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Abstract: - The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial 
optimization for which extensive investigation has been devoted to the development of efficient algorithms. 
During the last couple of years many heuristic procedures have been developed for this problem, but still these 
procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource 
constrained project scheduling problem. The chromosome representation of the problem is based on random 
keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the 
activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from 
the literature and compared with other approaches. The computational results validate the effectiveness of the 
proposed algorithm. 
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1   Introduction 
As the complexity of projects increases, the 
requirement of an organized planning and scheduling 
process is enhanced. 

The need for organized planning and scheduling 
of a construction project is influenced by a variety of 
factors (e.g., project size and number of project 
activities). 

 To plan and schedule a construction project, 
activities must be defined sufficiently so that 
adequate communication is provided to all those who 
will use the information. The level of detail 
determines the number of activities contained within 
the project plan and schedule. As the number of 
project activities increases and thus the complexity of 
their sequential ordering, the need for organized 
planning and scheduling increases. This need further 
increases when a large number of project activities 
are considered relative to the uniqueness of each 
construction project in terms of the dynamic plant 
and nonstandardized nature of the work [25]. 

The analysis of resources, particularly time, 
materials, labor and equipment is the key to good 
project management. 

Project scheduling allows determine the project 
duration and involves the allocation of the limited 
resources to projects to determine the start and 
completion times of the detailed activities. 

The use of microcomputers and project 
scheduling computer software is commonplace in the 
construction industry. This is principally true for 
scheduling project activities and managing resources.  

During the last couple of years many heuristic 
procedures have been developed for this problem 
(called RCPSP), but still these procedures often fail 
in finding near-optimal solutions. 

The RCPSP problem belongs to the class of NP-
hard optimization problems, therefore justifying the 
indispensable use of heuristic solution procedures 
when solving large problem instances.  

Recent classification and survey can be found in 
Brucker et al. [22] and Kolisch and Hartmann [16]. 
The survey provided by Kolisch and Hartmann [16] 
presents more than eighty models and algorithms for 
complex scheduling problems and discusses the 
RCPSP.  

More recent work is due to Debels et al. [3], 
Debels and Vanhoucke [4], Mendes et al. [6], Fleszar 
and Hindi [8], Palpant et al. [9], Yeh and Pan [19], 
Kochetov and Stolyar [11], Valls et al. [12], Valls et 
al. [13], Ranjbar [14], Mendes and Gonçalves [15], 
Seda [17], Kljajc et al. [18] and Pan and Yeh [28].  

 
 

2   Problem Definition 
The resource constrained project scheduling problem 
(RCPSP) can be stated as follows. A project consists 
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of n+2 activities where each activity has to be 
processed in order to complete the project. Let  J  = 
{0, 1, …, n, n+1} denote the set of activities to be 
scheduled and K = {1, ..., k} the set of resources. The 
activities 0 and n+1 are dummy, have no duration 
and represent the initial and final activities. The 
activities are interrelated by two kinds of constraints:  

1. The precedence constraints, which force 
each activity j to be scheduled after all 
predecessor activities, Pj, are completed.  

2. Performing the activities requires resources 
with limited capacities.  

 
While being processed, activity j requires rj,k units 

of resource type k Є K during every time instant of its 
non-preemptable duration dj. Resource type k has a 
limited capacity of Rk at any point in time. The 
parameters dj, rj,k and Rk are assumed to be non-
negative and deterministic. For the project start and 
end activities we have d0= dn+1=0 and r0,k = rn+1,k =0 
for all k Є K.  

The problem consists in finding a schedule of the 
activities, taking into account the resources and the 
precedence constraints, that minimizes the makespan 
(Cmax). 

Let Fj represent the finish time of activity j. A 
schedule can be represented by a vector of finish 
times (F1,…, Fm,..., Fn+1). The makespan of the 
solution is given by the maximum of all predecessors 
activities of activity n+1, i.e. { }lPln FMaxF

n 11 +∈+ = . 
The conceptual model of the RCPSP was 

described by Christofides et al. [23] in the following 
way:  

 
1 (1)+Min nF  

 
subject to: 
 

1,..., 1 ; (2)≤ − = + ∈l j j jF F d j N l P

 

( )
, ; 0 (3)

∈

≤ ∈ ≥∑ j k k
j A t

r R k K t

 
0 1,..., 1 (4)≥ = +jF j N

 
The objective function (1) minimizes the finish 

time of activity n+1, and therefore minimizes the 
makespan. Constraints (2) impose the precedence 
relations between activities and constraints (3) limit 
the resource demand imposed by the activities being 
processed at time t to the capacity available. Finally 
(4) forces the finish times to be non-negative.  

