ECONOMY EFFICIENCY FOR RENEWABLE ENERGY SOURCES IN GREECE

Evangelos C. Tsiblostefanakis, Koralia A. Mantouka Electrical Engineering, PhD , Economist Tel.: +30610 453738 Fax: +30610 461826 e - mail: <u>branchdk@hol.gr</u>

ABSTRACT

Energy is one of the most valuable social goods. A very important of the social economy is the search and discovering of new energy sources, the most efficient management and saving of existent energy resources, as well as environment protection. In this paper the contribution of public funding energy projects for producing electricity from RES sectors, to investment efficiency, will be examined. The Renewable Energy Sources under investigation in this paper are: Wind Energy, Solar Energy and Hydro Energy. There will be established for the numerical indeces for measuring and comparing financial efficiency of different energy investments (eg IRR – Internal rate of return and NPV – Net Present Value)

1. Introduction:

The Energy Economy Division is responsible for the development of a new organisation for the electricity markets. Its main focus is on public services and supply security, and on the creation of favourable conditions for increasing the renewable energy contribution as well as the provision of the necessary instruments.

Over the past years, the countries of the E.U. has continued its process of liberalising its energy industries. In Greece, directive 2001/77/EC on the promotion of electricity produced from renewable energy sources in the internal electricity market (OJ L283/27.10.2001) in its annex sets an indicative target for Greece to cover a part of its gross national electricity consumption by 2010 from renewable energy sources (RES) equal to 20,1 percent, with the contribution of large-scale hydroelectric plants included.

According to the most recent estimates, the gross consumption of electric power in 2010, amounts to 68 TWh.

Subsequently, production of electric power from RES in the order of 13,7 TWh (including large-scale hydro-electric plants) is the goal for 2010. Electricity consumption in 2005 is estimated to reach 57,8 TWh, with an installed capacity of

12.500 MW of PPC-operated plants and 1400 MW of auto-producers, conventional power and renewable energy sources generators.

The transmission lines in the interconnected system have a length that exceeds 12.000 km whereas the distribution lines exceed 200.000 km. The number of customers served in Greece is some 7 million [1].

Fig. 1: Evolution of RES installed capacity

According to the above, the installed RES capacity required for 2010 in order for the target to be achieved, are presented in table 1:

	Requirements in installed capacity by 2010, in MW	Energy gene-rated in 2010 in Twh	Percentage share of every renewable energy source in 2010
Wind parks	3,372	7.09	10.42
Small-scale hydro	364	1.09	1.60
Large-scale hydro	3,325	4.58	6.74
Biomass	103	0.81	1.19
Geothermal	12	0.09	0.13
Photovoltaics	18	0.02	0.03
Total	7,193	1367	20.10

Table1. RES installation requirements to meet the 2010 target [1].

2. General description of under investigation RES

The Renewable Energy Sources under investigation in this paper are: Wind Energy, Solar Energy and Hydro Energy. In general, for the cost calculation of the renewable energy sources, we have two main costs:

a) **the capital costs** (as the preparation, building, integration, support investment, insurance, project management),

b) the running costs such as variable and fixed costs (operation, maintenance, overheads).

Generally the shape of the cash flow profile is important, because of the effect that discounting has in devaluing future costs and income.

It's also necessary to measure the value of the renewable energy being produced and the value of an alternative source of energy.

ENERGY TYPE	SALES €/ KWh
WIND ENERGY	0,073
SOLAR ENERGY	0,45 (<100 Kw)
	or 0,4 (>100 kw)
HYDRO ENERGY	0,073

Table 2. Typical Values of R.E.S. in Greece.

