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Abstract: - This paper introduces an entropy-based estimation strategy for spatial heterogeneous 
panel data models where separate processes for each unit are considered. The starting point is a 
general model specification which account for both temporal and spatial lagged effects in a panel 
data context by treating individual relationships as a system of seemingly unrelated regression 
equations. An empirical application is provided to demonstrate practical implementation of the 
GME estimator when one has to deal with estimation of ill-posed or ill-conditioned models in 
analyzing spatial structures. 
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1 Introduction 
In recent years, there has been a growing 
interest in the estimation of econometric 
relationships based on panel data (Hsiao 1989). 
In this paper we focus on spatial panels, a 
family of models for which there is an 
increasing interest in estimation problems 
(Elhorst 2001 2003). 
A spatial panel data model takes the form of a 
linear equation extended with a variable 
intercept, a spatially lagged dependent variable 
(known as spatial lag model) or a spatially 
autoregressive process incorporated in the error 
term (known as spatial error model). With 
respect to a standard space-time model (Space-
Time Autoregressive /Integrated Moving 
Average model, STARMA, STARIMA 
(Hepple 1978), and the spatial autoregression 
space-time forecasting model (Griffith 1996)) 
which assumes that the spatial units are 
completely homogeneous, a panel data 
approach would presume that spatial heteroge-
neity is a feature of data and attempt to model 
that heterogeneity.  

The need to account for spatial heterogene-
ity is that spatial units are likely to differ in 
their background variables, which are usually 
space-specific time-invariant variables that 
affect the dependent variable, but are difficult 
to measure or hard to obtain. Omission of these 
variables leads to bias in the resulting 
estimates. To overcome these problems, one 
possibility is to introduce a variable intercept 
representing the effect of the omitted variables 

that are peculiar to each spatial unit considered. 
More specifically, in the fixed effects model, a 
dummy variable is introduced for each spatial 
unit as a measure of the variable intercept, 
while, in the random effects model, the 
variable intercept is treated as a random 
variable that is independently and identically 
distributed with zero mean. T dynamics are 
heterogeneous across the cross section units.  

This work aims at developing an entropy- 
based estimation strategy of heterogeneous 
spatial panel data models. The starting point is 
a general model specification which account 
for both temporal and spatial lagged effects in 
a panel data context.  

There is now a considerable body of work, 
which has given an application of the entropy 
criterion to a wide class of models (Marsh et al. 
1998, 2003; Golan et al. 1996; Kullback 1959; 
Samilov 2006; Fragoso et al. 2008; Wu et al. 
2008). As regards traditional estimation 
techniques, the formulation of the constrained 
maximization problem in the maximum 
entropy view does not require the use of 
restrictive parametric assumptions on the 
model. Restrictions expressed in terms of 
inequality can be introduced and it is possible 
to calibrate the precision in the estimation. 
Good results are produced in the case of small-
sized samples, in the presence of high numbers 
of explanatory parameters and variables 
(highly correlated). An empirical application is 
provided to demonstrate practical implementa-
tion of the GME estimator when one has to 
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deal with estimation of ill-posed or ill-
conditioned panel data models with spatial 
structures. 

The paper is organized as follows. Section 2 
introduces the basic model introducing the 
typical assumptions of an information theoretic 
framework. More specifically, section 2.2. 
develops the maximum entropy based 
formulation for alternative spatial error 
specifications. In section 3 we present an 
application of GME methodology for 
estimating spatial models. Finally, section 4 
concludes and lists some potential advantages 
and investigations of the proposed approach. 

2 The information-theoretic 
framework 

  2.1 The basic problem 

Following the heterogeneous panel approach 
proposed by Pesaran and Smith (1995), we 
take into account the possibility of cross-
sectional correlation by treating individual 
relationships as a system of seemingly 
unrelated regression equations.  