Fig. 1 shows an example (AON – activity-on-
node) of a project with n = 6 activities, subject to two 

renewable resources types with a capacity of four and 
two units, respectively. A feasible schedule with a 
makespan of 14 time-periods is represented in Fig. 7. 
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Fig.1 – AON diagram – example project. 
 
 
3   Types of schedules 
Classifying schedules is the basic work to be done 
before attacking scheduling problems [21].  

Schedules can be classified into one of the 
following three types of schedules: 
i) Feasible schedules. A schedule is said to be 

feasible if it is non-preemptive and if the 
precedence and resource constraints are satisfied. 

ii) Semi-active schedules. These are feasible 
schedules obtained by sequencing activities as 
early as possible. In a semi-active schedule the 
start time of a particular activity is constrained by 
the processing of a different activity on the same 
resource or by the processing of the directly 
preceding activity on a different resource. 

iii) Active schedules. These are feasible schedules in 
which no activity could be started earlier without 
delaying some other activity or breaking a 
precedence constraint. Active schedules are also 
semi-active schedules. An optimal schedule is 
always active. 

iv) Non-delay schedules. These are feasible schedules 
in which no resource is kept idle at a time when it 
could begin processing some activity. Non-delay 
schedules are active and hence are also semi-
active. 

 
The set of active schedules is usually very large 

and contains many schedules with poor quality. To 
reduce the solution space we use the concept of 
parameterized active schedules. 

The concept of parameterized active schedules is 
proposed in Gonçalves and Beirão [27], Mendes [20], 
Gonçalves et al. [5] and Mendes et al. [6]. This type 
of schedule consists of schedules in which no 
resource is kept idle for more than a predefined 
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period if it could start processing some activity. If the 
predefined period is set to zero, then we obtain a non-
delay schedule.  

 
 
4   Application of genetic algorithm 
The approach presented in this paper is based on a 
genetic algorithm to perform its optimization process. 

Genetic algorithms (GAs) are search algorithms 
based on the mechanics of natural selection and 
natural genetics. They combine survival of the fittest 
among string structures with a structured yet 
randomized information exchange to form a search 
algorithm with some of the innovative flair of human 
search [1].  

One fundamental advantaged of GAs from 
traditional methods is described by Goldberg [1]: in 
many optimization methods, we move gingerly from 
a single solution in the decision space to the next 
using some transition rule to determine the next 
solution. This solution-to-solution method is 
dangerous because it is a perfect prescription for 
locating false peaks in multimodal search spaces. By 
contrast, GAs work from a rich database of solutions 
simultaneously (a population of chromosomes), 
climbing many peaks in parallel; thus the probability 
of finding a false peak is reduced over methods that 
go solution to solution.  

The general schema of GAs may be illustrated as 
follows (Fig. 2).  
   
procedure GENETIC-ALGORITHM 
 
Generate initial population P0; 
  Evaluate population P0; 
  Initialize generation counter g 0; 
 
  While stopping criteria not satisfied repeat 
       Select some elements from Pg to copy into Pg+1; 
      Crossover some elements of Pg and put into Pg+1; 
      Mutate some elements of Pg and put into Pg+1; 
      Evaluate some elements of Pg and put into Pg+1; 
      Increment generation counter: g  g+1; 
   End while 
 
End GENETIC-ALGORITHM; 

 
Fig. 2 - Pseudo-code of a genetic algorithm. 

 
 
 
 
 
 
 

First of all, an initial population of potential 
solutions (individuals) is generated randomly. A 
selection procedure based on a fitness function 
enables to choose the individuals candidate for 
reproduction. The reproduction consists in 
recombining two individuals by the crossover 
operator, possibly followed by a mutation of the 
offspring. Therefore, from the initial population a 
new generation is obtained. From this new 
generation, a second new generation is produced by 
the same process and so on. The stop criterion is 
normally based on the number of generations. 

 
 

4.1 Decoding 
The genetic algorithm uses a random key alphabet 
which is comprised of real random numbers between 
0 and 1.  

