation.

estimatingf.
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2. The relative MSE is closely related to the 3 3 3
strength of correlation ire;, the stronger the ,
correlation, the smaller the RLMSE, hence the .

larger the gain in efficiency.
0

3. The histogram in Figure 1 shows the sampling™
distribution of¢ is close to a normal distribution. -2/ -2

4. The performance of the estimators improves with

the sample size. , , ;

Similar observations are made in Liu et.al. (2008), ’
but the polynomial splines used in this paper greatly *
simplifies the estimation. For example, in Liu et. al. o
(2008), with a sample size @0, it normally takes
several minutes to complete the estimation, while the
same estimate only takes about ten seconds with thg|,
spline-based approach proposed in this paper. As 3, -3 -3
result, much larger sample sizes become more afford-
able. Computational efficiency is of special impor-
tance in time ser_ies forecas_ting, because tim_e se_ries Figure 2: f (solid) andf (dashed) in six typical simu-
under consideration are typically long, especially in lations

financial data. Being able to generate forecasts in a '

timely manner when sample size is large has a direct

impact in the applicability of the model. 5 Forecasting river flow

An important application of the proposed method

is to estimate nonparametric transfer function models River flow forecasting is an important issue in many
with non-stationary noise. To study the finite sample practical areas. For example, accurate and efficient
properties under such situations, we consider a simple forecast of river flow is important to the safety of river
random walk process for the noise, i®.= e;_1+¢;. transportation and river structures such as river dams
Note that in this case because of the differencing in and bridges, it also enables us to manage water re-
the estimation, the constant term is not estimable so sources more efficiently and helps protect the envi-
f can only be estimated up to a constant. In practice ronment. A typical difficulty in river flow modeling
the constant may be estimated using the mean of the is that many factors affect the river flow, usually in a
observationd7, this is also the approach we adopt in highly nonlinear fashion. Non-linear parametric mod-
the simulation below. Similar comparison of the av- els have been developed to address this issue (some
erage mean squared errors between the proposed anchighly-regarded models include Tong, Thanoon and
the conventional estimators is made and the results are Gudmundsson, 1985; Chen and Tsay, 1993b). A dif-
summarized in Table 2 below. The estimated transfer ficulty in nonlinear parametric models is, with the in-
functions in six simulations are plotted in Figure 2. definitely many functions in the nonlinear domain, it

is very difficult to identify the best candidate function

a priori, therefore there is usually more subjectivity in
Table 2: Simulation results whefe,} is a random the model selection. The subjectivity can be avoided

walk by using nonparametric methods, because of the “let
the data speak for themselves” property.
n MSE, MSE, RLMSE In this section we use the proposed nonparamet-
200 5162 .0206  .0399 ric transfer function model to study the effects of tem-
500 4702 .008 0171 perature and precipitation on the flow rate of River
1000 4512 0038 0085 Jokulsa eystri in Iceland. The data consists of daily

records of river flowY; (in m3/sec), temperaturé,

(in °C), and precipitatior?; (in mm) from January 1,
1972 to December 31, 1974. An interesting feature
of this river is that there is a glacier in its drainage

2000 .4407 .0021  .0048
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area, so we expect that the temperature effect on river
flow is more than melting snow. Tong et. al. (1985)
used the threshold autoregressive model (TAR) to an-
alyze this data set. Chen and Tsay (1993b) used it
as an example of the nonlinear additive ARX model
(NAARX). For more detailed information of the data,
see Tong, et.al. (1985).