In the context of this work, the general 
specification of the model for cross section unit 
i (i=1,..,N) and t=1,..,T time periods which 
involves specifying a different intercept 
coefficient for each cross-sectional unit 
(equation) is: 

itiititiit XYwY εβρ ++= 1                       (1) 
We start by considering the basic model in 

vector form for a cross-section unit i: 
 

iiiiii XYwY εβρ ++= 1  

( ) 1
2i i iI w uε λ −= −                                    (2) 

where Yi  is of dimension (T×1), Xi is 
(T×Ki) and βi is (Ki×1).  

The resulting complete model, expressed as 
a system of seemingly unrelated system of 
equations, can be written as: 
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where Y is a vector of dimension (TN×1), X is 
a block diagonal matrix of dimension (TN×K) 
with K=ΣKi, and β=(β1, β2,.. βN)’, λ=( λ1, λ 2,.., 
λN)’ ρ=( ρ1, ρ 2,.., ρN)’ are  unknown vectors of 
dimension (KN×1) (N×1) and (N×1), 
respectively. This model specification assumes 
that spatial effects are not identical across 
spatial units; by varying spatial residual 
correlation coefficients across units it takes 
into account jointly structural instability and 
differentiated spatial effects within and 
between spatial units. 

W1 is a (TN×TN) block diagonal matrix 
which expresses for each observation (row) 
those units (columns) that belong to its 
neighbourhood set as non-zero elements, that 
is: for pairs of units (i,j), wij ≠0 for 
‘neighbours’ and wij =0 for others. It is 
common practice to derive spatial weights 
from the location and spatial arrangements of 
observation by means of a geographic 
information system. In this case, units are 
defined ‘neighbours’ when they are within a 
given distance of each other, ie wij =1 for d ij ≤δ 
and i≠j, where d ij is the great circle distance 
chosen, and δ is the critical cut-off value. More 
specifically, a spatial weights matrix W* is 
defined as follow: 

*
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if
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and the elements of the row-standardized 
spatial weights matrix W (with elements of a 
row sum to one) result: 

*

*
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ij
j

w
w i j

w
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= =
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W2 is the (TN×TN) block diagonal matrix 
with T copies of the (N×N) spatial weight 
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matrix, and U is a (TN×1) vector of iid errors 
with variance σ . 2

u

The specification in the form of a nonlinear 
in parameters form of the simultaneous 
equations model result:    

( ) (1 2 2 1 2( )( )Y W W W W Y I W Xρ λ λ ρ λ β= + − + − +) u    (6) 
Following Theil (1971) and Zellner (1998), 

from the joint spatial model (6) and from 
substitution of the reduced form equation:  
Y Sπ τ= +                                                    (7) 
for Y, the resulting joint spatial model is 
derived: 

( )( ) ( ) *
1 2 2 1 2( )( )Y w w w w S I w Xρ λ λ ρ π λ β= + − + − +u (8) 

where u* is a (TN×1) vector of appropriately 
transformed residuals, S is a (TN×L) matrix of 
instrumental variables, π is a (NL×1) vector of 
unknown parameters, and τ is a (TN×1) vector 
of reduced form residuals. Including the 
reduced form model is necessary to identify the 
reduced form parameters (Marsh, 2003). 

  The basic generalized maximum entropy 
(GME) formulation we present refer to a model 
specification where a constant spatial structure 
for error variance in each equation is assumed 
so that the disturbance vector is assumed to 
have a zero mean and a non-diagonal 
covariance matrix: 

TIΦ = Σ⊗                                                    (9) 
where ⊗ is the Kronecker product operator and 
IT is an identity matrix of dimension T. 