A chromosome represents a solution to the 
problem and is encoded as a vector of random keys 
(random numbers). Each solution chromosome is 
made of 2n genes where n is the number of activities: 
 

Chromosome = (genel , .., genen ,  gene n+1 , ... , gene 2n ) 
 

4.1.1   Decoding the priorities of activities  
The priority decoding expression used the following 
expression  

1
1,...,

2
+⎡ ⎤

= × =⎢ ⎥
⎣ ⎦

j j
j

LLP gene
PRIORITY j n

LCP
 

 
where LLPj is the longest length path from the 
beginning of the activity j to the end of the project 
and LCP is the length along the critical path of the 
project. 

An example is presented in Tables 1, 2 and 3. 
Table 1 shows how to obtain the LCP for the 

example project presented in Fig. 1 (LCP = 11).  
 
 

          Path     Time duration 
      0-1-3-5-7     3+6+1 = 10 
      0-2-3-5-7       4+6+1 = 11 
      0-2-4-5-7       4+2+1 =  7 
      0-2-4-6-7       4+2+4 = 10 

Table 1: Time duration of the critical 
path (LCP ) without limited capacities. 

Table 2 shows how to obtain the LLPj values for 
each activity j.   
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jActivity  

jLLP  
jPRIORITY  

1 10 110
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene
 

2 }{11, 10 11=Max  111
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene  

3 7 17
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene  

4 }{3, 6 6=Max 16
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene  

5 1 11
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene  

6 4 14
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene  

Table 2: Values of the LLPj for each 
activity j. 

For the following chromosome:  
 
Chromosome = (0.12 ,0.54, 0.76, 0.23, 0.54, 0.44,  

0.12, 0.87, 0.34, 0.27, 0.92, 0.55) 
 

we obtain the  jPRIORITY values presented in Table 3. 
 

jActivity  
jgene  

jPRIORITY  

1 0.12 0.51 

2 0.54 0.77 

3 0.76 0.56 

4 0.23
 

0.34 

5 0.54 0.07 

6 0.44 0.26 

Table 3: Values of the jPRIORITY  
for each activity j. 

 
4.1.2   Decoding the delay times  
The genes between n+1 and 2n are used to determine 
the delay times used when scheduling an activity. The 
delay time used by each scheduling iteration g, 
Delayg, is given by the following expression: 

 
  Delayg = genen+g  × 1.5 × MaxDur 

 
where MaxDur is the maximum duration of all 
activities. The factor 1.5 was obtained after some 
experimental tuning. 
 
 
 
 
 

4.2 Evolutionary strategy 
To breed good solutions, the random key vector 
population is operated upon by a genetic algorithm. 

There are many variations of genetic algorithms 
obtained by altering the reproduction, crossover, and 
mutation operators.  

Reproduction is a process in which individual 
(chromosome) is copied according to their fitness 
values (makespan).  

Reproduction is accomplished by first copying 
some of the best individuals from one generation to 
the next, in what is called an elitist strategy.  

In this paper the fitness proportionate selection, 
also known as roulette-wheel selection, is the genetic 
operator for selecting potentially useful solutions for 
reproduction. The characteristic of the roulette wheel 
selection is stochastic sampling. 

The fitness value is used to associate a 
probability of selection with each individual 
chromosome. If fi is the fitness of individual i in the 
population, its probability of being selected is,       

 

1

, 1,..., (5)

=

= =

∑
i

i N

i
i

fp i n
f

 

 
An example is presented in Table 4. 
A roulette wheel model is established to represent 

the survival probabilities for all the individuals in the 
population. Then the roulette wheel is rotated for 
several times [1], see Fig. 3. 

After selection the mating population consists of 
the chromosomes (individuals): 1, 2, 3, 4, 5 and 6.  

 
 

Number of 
chromosome 

Fitness 
value  

Selection 
probability

1 14 0.20 
2 12 0.17 
3 10 0.14 
4 9 0.13 
5 8 0.11 
6 7 0.10 
7 4 0.06 
8 3 0.04 
9 2 0.03 

10 1 0.01 

Table 4: Selection probability and 
fitness value. 
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Fig. 3 - Roulette-wheel selection. 
 