*	Price of energy (Euro/MWł				
Generation of electricity from:	Interconnected System	Non- intercon- nected islands			
Wind energy, hydraulic energy exploited in small- scale hydroelectric plants with an installed capacity up 15 MW Geothermal energy, biomass, gases released from sanitary landfills and biological treatment plants and biogases, miscellaneous RES, High-efficiency cogeneration of heat and electricity	75.82	87.42			
Wind energy from sea wind farms	92.82				
Solar energy utilised in photovoltaic units with an installed capacity less than, or equal to 100 kW, and which will be installed in a lawfully owned or possessed property or in adjacent properties of the same owner or lawful possessor	452.82	502.82			
Solar energy exploited in photovoltaic units with an installed capacity of over 100 kW	402.82	452.82			
Solar energy exploited in units employing a technology other than that of photovoltaics with an installed capacity up to 5 MW	252.82	272.82			
Solar energy exploited in units employing a technology other than that of photovoltaics with an installed capacity of over 5 MW	232.82	252.82			

Table 2a:Renewable energy feed-in tariffs in theyear 2007 [1]

In general for all the under investigation renewable energy sources in this paper, has high capital costs. On the other hand, the operating costs are low because there are no fuel costs, and operational repair and maintenance costs.

Financial results of the investment plan

Net present value (NPV) is a standard method for financial evaluation of long-term projects.

Used for capital budgeting, and widely throughout economics, it measures the excess or shortfall of cash flows, in present value (PV) terms, once financing charges are met. All projects with a positive NPV are profitable, however this does not necessarily mean that they should be undertaken since NPV does not account for opportunity cost.

Assuming a firm aims to maximise profit, projects should only be undertaken if their NPV is greater than the opportunity cost. To do this, the firm would simply recalculate the NPV equation, this time setting the NPV factor to zero, and solve for the now unknown discount rate. The rate that is produced by the solution is the project's internal rate of return (I.R.R.). The project's I.R.R. could, depending on the timing and proportions of cash flow distributions.

Thus, we can see that the usefulness of the IRR measurement lies in its ability to represent any investment opportunity's return and to compare it with other possible investments.

Both of these measurements are primarily used in capital budgeting, the process by which companies determine whether a new investment or expansion opportunity is worthwhile.

Given an investment opportunity, a firm needs to decide whether undertaking the investment will generate net economic profits or losses for the energy industry. To do this, the firm estimates the future cash flows of the project and discounts them into present value amounts using a discount rate that represents the project's cost of capital and its risk. Next, all of the investment's future positive cash flows are reduced into one present value number. Subtracting this number from the initial cash outlay required for the investment provides the net present value (NPV) of the investment. The following analysis does not take into consideration the current financial results, which are really positive regarding not only the increase of its sales but also of its profitability.

Because of this there will only be an analysis of the expected results that will arise from the materialisation of the suggested investment plan. It is outlined that this form of analysis regarding investment efficiency has minimised the risk because these results will help in the improvement of the efficiency of the suggested investment plan.

Possible scenarios are the existence of long-term borrowings with an interest rate of 5% and for a 15 year duration and in the 2^{nd} year after the materialisation of the investment for the sales of the new investment plan (2,5% respectively for the next years until the end of the first 5 years and 1% the following years.

The following analysis takes into account the scenarios below, which show the viability of the suggested investment plan.

generate net economic promis or losses for the	
COST OF INVESTMENT FINANCING	TH. EURO / MW nominal power
WIND ENERGY	1000
SOLAR ENERGY	6300
HYDRO ENERGY	1200

INVESTEMENT	WIND ENERGY	SOLAR ENERGY	HYDRO ENERGY	PERCEN- TAGE
TOTAL / MW	1.000,000	6.300,000	1.200,000	100%
EQUITY CAPITAL	250,000	1.575,000	300,000	25,00%
SUBSIDY FROM THE STATE	550,000	3.465,000	660,000	55,00%
BORROWING	200,000	1.260,000	240,000	20,00%

ANNEX OF RESULTS OF THE SUGGESTED INVESTMENT PLAN (amount in thousands Euros)

A) BASIC ECONOMY OF A WIND ENERGY PLANT (1 MW)