Under the GME framework we recover 
simultaneously the unknown parameters, the 
unknown errors by defining an inverse 
problem, which is based only on indirect, 
partial or incomplete information. The 
objective is to estimate the parameters of 
spatial models with minimal distributional 
assumptions. Each parameter is treated as a 
discrete random variable with a compact 
support Z and M possible outcomes, 2 ≤M ≤∞. 
The uncertainty about the outcome of the error 
process is represented by treating each error as 
a finite and discrete random variable with J 
possible outcomes, 2≤J≤∞. To this end, we 
start by choosing a set of discrete points, the 
support space V=[v1,v2,…,vJ]' of dimension 
J≥2, that are at uniform intervals and symmet-
ric around zero. Each error term has corre-
sponding unknown weights ri=[ri1,ri2…,riJ]' 
that have the properties of probabilities 0≤rij≤1 
and ∑jrij=1.  

Re-parameterizing the set of equations (7) 
and (8), so that β=Zpβ and π=Zpπ, ρ=Zp ρ ,λ 
=Zpλ , u*=Vru*  and τ=Vr τ  yields: 

 

 
( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( )
1 2 2 1

* *
2

u u

Y Z p w Z p w Z p w Z p w S Z p

I Z p w X Z p Z p

ρ ρ λ λ λ λ ρ ρ π π

λ λ β β

= + −

+ − +
 (10) 

( ) ( )Y S Z p Z pπ π τ= + τ                             (11) 

where p=vec(pβpπpρpλ) and r=vec(pu*pτ) are 
vectors of proper probability distributions for 
parameters and errors, respectively. 

2.2 Estimation issues 

The estimation of panel data models incorpo-
rating both spatial heterogeneity and spatial 
dependence poses identification, endogeneity 
and collinearity problems and as a consequence 
the standard estimation procedures can produce 
(i) biased parameter estimates, (ii) unbiased but 
inefficient parameter estimates, or (iii) biased 
estimates of the standard errors. 

Another potential problem is that for large 
N, the usual spatial econometric procedures are 
problematic because the eigenvalues of spatial 
weight matrices of dimensions over 400 cannot 
be estimated with sufficient reliability 
(Kelejian and Prucha, 1999). One solution is to 
use the GMM estimator in the case of the fixed 
effects spatial error model (Bell and Bockstael, 
2000). Another solution, based on maximum 
likelihood estimation, is not to express the 
Jacobian term in the individual eigenvalues but 
in the coefficients of a characteristic polyno-
mial (Smirnov and Anselin, 2001) or to 
approximate the Jacobian term in its original 
form using a Monte Carlo approach (Barry and 
Pace, 1999).  More specifically, the spatial 
LAG-SUR specification may be consistently 
(but not efficiently) estimated by feasible 
generalized least squares, F-GLS (Zellner 
1997), while the SAR-SUR specification 
cannot be consistently estimated by F-GLS due 
to the endogeneity of spatial spillovers 
(Anselin, 1988). Consistent estimates may be 
obtained for both of these specifications using: 
(i) a combination of F-GLS and Maximum 
Likelihood estimation (Anselin 1988), (ii) two-
stage estimation procedures (Zellner 1997), or 
(iii) moment conditions for the GMM 
estimation derived by Honoré and Hu (2004).  

A quite important problem of fixed coeffi-
cients models, also expressed in spatial forms,  
is the large number of parameters causing the 
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estimators to be infeasible. Furthermore, even 
if the estimators are made feasible by 
introducing restrictions on the parameters, the 
quality of the asymptotic approximation used 
to justify the approach remains rather suspect, 
unless the ratio N/T tends to zero. In this 
respect, as a suitable alternative, in presence of 
both endogeneity and ill-posed problems, 
consistently and asymptotically normal 
estimates may be obtained by using the 
Generalized Maximum Entropy estimation 
approach (Golan et al. 1996) which avoids 
some of the strong parametric assumptions 
required with traditional procedures and 
performs well over a range of non-Normal 
error distributions and in presence of small 
samples.   
The GME estimator can be viewed as a 
shrinkage estimator that shrinks the data to the 
priors (uniform distributions) and toward the 
centre of their supports. It should be pointed 
out that unlike ML estimators, the GME 
approach does not require any explicit error-
distribution assumptions: in fact, the GME 
method selects the most uniform distribution 
consistent with the information provided by 
the constraints. In this respect, we do not need 
to specify a parametric family for the likeli-
hood function, and the estimation rule is 
flexible with respect to: (i) the dynamic, 
stochastic nature of economic data, (ii) a non-
random survey design, as well as to the model 
selection problems. Within the GME frame-
work, all coefficients and errors are expressed 
in terms of proper probabilities. The basic idea 
is that rather than search for the point parame-
ter estimates, each parameter is viewed as the 
mean value of some well-defined random 
variable. The unobserved error vector is also 
viewed as another set of unknowns, and as in 
the case of the signal vector, each error is 
constructed as the mean value of a random 
variable. Under the GME framework, the full 
distribution of each parameter and of each 
error (within their support spaces) is simulta-
neously estimated under minimal distributional 
assumptions.  