To apply the proposed approach, we first check
the stationarity of the data. The sample ACF and
PACF ofY; show indications of non-stationarity, (Fig-
ure 3), however the result of Augmented Dicky-Fuller
(ADF) test rejects the hypothesis that a unit root
exists. Similar analysis shows that the exogenous
variables X; and Z; are stationary. The details of
the ADF tests are omitted to save space. To ob-

Lag

ACF

Partial ACF

Figure 3: Upper panel: The sample ACF &f. Lower
panel: The sample PACF plot &f.

tain some rough idea about the candidate variables of
the model, as an initial step of model identification,
we estimated the linear transfer function weights us-
ing the linear transfer function method (Liu, 1982).
The estimated linear transfer function weights are
plotted against the lags in Figure 4, with the 95%
confidence band plotted in the dashed lines. The
estimated transfer function weights suggest the fol-
lowing variables are good candidates of the model:
{Xta thly Xt727 th?)a Xt747 Zt7 thlv Zt*6}'

A common problem with high-dimensional non-
parametric smoothing is theurse of dimensionality
As the dimension of the model increases, the sample
size needed to obtain stable “local” estimate increases
exponentially with the sample size. Because of this
problem, with the sample sizes typically available in
practice, the dimension of nonparametric smoothing
models are typically low in practice. Without any re-
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Figure 4:The estimated linear transfer function weights

striction, a nonparametric regression model contain-
ing all the above variables is difficult to estimate.

To overcome this problem, we consider an additive
model

4
Y, = Y filXi) +90(Z) + 91(Zi-a)
i=0
+ 96(Zi—¢) + e,

where each additive component is approximated by
regression spline. The truncated power basis is used
in the spline approximation. To simplify discussion,
we assume that the orders and the number of knots of
the spline functions are the same, thus the model can
be written as

4k ‘ m
= ap+) [Z ai; X{_;+ Y air (X — )\T)]j_:|
=0 j=1 r=1
1k ‘ m
+ {Z bij Z]_; + Z bir(Z—i — )‘T)Iﬂ + ey
=0 j=1 r=1

We further assume that the knots are placed on the
percentile points so that there are equal number of ob-
servations between any two adjacent knots. A grid
search is conducted to determine the number of inte-
rior knotsk and spline degree:. In the grid search

k is in the interval [1, int§n!/(2m+3))], where the
upper limit is a multiple of the theoretical optimum
number of knots (Huang, 2003). We consider lin-
ear, quadratic and cubic splinesp (= 1,2,3, re-
spectively). The value& and m that minimizes
BIC=log(MSE) + log(n)[1 + (k +m)(ds + d.)]/n

is the optimal number of knots, whetle andd, are
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the number of lags inX; and Z;, respectively. The
results suggest a linear spline model with- 1. Sim-

ilar to the case ol;, the sample ACF and PACF of
the partial residuat; show indications of nonstation-
arity, however the ADF test results again reject the
existence of a unit root. As a result, an AR(4) model
is selected using the BIC criterion, the sample PACF
(Figure 5) also suggests such a model. Based on the

ACF

Lag

Figure 5: Sample ACF and PACF of the preliminary
residuale;

above preliminary information about the underlying
model, we refine the model by selecting the knots lo-
cations to minimize the residual sum of squares. The
results show tha¥; and Z;_; have such large knots
that beyond these knots there are only a few obser-
vations, this indicates that their effects are essentially
linear, also,X;_4 andZ,_¢ are found to be insignifi-
cant. As a result, the model simplifies further to

3
YV, = ¢+ [ailXt—z‘ + aio(Xi—; — Az‘)+}
i=0

I
1— Y 6B

The optimized knots are -1.3, 0.5, 0.2, and -0.2 for
X, Xi 1, X¢_9, andX;_s, respectively, and the esti-
mated parameters and their stand deviations are given
in Table 3.

The sample ACF and PACF in Figure 6 show that
the residual series is roughly “white”.

To put the performance of the proposed NPTF
model in perspective, we consider two widely-
accepted “benchmark” models that were used to an-
alyze the same data set. The first model is the TAR

1
+ > bz + (5)
j=0
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Table 3: Parameter Estimates

Parameter C a api all a9
Estimate 29.67 .03 .47 -11 2.44
StdErr. .08 18 .08 .17 .03
Parameter a9 aoo asy aso bo
Estimate 05 142 .03 .61 .32
StdErr. 224 08 .16 .08 .18
Parameter b, o1 P9 O3 b4
Estimate A7 115 -40 .25 -.09
StdErr .03 .03 .05 .05 .03

ACF

Partial ACF

Residual ACF

'w}ww ]

