
Project scheduling under multiple resources constraints using
a genetic algorithm

J. MAGALHÃES-MENDES
Department of Civil Engineering

School of Engineering – Polytechnic of Porto
Rua Dr. António Bernardino de Almeida, 431 – 4200-072 Porto

PORTUGAL
jjm@isep.ipp.pt

Abstract: - The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial
optimization for which extensive investigation has been devoted to the development of efficient algorithms.
During the last couple of years many heuristic procedures have been developed for this problem, but still these
procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource
constrained project scheduling problem. The chromosome representation of the problem is based on random
keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the
activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from
the literature and compared with other approaches. The computational results validate the effectiveness of the
proposed algorithm.

Key-Words: - Construction management, Project management, Scheduling, Genetic algorithm, RCPSP.

1 Introduction
As the complexity of projects increases, the
requirement of an organized planning and scheduling
process is enhanced.

The need for organized planning and scheduling
of a construction project is influenced by a variety of
factors (e.g., project size and number of project
activities).

 To plan and schedule a construction project,
activities must be defined sufficiently so that
adequate communication is provided to all those who
will use the information. The level of detail
determines the number of activities contained within
the project plan and schedule. As the number of
project activities increases and thus the complexity of
their sequential ordering, the need for organized
planning and scheduling increases. This need further
increases when a large number of project activities
are considered relative to the uniqueness of each
construction project in terms of the dynamic plant
and nonstandardized nature of the work [25].

The analysis of resources, particularly time,
materials, labor and equipment is the key to good
project management.

Project scheduling allows determine the project
duration and involves the allocation of the limited
resources to projects to determine the start and
completion times of the detailed activities.

The use of microcomputers and project
scheduling computer software is commonplace in the
construction industry. This is principally true for
scheduling project activities and managing resources.

During the last couple of years many heuristic
procedures have been developed for this problem
(called RCPSP), but still these procedures often fail
in finding near-optimal solutions.

The RCPSP problem belongs to the class of NP-
hard optimization problems, therefore justifying the
indispensable use of heuristic solution procedures
when solving large problem instances.

Recent classification and survey can be found in
Brucker et al. [22] and Kolisch and Hartmann [16].
The survey provided by Kolisch and Hartmann [16]
presents more than eighty models and algorithms for
complex scheduling problems and discusses the
RCPSP.

More recent work is due to Debels et al. [3],
Debels and Vanhoucke [4], Mendes et al. [6], Fleszar
and Hindi [8], Palpant et al. [9], Yeh and Pan [19],
Kochetov and Stolyar [11], Valls et al. [12], Valls et
al. [13], Ranjbar [14], Mendes and Gonçalves [15],
Seda [17], Kljajc et al. [18] and Pan and Yeh [28].

2 Problem Definition
The resource constrained project scheduling problem
(RCPSP) can be stated as follows. A project consists

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 487 Issue 11, Volume 5, November 2008

of n+2 activities where each activity has to be
processed in order to complete the project. Let J =
{0, 1, …, n, n+1} denote the set of activities to be
scheduled and K = {1, ..., k} the set of resources. The
activities 0 and n+1 are dummy, have no duration
and represent the initial and final activities. The
activities are interrelated by two kinds of constraints:

1. The precedence constraints, which force
each activity j to be scheduled after all
predecessor activities, Pj, are completed.

2. Performing the activities requires resources
with limited capacities.

While being processed, activity j requires rj,k units

of resource type k Є K during every time instant of its
non-preemptable duration dj. Resource type k has a
limited capacity of Rk at any point in time. The
parameters dj, rj,k and Rk are assumed to be non-
negative and deterministic. For the project start and
end activities we have d0= dn+1=0 and r0,k = rn+1,k =0
for all k Є K.

The problem consists in finding a schedule of the
activities, taking into account the resources and the
precedence constraints, that minimizes the makespan
(Cmax).

Let Fj represent the finish time of activity j. A
schedule can be represented by a vector of finish
times (F1,…, Fm,..., Fn+1). The makespan of the
solution is given by the maximum of all predecessors
activities of activity n+1, i.e. { }lPln FMaxF

n 11 +∈+ = .
The conceptual model of the RCPSP was

described by Christofides et al. [23] in the following
way:

1 (1)+Min nF

subject to:

1,..., 1 ; (2)≤ − = + ∈l j j jF F d j N l P

()
, ; 0 (3)

∈

≤ ∈ ≥∑ j k k
j A t

r R k K t

0 1,..., 1 (4)≥ = +jF j N

The objective function (1) minimizes the finish

time of activity n+1, and therefore minimizes the
makespan. Constraints (2) impose the precedence
relations between activities and constraints (3) limit
the resource demand imposed by the activities being
processed at time t to the capacity available. Finally
(4) forces the finish times to be non-negative.