 
After selecting, crossover may proceed in two 

steps. First, members of the newly selected 
(reproduced) chromosomes in the mating pool are 
mated at random. Second, each pair of chromosomes 
undergoes crossover as follows: an integer position k 
along the chromosome is selected uniformly at 
random between 1 and the chromosome length l. Two 
new chromosomes are created swapping all the genes 
between k+1 and l [1], see Fig. 4. 

 
 

Chromosome 1 0.32 0.22 0.34 0.89 0.23 0.76 0.78 0.45
Chromosome 2 0.12 0.65 0.38 0.47 0.31 0.56 0.88 0.95

Offspring 1 0.32 0.22 0.34 0.47 0.31 0.56 0.88 0.95
Offspring 2 0.12 0.65 0.38 0.89 0.23 0.76 0.78 0.45

Random position k = 3 Chromosome length l = 8

swapping all the 
genes between 4
and 8

 
Fig.4 – Crossover operator example. 

 
 
The mutation operator preserves diversification 

in the search.  This operator is applied to each 
offspring in the population with a predetermined 
probability. We assume that the probability of the 
mutation in this paper is 0.001. With 60 genes 
positions we should expect 60 x 0.001 = 0.06 genes 
to undergo mutation for this probability value. 

 
   

5   Schedule Generation Schemes 
Schedule generation schemes (SGS) are the core of 
most heuristic solution procedures for the RCPSP. 

SGS start from scratch and build a feasible schedule 
by stepwise extension of a partial schedule. A partial 
schedule is a schedule where only a subset of the n+2 
activities have been scheduled. There are two 
different classics methods SGS available. They can 
be distinguished into activity and time 
incrementation. The so called serial SGS performs 
activity-incrementation and the so called parallel SGS 
performs time-incrementation [26]. 

The constructive heuristic used to construct 
active schedules is based on a scheduling generation 
scheme that does time incrementing, called parallel 
modified.  

This heuristic makes use of the priorities and the 
delay times defined by the genetic algorithm and 
constructs parameterized active schedules. The 
concept of parameterized active schedules is 
proposed in Gonçalves and Beirão [27], Mendes [20], 
Gonçalves et al. [5] and Mendes et al. [6].  

Figure 5 illustrates where the set of 
parameterized active schedules is located relative to 
the class of semi-active, active, and non-delay 
schedules. 
 

 
 

Fig. 5 – Parameterized active schedules. 
 
The heuristic used to construct parameterized 

active schedules is based on a scheduling generation 
scheme that does time incrementing. For each 
iteration g, there is a scheduling time tg. The active 
set comprises all activities which are active at tg, i.e.  

 
{ }|g j j g jA j J F d t F= ∈ − ≤ <

. 
 
The remaining resource capacity of resource k at 

instant time tg is given by 
 

Parameterized Actives

Non-Delay

Active

Semi-active
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( ) ( ) ,
g

j k
j A

r
∈

= − ∑k g k gRD t R t
. 

 
Sg comprises all activities which have been 

scheduled up to iteration g, and Fg comprises the 
finish times of the activities in Sg. Let Delayg  be the 
delay time associated with iteration g, and let Eg 
comprise all activities which are precedence feasible 
in the interval [tg , tg  + Delayg  ],  i.e. 

 
 

{ }1\ | ( )g g i g g jE j J S F t Delay i P−= ∈ ≤ + ∈
. 

 
The algorithmic description of the scheduling 

generation scheme used to create parameterized 
active schedules is given by the pseudo-code shown 
in Figure 6. 

 
Initialization: { } { } { } ( )1 0 01, 0, 0 , 0 , 0 , 0 ( )= = = Γ = = = ∈o k kg t A S RD R k K  
 
while 2< +gS n   repeat 

{ 
Update gE  
 
 while Eg ≠ {} repeat 
{ 
             Select activity with highest priority 
 

 

 
Calculate earliest finish time (in terms of precedence only) 

{ }* *max
ji P ij j

EF F d∈= +  

 
Calculate the earliest finish time (in terms of precedence and capacity) 