Given the data consistency (10) and (11), 
and  the covariance’s relationship (9) the GME 
objective function relative to our formulation 
problem may be formulated as: 

,
( , ) ' ln ' lnmax

i ip r
H p r p p r r= − −                (12) 

subject to:  
(i) data consistency conditions: 

( ) ( ) ( ) ( )( ) ( )( )
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(ii) adding-up constraints: 
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where p=vec(pβpπpρpλ) and r=vec(pu*pτ) are 
vectors of proper probability distributions for 
parameters and errors, respectively. 
If the correlation between time periods varies 
with time, the error covariance that results is 
more general than the block diagonal structure 
we have considered. In such a cases it is 
possible to introduce different covariances for 
each period by adding a new set of constraints 
in the optimization  problem. 

It is important to point out some advantages 
of our GME specification for spatial panel 
datamodels. First, by assuming heterogeneity 
of parameters across units it is possible to 
analyze the spatial patterns in the estimated 
coefficients. Second, by using the GME 
procedure it is possible to obtain consistent 
parameter estimates when the number of these 
coefficients increases as the number of 
observations increases (the curse of dimen-
sionality problem), when the number of time 
periods involved, T, is less than the number of 
observations N and the corresponding 
variance-covariance matrix for errors is 
singular. 

3 An empirical application  

In the empirical application, firms’ competitive 
effects from FDI inflows have been studied 
with data on foreign direct investment inflows 
in Italy, collected by the Italian Foreign 
Exchange Office for all economic sectors 
(1999-2004). The application examines the 
importance of local agglomeration externalities 
in determining the Foreign Direct Investment 
(FDI) intensity by analyzing the link between 
the degree of FDI inflows penetration and its 
determinants at the Italian regional level. In 
contrast with most previous studies (Konings, 
2001), we focus on the spillover effects related 
to inter/intra-industry linkages on FDI 
intensity.  More specifically, we are interested 
in testing: (i) the hypothesis that FDI intensity 
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is related to the characteristics of the regional 
economic system; (ii) the hypothesis that sector 
specificities are relevant in explaining FDI 
patterns in Italy. In this respect, we argue the 
importance of a panel data approach and the 
need of testing for spatial heterogeneity and for 
any remaining spatial autocorrelation, since 
ignoring it could result in biased coefficients. 
Our analysis is concentrated in the 1999-2004 
period and Balance of payments data on Italy’s 
inward FDI flows are used. Data on FDI are 
collected by region, and aggregated into 4 
macro-sectors, agriculture, industry in the strict 
sense, construction, and services. Regional data 
used for the construction of the explanatory 
variables come from Istat. The dependent 
variable, FDI-intensity, is calculated by using 
FDI inflow divided by value added, for each 
region and sector. Our specification  includes 
as regressors time and sectoral fixed effects 
and the model has been estimated in log-linear 
form. Spatial heterogeneity is modelled by 
introducing fixed effects at sectoral level and 
heterogeneous coefficients across regions. To 
account for residual spatial dependence, spatial 
lag and spatial error specifications have also 
been considered.  
Spillovers connected to specialization 
(Marshall-type economies) and to diversity are 
introduced. With reference to Marshall-type 
agglomeration spillovers, capturing the 
positive effects of the agglomeration of firms 
belonging to the same sector, we consider a 
sector specialization index computed on 
industry employment:  
 