FORE CASTED PROFIT & LOSS ACCOUNT (IN THOUSANTS €)						
	PERIOD OF CONSTRUCTION DEBIGN	1si YEAR	2nd YEAR	3rd YEAA	AHL YEAR	ółh YEAR
TOTAL SALES		50,000	62,750	57,544	61,524	166,675
% of Cost		25,533	10,22%	25,75%		
Minus: Cost of Goads sold		35,230	35,700	55,414	37,112	87,885
GROSS WORKING COST		15,000	118,050	151,180	154,301	127,627
Minus: Administration Expenses		5,000	6.050	5,101	5,152	6.273
// Operation & Dispasal Expenses OPERATION OUTCOME (#)		-10,00	116,000	115,079	11 (124)	155,464
Export Bubsidies						
Credit Influence Railes						
VIDET INCOMES TOTAL						
Minus: Exclanges Other Expenses Total						
PROFIT BEFORE INTEREST , TAX& DEPRECIATION						
RATES (a+b)		110	13	116	119	22
Hinus: -Læsing						
- Long-form Interest Rates		10	12	9	9	3
PROFIT BEFORE DEPRECIATION & TAX)		110	to	107	111	
Depreciation (lotal)		າ	C?	<i>9</i>)	হা	5)
PROFIT BEFORE TAX		50	53	57	61	64
GKUSS FRUH		76,7%	76,8%	76,9%	77,0%	77,1%
NET LEOT		33,3 m	34,8%	36,2%	37,6%	36,9%

FORECASTED GAPITAL FLOWS (IN THOUSANTS C						
	OF CONSTRUCTION DESIGN	1# YEAR	2nd YEAR	Srd YEAR	4th YEAR	51h YEAR
A. INFLOUDE 1. Pioth before deprecision 2. Company Capital Canb Ibution 3. Long-term Investment Leans 4. Buppliers Credits (filed assets) 5. Blate Assistance 6. Bates of lited 5. Dibut Bourses	200,000 200,000 600,000	10a,0a0	103,463	107,029	110,701	114,481
TOTAL A B. OUTFLOUS	1.000,000	100,00D	103,463	107,029	110,701	114,481
1. Investment agrenses	1.000,000					
2. Belore Operation Espanses						
3. Interest Rates of Canstruction Period						
4. Annual Investments						
5. Debi Instalmente of New Investment Loans		9.26B	B,732	10.21B	10,729	11,216
I. Suppliers credit service						
7. Insame Tax		20.000	21,385	22.812	24,280	25,782
B. Shares		24.000	25,612	27.374	29,138	30,951
B. Other Outlieve						
TOTAL B	1.000,000	53,268	05,780	60,404	64,146	68,009
WORKING CAPITAL	1					
VARIOUS (A-B)		46,732	41,664	46.125	41,555	41,472

B) BASIC ECONOMY OF A SOLAR ENERGY PLANT (1 MW)

FORECASTED PROFIT & LOSS ACCOUNT (IN THOUSANTS)	9					
	PERIOD OF CONSTRUCTION DESIGN	1#I YEAR	2nd YEAR	Srd YEAR	4th YEAR	51h YEAR
TOTAL BALES		6 ×,740	844,493	690,540	87.04	894.01
% edCast		7,4132	a 7580	6,182	a 768.	14,8
Minus: Cost of Goode sold		4,00	X2006200	۰. [.] ،	X1 < ≈:	814.73
GROBS WORKING COST		594,740	5 +\$Pd	6 ti, 83	(49,24)	Pc1 5 40
Minus: Administration Expenses N Operation & Disposel Expenses		10,000	0.00	10, 101	302.0	0.40%
aPERAMan DUTCOME (a) Export Subsidies		634,740	90 × 643	615,157	534 34:	R:1 Ø
Gredit Interest Roles						
TOTAL						
Minus: Exclianyca Obier Expenses						
TOTAL PROFIT BEFORE INTEREST , TAXE DEPRECIATION						
RATEB (s+b) Minus:		62(s).	194	g a	1: 4:	1 <u>:</u> 1.
-Loasiny - Long-tenn Interest Rates		1: <	(a)	6.7	-4	4
PROFIT BEFORE DEPRECIATION & TAX)		(Q.)	::4	:4: ·	53	60
Depreciation (total)		e 3.	X15	ج ۵.	X15	X1::
PROFIT BEFORE TAX		207	229	247	266	286
(RCCS -RC+1		94,6%	95,3%	<u>95,3%</u>	95,3%	95,3%
HET TROTT		32,9%	35.5%	37,4%	39.3%	41.2%