0 5 10 15 2
Lag

Residual PACF

Figure 6:The estimated residual ACF and PACF
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model used by Tong, et.al.(1985, page 658),

Y; = Cl+(1a"‘76))/t+(0,"',5)zt
—|—(O, .. -,3)Xt + e1e, if Xy <=2
= 02+(1778>Y2+(0777)Zt
+(0,---,7) Xy + ey, it Xy > =2, (6)
where(1,---,6)Y; means that;_,---,Y;_¢ are in-

cluded in the model, other terms are similarly defined.
The second model is the NARRX model used by Chen
and Tsay (1993b, page 963),

Y,

c+ ¢11Yi—1+ 012Yi 1 I(Yim1 > 1)
$13Yi-11(Yi—1 > c2) + $2Yi—o + ¢3Yi_3
G1Yi_a+ B1Z; + BoZi—1 + w11 X1
w12 X1 I(Xi—1 > ¢3) + w31 X3
w32 X3l (Xy—3 > c4) + &4

+ 4+ +

+ (7)
The residual variances of the NPTF model, together
with the residual variances of the NAARX and the
TAR (Chen and Tsay 1993b) are shown in the last row
of Table 4. We can see while the within-sample per-
formance of NPTF, NAARX and TAR are similar, the
NPTF model has the smallest residual variance in the
three models. Although the NPTF model uses two
more parameters than the NAARX model, it is still
preferred by the AIC criterion. It is interesting to see
that the NPTF model (5) and the NAARX model re-
veals similar features of the underlying process, for
example, in both models piecewise linear functions
are found to well describe the relationship between
temperature and river flow; in both models the precip-
itation effect is linear. The main difference is that in
the NPTF model (5) an AR model is used to model
the noise to account for the serial correlation, while in
the NAARX model lags ot} is used.

To study the forecasting performance of the pro-
posed model, we consider the following post-sample

Jun M. Liu

Table 4: MSE of the post-sample forecasts

Lead Time NPTF NAARX TAR
1 68.38 70.06 72.84
2 164.38 169.49 183.35
3 229.10 242.17 262.32
4 291.03 303.28 336.04
5 337.66 349.77 390.82
6 366.83 382.34 421.13
7 386.43 406.94 443.02
8 391.70 418.05 457.87
9 400.98 431.81 476.08
10 408.22 439.77 490.63
11 419.27 453.05 506.71
12 440.58 477.45 536.99

In-sample  31.65 33.15 31.74

The results in Table 4 show that the forecast MSE
of the nonparametric transfer function (NPTF) model
are consistently smaller than those of the NARRX
model and the TAR model. In this example, the pro-
posed NPTF model performances well in both within-
sample and post-sample, this shows the good potential
of the NPTF model in analyzing nonlinear time series
data.

6 Summary and Discussion

In this paper we introduce the regression spline-based
nonparametric transfer function model. This method
is flexible and ideal for modeling highly nonlinear
relationships between time series. Efficient estima-
tion of the transfer function model is achieved by in-
corporating the correlation structure of the noise in

forecast scheme: model (5) is re-estimated using the Nonparametric smoothing. Compared with the lo-
first two years of data, one-step to 12-step ahead post- cal polynomlal-bgsed methods, the exp_I|C|t functlonal
sample forecasts are conducted using the data of the form of polynomial splines makes estimation much
third year. This forecasting scheme is similar to the €SS intensive computationally. ~The finite sample
one used in Chen and Tsay (1993b), the main differ- properties of the estimators are studied through sim-

ence is that in Chen and Tsay (1993b), actual observa- ulation. The proposed model is used to model river
tions of X;, Z, and their lags are used in the forecasts, flow based on temperature and precipitation and found

while here the forecast values are used. Two simple successful when compared with widely-accepted non-

AR(1) models are found appropriate for this purpose: linéar parametric models.

Xt = ¢ X411 +aandZy = co + ¢.Zi—1 + a.

The mean squared errors (MSE) are calculated and

shown in Table 4 under “NPTF”. For the purpose of Acknowledgement
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