1
1

+

−
=

ij

ij
ij IS

IS
Spec  with 

∑
∑

=

j
jITAjITA

j
ijij

ij LL
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IS   

and  i = 1, …, 20  j = agriculture, industry in 
the strict sense,  construction, services 
         
where Lij is employment in region i and 
industry j, and LITA j is employment at national 
level in industry j. The index is standardized 
and constrained within the interval (–1, 1).  
To measure the Jacobs-type externalities we 
employ the relative Hirschman-Herfindal 
index: 

jITA

ij
ij H

H
Div =    
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For region i and sector j, the index is measured 
over all the industrial sectors except j and is 
decreasing with the relative diversity of the 
area compared with the national average, that 
is higher indexes indicate less diversified areas. 
A positive effect of vertical externalities is 
detected by a negative sign for the correspond-
ing coefficient.   
In addition, to account for spillovers among 
firms localized in the same geographical area 
(Porter-type spillovers), a district variable has 
been introduced. Number of workers employed 
in districts, identified by ISTAT, in a region 
divided by the total number of workers in the 
same region, as a measure of the local 
development of firms’ networks across Italian 
regions. Finally, as a measure of trade 
openness we calculated a trade variable by 
using the sum of imports and exports divided 
by GDP, for each region and sector. 
Due to the panel data size, standard techniques 
cannot be applied when heterogeneity in 
coefficients of explanatory variables across 
both regions and sectors is introduced. 
Estimates are then computed using the GME-
based estimator previously introduced. We use 
M=5 and J=3 since with higher values 
produced the same estimates. Results of GME 
estimates of the spatial lag model with varying 
(region specific) spatial dependence (Table 2-
Appendix) confirm the high heterogeneity of 
all types of spillovers across regions, mostly 
concentrated in Centre and Northern regions. 
Endogenous spillovers connected to geo-
graphical proximity produce diversified effects 
on regions: FDI intensity in a region is 
positively affected by FDI flows in neighbor-
ing regions for Piemonte, Lombardia, Veneto, 
and Toscana. The effect is negative for Liguria, 
Umbria, Marche, Lazio, and Sardegna. 
Specialization externalities have mixed effects 
on FDI intensity. With reference to vertical 
linkages across industries, no clear evidence 
comes out, except for agriculture and 
construction where inter-industry externalities 
positively influence MNE’s investment 
decisions. Finally, there is evidence that the 
importance of spatial dependence varies across 
regions on data disaggregated in four macro-
sectors. Differences in the estimated coeffi-
cients on the region-specific spatial depend-
ence terms emerge for regions that are 
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contiguous to the North and Center of Italy 
while peripheral regions experience much 
smaller and negligible effects. 