FORECASTED CAPITAL FLOWS (IN THOUSANTS C						
		1#I YEAR	2nd YEAR	Sird YEAR	4th YEAR	51h YEAR
A. INFLOUB						
1. Ploin bergie appretision		021,740	D43,618	062,142	081,148	600,716
2. Company Capital Combinion	1.676,000					
3. Long-term Investment Loans	1.260,000					
4. Buppliers Ciedits (freed bssets)						
6. Bible Assistance	3.465,000					
6. Bales of freed						
TOTAL A	6.300,000	021,74D	643,673	062,142	6 31,149	60D,716
B. OUIFLOUS	0 Pap apa					
1. Imesmen Ignenses	6.300,000					
2. Belore Operaban Expenses						
3. Interest Nates of Construction Penad						
4. Annual Imestments						
5. Debi Instalmente pi New Investment Loans		58.391	61,311	14.3/1	61,383	/U,X/G
I. Suppliere stadit samoa						
r. Insame lax		62.898	91,471	81.657	101,410	114,288
B. Shares		89.235	109,715	118.828	127,751	197,144
B. Other Outliovs						
TOTAL B	6.300,000	240,322	262,043	281,861	301,306	322,400
CORKING CAPITAL						
VARIOUS (A-B)		2B1.41B	281,131	260.281	279,343	278,911

C) BASIC ECONOMY OF A HYDRO ENERGY PLANT (1 MW)

FORECASTED PROFIT & LOSS ACCOUNT (IN THOUSANTS C)						
	PERIOD OF CONSTRUCTION DESIGN	1 si year	2nd YEAR	Siri YEAR	4th YEAR	51h YEAR
TOTAL BALES		25,00	2006 35	24:, 431	41330	43.324
% of Cast		29,7.52	1, 5,8	(0,0052	1, 4,8	4, 4, 8,
Minus: Cost of Goade sold		42,000	4.18(4)	43,837	44.67	49.492
GRD8S WORKING COST		X.)*0	18.7 (38)	10,034	1:57 (4)	n) i s(im;
Minus: Adminishation Expenses		6,000	5. (Sa)	5,101	s. 19	4206
JJ Operation & Disposal Expenses						
OPERATION DUTCOME (#)		2,00	12.10.45	34,248	1315/2	157,696
Export Subsidies						
Credit Interest Roles						
Other Incomes						
TOTAL						
Minus: Excluenyee						
Other Expenses						
TOTAL						
PROFIT BEFORE INTEREST , TAXE DEPRECIATION						
RATEB (s+b)		103	×	1×3	:с	(a)
Minus:						
-Lossing						
- Long-term Interest Rates			1	1	10	10
PROFIT BEFORE DEPRECIATION & TAX)		1:5	1	107	.v)e(
Depreciation (total)		60	93	60	93	9)
PROFIT BEFORE TAX		106	111	117	122	128
(R02×-R0+1		81,3%	81,4%	81,5%	81,6%	81,7%
HET TROTT		47,1%	48.3%	49,4%	50.5%	51.6%

FORECASTED CAPITAL FLOWS (IN THOUSANTS C						
		161 YEAR	2nd YEAR	Sird YEAR	4th YEAR	51h YEAR
A. INFLOUB						
1. Protti befare depreziation		166,DOD	171,291	176,733	192,331	136,090
2. Company Capital Contribution	300,000					
3. Long-term Investment Loans	240,000					
4. Buppliers Credits (iteed assets)						
5. Bisite Assistance	660,000					
6. Bales of freed						
T. Diher Baurees	1 200 000	186 010	11/101	170 700	400 100	140-000
	1.200,000	10.000	1,1,281	110.142	102,001	100,080
B. DUTFLOUB						
1. Investment expenses	1.200,000					
2. Betore Operation Expenses						
3. Interest Rates of Construction Period						
4. Annual Investments						
5. Ochi instalmenta of New Investment Loans		11,122	11,673	12,262	12,970	13,019
5. Buppilers credit service						
T. Intollic Tay		42,400	44,016	46,693	48,933	01,236
6. Blieres		60,63D	03,420	56,032	06,719	61,483
9. Diher Dufflows						
TOTAL B	1.200,000	104.402	109,614	114.B8B	120,527	121,238
UDRKING CAPITAL						
VARIDUS (A-B)		61,696	61,677	6 1,746	61,304	61,352