{

}

* * * *

* * *

,

,

min , | ( ) ,

| 0 , ,

τ

τ

⎡ ⎤= ∈ − ∞ ∩ Γ ≤⎣ ⎦
⎡ ⎤∈ > ∈ + +⎣ ⎦

g kj j j j k

j k j j

F t FMC d r RD

k K r t t d d
 

 
Update { }*

1g gS S j−= ∪   ,  { }*Γ = Γ ∪g g-1 j
F   

 
Iteration increment: g = g+1 

 
Update * * * *,

, , ( ) | , , | 0g g k j j j j k
A E RD t t F d F k K r⎡ ⎤∈ − ∈ >⎣ ⎦  

} 
Determine the time associated with activity g  
 

{ }1 1min |− −= ∈Γ >g g gt t t t  
 

        } 

{ }* argmax
g

j
j E

j PRIORITY
∈

=

 
Fig. 6 - Pseudo-code to construct parameterized active 

schedules, Mendes et al. [6] 
 

The basic idea of parameterized active schedules 
is incorporated in the selection step of the procedure,  

 

{ }* argmax
g

j
j E

j PRIORITY
∈

= . 

 
The set Eg is responsible for forcing the selection 

to be made only amongst activities which will have a 
delay smaller or equal to the maximum allowed 
delay. 

The parameters PRIORITYj and Delayg  (priority 
of activity j and delays used at each g) are supplied 
by the genetic algorithm. 
 
 
6   Local Search 
Local search algorithms move from solution to 
solution in the space of candidate solutions (the 
search space) until a solution optimal or a stopping 
criterion is found. In this paper was applying 
backward and forward improvement based on Klein 
[10]. 

Initially is constructed a schedule by planning in 
a forward direction starting from the project’s 
beginning, see Fig. 7. After is applying backward and 
forward improvement based on Klein [10]. 

The backward planning consists in reversing the 
project network and applying the scheduling 
generator scheme.  

 

R1=4

4 1 4 5

3

2 2 3 6

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resource –1

4

3 R2=2

2 1 4

1 2 3 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resource -2

 
Fig.7 – Feasible schedule with a makespan of 14. 
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Fig. 8 presents the solution obtained by backward 
planning. Having scheduled the dummy end activity 
7, activities 5 and 6 which are backward eligible at t = 
14 can be executed in parallel. Due to the precedence 
constraint, activities 3 and 4 are scheduled that they 
finishes at t = 13 and t = 10, respectively. Finally 
activities 1 and 2 are scheduled. By reducing all the 
scheduled starting and finisinh times by 3, a schedule 
with a makespan of 11 is obtained, i.e., the initial 
schedule (Fig. 7) is improved. 

R1=4

4 1 3 5

3

2 2 4 6

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resource-1

4

3 R2=2

2 1 3

1 2 4 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resource -2

 
Fig.8 – Improved schedule with a makespan of 11. 

 
Fig. 9 presents the solution obtained by forward 

planning. Having scheduled the dummy initial 
activity 0, activities 1 and 2 which are eligible at t = 0 
can be executed in parallel. Due to the precedence 
constraint, activities 3 and 4 are scheduled that they 
finishes at t = 10 and t = 6, respectively. Finally 
activities 5 and 6 are scheduled. A schedule with a 
makespan of 11 is obtained without improving the 
schedule in Fig. 7. 
 
 
7   Computational results 
This section presents results of the computational 
experiments done with the algorithm proposed in this 

paper. The experiments were performed on an Intel 
Core 2 Duo CPU T7250 @2.00 GHz. The algorithm 
was coded in Visual Basic 6.0. The GA-RKV 
(Genetic Algorithm - Random Key Variant) was 
tested on the instance sets: 

• J30 (480 instances each with 30 activities)  
• J60 (480 instances each with 60 activities)  
• J120 (600 instances each with 120 activities)  

 
available in PSPLIB. All problem instances require 
four resource types.  

Instances details are described in Kolisch et al. 
[24]. 

R1=4

4 1 3

3

2 2 4 6 5

1

1 2 3 4 5 6 7 8 9 10 11 12

Resource -1

4

3 R2=2

2 1 3

1 2 4 6

1 2 3 4 5 6 7 8 9 10 11 12

Resource -2

 
Fig.9 – Final schedule with a makespan of 11. 

 
 
7.1 Genetic algorithm configuration 
Though there is no straightforward way to configure 
the parameters of a genetic algorithm, we obtained 
good results with values: population size of 5 × 
number of activities in the problem; mutation 
probability of 0.001; top (best) 1% from the 
previous population chromosomes are copied to the 
next generation; stopping criterion of 250 
generations. 
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7.2 Experimental results 
The results obtained are given in Tables 5, 6 and 7. 