4 Remarks and conclusions 

In this paper a GME estimation procedure for 
heterogeneous spatial panel data model has 
been derived. Spatial autoregressive processes 
in either the dependent variable and residuals 
are here considered by taking into account 
jointly structural instability and differentiated 
spatial effects between and within spatial cross 
sectional units. This model specification allows 
for much more flexibility of the coefficients 
across units than do traditional models and also 
contributes: (i) to avoid the potential bias that 
arises from constraining the coefficients on the 
lagged dependent variable to be constant across 
units, and (ii) to provide a diagnostic tool to 
investigate the presence of some type of 
heterogeneity in panel data sets (unobserved 
heterogeneity, slope heterogeneity, spatial 
dependence).  
An empirical application has been presented 
with the aim of studying firms’ competitive 
effects from FDI inflows using data on foreign 
direct investment inflows in Italy. A fixed 
effects panel data model, also extended to 
include spatial autocorrelation, has been 
examined by testing the hypothesis of panel 
heterogeneity in slope coefficients with 
varying (region specific) spatial dependence. 
The empirical findings give support to the 
hypothesis that different types of agglomera-
tion externalities, such as Marshall-type 
economies related to the sector specialization 
of a specific geographical area, and Jacobs-
type externalities linked to sector diversity, 
contribute to affect FDI inflows. We find that 
controlling for fixed-effects allows us to 
disentangle the effect of spatial dependence 
from that of spatial heterogeneity and of 
omitted variables. The estimated relationship 
of determinants of FDI intensity is robust to 
inclusion of terms introduced to capture spatial 
interdependence, even though such interde-
pendence is estimated to be significant. 
Though heterogeneity in coefficients across 
both regions and sectors have been identified, 
the presence of foreign multinational firms 
seems to play an important role in terms of 
linkages with the local context. Inter-industry 
and intra-industry externalities have shown 
mixed effects across sectors. Finally, endoge-

nous spillovers connected to geographical 
proximity have produced diversified effects on 
regions. 
With reference to the use of the GME-based 
estimation procedures to estimate spatial 
structures in panel data models, several 
advantages can be pointed out. The maximum 
entropy-based estimator is able to produce 
consistent estimates in “ill-posed” and/or “ill-
conditioned” models where the number of 
parameters exceeds the number of data points 
and in models characterized by a non-scalar 
identity covariance matrix. Prior information 
can be introduced by adding suitable con-
straints in the formulation without imposing 
strong distributional assumptions.  
Further investigation of GME estimators for 
spatial panel data models could yield useful 
results (i) to applied analyses of socio and 
economic phenomena, and (ii) to space-time 
problems under complex and nonrandom 
sample designs. 
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Appendix: Description of data 

Data related to Italy’s inward FDI flows by 
(destination) region and economic sector are 
collected by Ufficio Italiano Cambi (UIC) and 
come from the balance of payments statistics. 
FDI is defined as “the category of international 
investment that reflects the objective of a 
residence entity in one economy obtaining a 
lasting interest in an enterprise resident in 
another economy” (IMF, 1993). Following the 
IMF guidelines, the UIC provides the 
following definition: the investment in a 

foreign company is classified as FDI when it 
involves 10 per cent or more of the company’s 
share; it is classified as a portfolio investment 
when it is less than 10 per cent. Using balance 
of payments data on Italy’s inward FDI flows 
(from 1999 to 2004), a wide array of activities 
related to the internationalization of production 
is covered, including greenfield investments 
abroad as well as cross-border M&As. “Non-
equity” forms of internationalization are 
instead not covered. Other data on value added, 
employment, and trade flows come from Istat.  
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Tab. 1: Description of sectors 
Macro-sector Sector Description 

A A1 AGRICULTURE 
    Agriculture, hunting, forestry and fishing 
B   INDUSTRY 
  B1 INDUSTRY IN THE STRICT SENSE 
    Paper, paper products and printing 
    Agricultural and industrial machinery and equipment 
    Office, accounting and computing machinery 
    Electrical materials 
    Transport equipment 
    Ferrous and non-ferrous minerals and metals 
    Non-metallic mineral products 
    Food products, beverages, and tobacco products 
    Chemicals products 
    Energy products 
    Rubber and plastics products 
    Metal products except transport equipment 
    Textiles, leather, footwear and clothing 
    Other manufacturing products 
  B2 CONSTRUCTION 
    Construction in private and public sectors 
C   SERVICES 

  C1 MARKET SERVICES 
    Supporting and auxiliary transport activities 
    Hotels and restaurants 
    Land transport 
    Water and air transport 
    Maintenance and repair of motor vehicles, personal and household 

d    Telecommunications 
    Other trade services 

  C2 NON-MARKET SERVICES 
    Public administration 

    Private households with employed persons 
  C3 FINANCIAL INTERMEDIATION 
    Financial intermediation, except insurance and pension funding 