After the economical basic analysis, we have for the more various type of renewable energy plant, the following basic results, for the Internal Rate of Return (I.R.R.) and the Net Present Value (N.P.V.):

TYPE OF	IRR	NPV (TH.
ENERGY		€)
PLANT		
WIND ENERGY	7,7%	-112
SOLAR	5,7%	-1302
ENERGY		
SOLAR	-5,8%	-4493
ENERGY (when		
sales value was same		
with the wind or		
hydro energy)		
HYDRO	11,9%	+108
ENERGY		

In the following table we can see the contribution of public funding energy projects in either saving energy or producing electricity from RES sectors, to investment efficiency, will be examined, in Greece.

Reactioninkg/ €ost a investment inarcing						
	ന്മ	SO2	<u>00</u>	NOx	HC	partides
Energysaving	11,900	0,217	Q00B	0,017	0,001	0,011
226	22,066	0,465	Q008	0,014	0,001	0,001
Hydroenergy	3,060	0,056	0,001	0,004	0,000	0,003
Windenergy	2,805	0,051	0,001	0,004	0,000	0,003

Table : Environmental efficiency of energyinvestments in Greece [5]

4. CONCLUSIONS

PV's project has a negative NPV (= -1302 th. E), but from a business perspective, the firm should also know what rate of return will be generated by this investment. The project's IRR could, depending on the timing and proportions of cash flow distributions, be equal to 5,7%.

WECS' s project has a negative NPV (= -112 th. E) and the project's IRR could, depending on the

timing and proportions of cash flow distributions, be equal to 7,7%.

At the end, Hydro's project has a positive NPV (= 108 th. E) and the project's IRR could, depending on the timing and proportions of cash flow distributions, be equal to 11,9%.

In general, we can see that this energy projects for which the initial capital costs are very large, and annual costs are low, will be less attractive financially than one with a more even cash flow profile.

Via these results, from the same nominal power of different type energy plant of RES, which was investigated in this study, we can take the following classification, via the comparison of I.R.R. and N.P.V. for all the above cases:

- a) Hydro energy
- b) Wind energy
- c) Solar energy

References

 3^{rd} and 5^{TH} National Report -1. REGARDING THE PENETRATION LEVEL OF RENEWABLE ENERGY SOURCES UP TO THE YEAR 2010 (ARTICLE 3 OF DIRECTIVE 2001/77/EC), HELLENIC REPUBLIC **MINISTRY** OF DEVELOPMENT DIRECTORATE GENERAL FOR ENERGY RENEWABLE ENERGY SOURCES AND **—ENERGY SAVING DIRECTORATE, 2005 AND** -2007.

2. Key World Energy Statistics, 2004, IEA.

3. Molly k.Macauley, Jhih-Shyang Shih, Emily Aronow.David Austin.Tom Bath and Joel Darmstadter :"Measuring the Contribution to the Economy of Investments in Renewable Energy:Estimates of Future Consumer future", Gains, Resources for the 2002, http://www.rff.org.

4. J. I. Vargas, "The Technological Prospective: Prediction with a simple mathematical modeling", Economy and Energy Periodical, <u>http://ecen.com,No</u> 45,August-September

5. Dr. Evangelos C. Tsimplostephanakis, Professor Athanassios N. Safacas, Mechanical Engineering George Kavvadias: "Comparison of economy efficiency for renewable energy sources in Greece' INTERREG Italy 2008.