Table 5, column 3, summarizes the average 
deviation percentage from the optimal makespan 
(DOPT), for the instance set J30. The GA-RKV 
obtained DOPT = 0.01. The number of instances for 
which the algorithm obtains the optimal solution is 
476. For the set J30, GA-RKV ranks five. 
 
 

Algorithm Reference J30 
DOPT

MAPS  Mendes and 
Gonçalves [15] 

0.00

GA-TS path 
relinking 

Kochetov and 
Stolyar [11] 

0.00

Decomp. & local 
opt. 

Palpant et al. [9] 0.00

F&F(5) 
GA - RKV 
GAPS 

Ranjbar [14] 
This paper 

Mendes et al. [6] 

0.00 
0.01
0.01

Scatter Search - FBI Debels et al. [3] 0.01
VNS-activity list Fleszar  

and Hindi [8] 
0.01

GA - DBH Debels and 
Vanhoucke [4] 

0.02

GA – hybrid, FBI Valls et al. [12] 0.02
GA - FBI Valls et al. [13] 0.02

Table 5: Top-ten computational 
results for J30 instances. 

 
 

Algorithm Reference J60 
DLB 

F&F(5) 
MAPS  

Ranjbar [14] 
Mendes and 

Gonçalves [15] 

10.56
10.64

GAPS Mendes et al. [6] 10.67
GA - DBH Debels and 

Vanhoucke [4] 
10.68

Scatter Search - FBI Debels et al. [3] 10.71
GA – hybrid, FBI Valls et al. [12] 10.73
GA, TS – path 
relinking 

Kochetov  
and Stolyar [11] 

10.74

GA - FBI 
Decomp. & local opt. 
GA - RKV 

Valls et al. [13] 
Palpant et al. [9] 

This paper 

10.74
10.81
10.88

VNS-activity list Fleszar  
and Hindi [8] 

10.94

Table 6: Top-ten computational 
results for J60 instances. 

Tables 6 and 7, columns 3, summarize the 
average deviation percentage from the well-known 
critical path-based lower bound (DLB) for the instance 
set J60 and J120, respectively. For the instances set 
J60 and J120, GA-RKV ranks ten. The lower bound 
values (DLB) are reported by Stinson et al. [7].  
 
 

Algorithm Reference J120
DLB 

GA-DBH Debels and 
Vanhoucke [4] 

30.82

MAPS  Mendes and 
Gonçalves [15] 

31.19

GAPS Mendes et al.[6] 31.20
GA – hybrid, FBI Valls et al. [12] 31.24
F&F(5)  Ranjbar [14]  31.42
Scatter Search - FBI Debels et al. [3] 31.57
GA - FBI Valls et al. [13] 31.58
GA, TS – path 
relinking 

Kochetov and 
Stolyar [11] 

32.06

Decomp. & local opt. Palpant et al. [9] 32.41
GA - RKV  This paper  32.50
GA - Self adapting Hartmann [16 ] 33.21

Table 6: Top-ten computational 
results for J120 instances. 

 
The maximum computational time dispended is 

120 seconds for each instance of J60 and 300 seconds 
for each instance of J120. 
 
 
 
8   Conclusions and further research 
This paper presents a new genetic algorithm (a 
variant of the genetic algorithm proposed by 
Goldberg [1] with binary code) for the resource 
constrained project scheduling problem. The 
chromosome representation of the problem is 
based on random keys. Reproduction, crossover 
and mutation are applied to successive 
chromosome populations to create new 
chromosome populations. These operators are 
simplicity itself, involving random number 
generation, chromosome copying and partial 
chromosome exchanging. 

The schedules are constructed using a 
priority rule in which the priorities are defined by 
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the genetic algorithm with a constructive 
heuristic.  

The constructive heuristic for constructing 
feasible schedules is extended by the flexible use 
of different planning directions including the 
backward and forward planning (LS). For some 
instance, a combination of a heuristic 
constructive and the genetic algorithm may yield 
a good result, but in another instance the LS can 
improve the initial schedule.   

The approach was tested on a set of 1560 
standard instances taken from the literature and 
compared with the best state-of-the-art 
approaches. The algorithm produced good results 
when compared with other approaches therefore 
validating the effectiveness of the proposed 
algorithm. 

Further work could be conducted to explore 
the possibility of using activities with multi-
mode usage of limited resources. 
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