    Insurance and pension funding 
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Tab. 2: Model with heterogeneity across agriculture, industry in the strict sense, construction and services, Dependent variable: y = ln 

(1+FDI/VA) – Generalized Maximum Entropy estimates 

Regions constant y spatial
lag open  district

ln(spec)
in sector

1 

ln(spec)
in sector

2 

ln(spec) 
in sector 

3 

ln(spec)
in sector

4 

ln(div) 
in sector 

1 

ln(div) 
in sector

2 

ln(div) 
in sector 

3 

ln(div) 
 in sector

4 
Piemonte 0.00 2.90* -0.25* 0.30* -5.68* -8.97 -2.62*** -45.46* -39.99* 24.03 -50.38* 22.76*
Valle d'Aosta           0.62 -0.01 -0.001 0.00 0.28* -6.53* 3.92* 1.84 -3.47* 5.85* 2.49* -2.09
Lombardia -13.10* 3.57* -0.69* -126E-17* -20.32* -67.34* 47.05* -78.30* -127.72* -90.70* -77.56* 77.35*
Trentino-A. A. 0.48* -0.01 -0.05* 7.61E-16** 1.85** 1.41 1.80* -1.84 2.03** -1.59 2.44 1.68 
Veneto 9.04* 0.20** 0.59*** -0.001* 4.39* 10.60* -0.56** -10.72* 3.83* -5.33* -4.35*** 6.12*
Friuli-. G.             -0.09** -0.10 0.00 -0.01* 0.01 -0.14 0.03 -0.05 -1.00 -0.07 -1.14 0.13
Liguria -3.10*        -0.29* 0.01 1.455E-8* -0.18 -0.45 -0.03 -1.74 -5.67 10.83* -7.13* 6.82*
Emilia-Romagna -1.64*      0.09 0.10* -0.01* -1.52* 5.75* -1.62 4.91 15.86* -5.97* -14.42* -9.70**
Toscana 3.78** 1.05* -0.30* 0.00    1.48* 24.06* 2.58* 0.87* -1.01** 14.92* -1.58* -0.24*
Umbria  -0.54* -7.55* 0.02* 0.00 2.89* -23.30* -1.81*** 6.01* 4.77 4.80*** 4.62 -2.28**
Marche  0.11 -0.12* 0.01 0.00 -0.005* -3.81* 0.00 0.82** -1.01* 0.20 0.16 -0.22**
Lazio       0.00 -0.72* 0.20 -5.40* 5.35* 5.50** -4.66* -21.24* -17.47** 0.17 12.30* 18.23*
Abruzzo             0.00 0.02 -0.02* 0.01* 0.03 0.08 0.07 -0.56 -1.22* -0.89 -0.29 0.04
Molise   1.32E-16* 0.04 -0.004** 0.00 0.08 -0.12 0.27** -0.07 -0.19 -0.01 -0.35*** 0.02
Campania            0.00 0.17 0.03 -0.07 -0.27 -1.33 0.00 -0.18 -1.61* 1.41 0.94 0.22
Puglia 0.00            9.93 0.00 0.00 0.13 -0.22 0.00 0.05 -0.05 -0.02 0.02 -0.01
Basilicata             0.00 0.05 0.00 0.01 -0.01 0.00 0.00 0.00 0.03 0.00 -0.01 0.00
Calabria             -0.01 0.09 0.00 0.00 -0.13 -0.04 0.01 0.06 0.17 0.24 0.08 0.08
Sicilia        0.00 3.23 0.00 -0.02 -0.01 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.00
Sardegna         0.00 -0.04** 0.03* -2.91* -3.10* -1.27 -1.54 -2.26 -8.05* 4.64 -6.65** 5.74*

All estimates include sector and time dummies. * 1%; ** 5%; *** 10% significance levels 
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