Fig. 1 shows an example (AON – activity-on-
node) of a project with n = 6 activities, subject to two

renewable resources types with a capacity of four and
two units, respectively. A feasible schedule with a
makespan of 14 time-periods is represented in Fig. 7.

1
3/2/1

3
6/2/1

5
1/2/0

0
0/0/0

2
4/2/1

4
2/2/1

6
4/2/1

7
0/0/0

j
dj / rj,1/ rj,2

Fig.1 – AON diagram – example project.

3 Types of schedules
Classifying schedules is the basic work to be done
before attacking scheduling problems [21].

Schedules can be classified into one of the
following three types of schedules:
i) Feasible schedules. A schedule is said to be

feasible if it is non-preemptive and if the
precedence and resource constraints are satisfied.

ii) Semi-active schedules. These are feasible
schedules obtained by sequencing activities as
early as possible. In a semi-active schedule the
start time of a particular activity is constrained by
the processing of a different activity on the same
resource or by the processing of the directly
preceding activity on a different resource.

iii) Active schedules. These are feasible schedules in
which no activity could be started earlier without
delaying some other activity or breaking a
precedence constraint. Active schedules are also
semi-active schedules. An optimal schedule is
always active.

iv) Non-delay schedules. These are feasible schedules
in which no resource is kept idle at a time when it
could begin processing some activity. Non-delay
schedules are active and hence are also semi-
active.

The set of active schedules is usually very large

and contains many schedules with poor quality. To
reduce the solution space we use the concept of
parameterized active schedules.

The concept of parameterized active schedules is
proposed in Gonçalves and Beirão [27], Mendes [20],
Gonçalves et al. [5] and Mendes et al. [6]. This type
of schedule consists of schedules in which no
resource is kept idle for more than a predefined

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 488 Issue 11, Volume 5, November 2008

period if it could start processing some activity. If the
predefined period is set to zero, then we obtain a non-
delay schedule.

4 Application of genetic algorithm
The approach presented in this paper is based on a
genetic algorithm to perform its optimization process.

Genetic algorithms (GAs) are search algorithms
based on the mechanics of natural selection and
natural genetics. They combine survival of the fittest
among string structures with a structured yet
randomized information exchange to form a search
algorithm with some of the innovative flair of human
search [1].

One fundamental advantaged of GAs from
traditional methods is described by Goldberg [1]: in
many optimization methods, we move gingerly from
a single solution in the decision space to the next
using some transition rule to determine the next
solution. This solution-to-solution method is
dangerous because it is a perfect prescription for
locating false peaks in multimodal search spaces. By
contrast, GAs work from a rich database of solutions
simultaneously (a population of chromosomes),
climbing many peaks in parallel; thus the probability
of finding a false peak is reduced over methods that
go solution to solution.

The general schema of GAs may be illustrated as
follows (Fig. 2).

procedure GENETIC-ALGORITHM

Generate initial population P0;
 Evaluate population P0;
 Initialize generation counter g 0;

 While stopping criteria not satisfied repeat
 Select some elements from Pg to copy into Pg+1;
 Crossover some elements of Pg and put into Pg+1;
 Mutate some elements of Pg and put into Pg+1;
 Evaluate some elements of Pg and put into Pg+1;
 Increment generation counter: g g+1;
 End while

End GENETIC-ALGORITHM;

Fig. 2 - Pseudo-code of a genetic algorithm.

First of all, an initial population of potential
solutions (individuals) is generated randomly. A
selection procedure based on a fitness function
enables to choose the individuals candidate for
reproduction. The reproduction consists in
recombining two individuals by the crossover
operator, possibly followed by a mutation of the
offspring. Therefore, from the initial population a
new generation is obtained. From this new
generation, a second new generation is produced by
the same process and so on. The stop criterion is
normally based on the number of generations.

4.1 Decoding
The genetic algorithm uses a random key alphabet
which is comprised of real random numbers between
0 and 1.

A chromosome represents a solution to the
problem and is encoded as a vector of random keys
(random numbers). Each solution chromosome is
made of 2n genes where n is the number of activities:

Chromosome = (genel , .., genen , gene n+1 , ... , gene 2n)

4.1.1 Decoding the priorities of activities
The priority decoding expression used the following
expression

1
1,...,

2
+⎡ ⎤

= × =⎢ ⎥
⎣ ⎦

j j
j

LLP gene
PRIORITY j n

LCP

where LLPj is the longest length path from the
beginning of the activity j to the end of the project
and LCP is the length along the critical path of the
project.

An example is presented in Tables 1, 2 and 3.
Table 1 shows how to obtain the LCP for the

example project presented in Fig. 1 (LCP = 11).

 Path Time duration
 0-1-3-5-7 3+6+1 = 10
 0-2-3-5-7 4+6+1 = 11
 0-2-4-5-7 4+2+1 = 7
 0-2-4-6-7 4+2+4 = 10

Table 1: Time duration of the critical
path (LCP) without limited capacities.

Table 2 shows how to obtain the LLPj values for
each activity j.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 489 Issue 11, Volume 5, November 2008

jActivity

jLLP
jPRIORITY

1 10 110
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene

2 }{11, 10 11=Max 111
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene

3 7 17
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene

4 }{3, 6 6=Max 16
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene

5 1 11
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene

6 4 14
11 2

+⎡ ⎤
× ⎢ ⎥
⎣ ⎦

jgene

Table 2: Values of the LLPj for each
activity j.

For the following chromosome:

Chromosome = (0.12 ,0.54, 0.76, 0.23, 0.54, 0.44,

0.12, 0.87, 0.34, 0.27, 0.92, 0.55)

we obtain the jPRIORITY values presented in Table 3.

jActivity
jgene

jPRIORITY

1 0.12 0.51

2 0.54 0.77

3 0.76 0.56

4 0.23

0.34

5 0.54 0.07

6 0.44 0.26

Table 3: Values of the jPRIORITY
for each activity j.

4.1.2 Decoding the delay times
The genes between n+1 and 2n are used to determine
the delay times used when scheduling an activity. The
delay time used by each scheduling iteration g,
Delayg, is given by the following expression:

 Delayg = genen+g × 1.5 × MaxDur

where MaxDur is the maximum duration of all
activities. The factor 1.5 was obtained after some
experimental tuning.

4.2 Evolutionary strategy
To breed good solutions, the random key vector
population is operated upon by a genetic algorithm.

There are many variations of genetic algorithms
obtained by altering the reproduction, crossover, and
mutation operators.

Reproduction is a process in which individual
(chromosome) is copied according to their fitness
values (makespan).

Reproduction is accomplished by first copying
some of the best individuals from one generation to
the next, in what is called an elitist strategy.

In this paper the fitness proportionate selection,
also known as roulette-wheel selection, is the genetic
operator for selecting potentially useful solutions for
reproduction. The characteristic of the roulette wheel
selection is stochastic sampling.

The fitness value is used to associate a
probability of selection with each individual
chromosome. If fi is the fitness of individual i in the
population, its probability of being selected is,

1

, 1,..., (5)

=

= =

∑
i

i N

i
i

fp i n
f

An example is presented in Table 4.
A roulette wheel model is established to represent

the survival probabilities for all the individuals in the
population. Then the roulette wheel is rotated for
several times [1], see Fig. 3.

After selection the mating population consists of
the chromosomes (individuals): 1, 2, 3, 4, 5 and 6.

Number of
chromosome

Fitness
value

Selection
probability

1 14 0.20
2 12 0.17
3 10 0.14
4 9 0.13
5 8 0.11
6 7 0.10
7 4 0.06
8 3 0.04
9 2 0.03

10 1 0.01

Table 4: Selection probability and
fitness value.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 490 Issue 11, Volume 5, November 2008

20%

17%

14%13%

12%

10%

6%
4%3%1%

1

2

3

4

5

6

7

8

9

10

trial2

trial1
trial6

trial3

trial5

trial4

Fig. 3 - Roulette-wheel selection.

After selecting, crossover may proceed in two

steps. First, members of the newly selected
(reproduced) chromosomes in the mating pool are
mated at random. Second, each pair of chromosomes
undergoes crossover as follows: an integer position k
along the chromosome is selected uniformly at
random between 1 and the chromosome length l. Two
new chromosomes are created swapping all the genes
between k+1 and l [1], see Fig. 4.

Chromosome 1 0.32 0.22 0.34 0.89 0.23 0.76 0.78 0.45
Chromosome 2 0.12 0.65 0.38 0.47 0.31 0.56 0.88 0.95

Offspring 1 0.32 0.22 0.34 0.47 0.31 0.56 0.88 0.95
Offspring 2 0.12 0.65 0.38 0.89 0.23 0.76 0.78 0.45

Random position k = 3 Chromosome length l = 8

swapping all the
genes between 4
and 8

Fig.4 – Crossover operator example.

The mutation operator preserves diversification

in the search. This operator is applied to each
offspring in the population with a predetermined
probability. We assume that the probability of the
mutation in this paper is 0.001. With 60 genes
positions we should expect 60 x 0.001 = 0.06 genes
to undergo mutation for this probability value.

5 Schedule Generation Schemes
Schedule generation schemes (SGS) are the core of
most heuristic solution procedures for the RCPSP.

SGS start from scratch and build a feasible schedule
by stepwise extension of a partial schedule. A partial
schedule is a schedule where only a subset of the n+2
activities have been scheduled. There are two
different classics methods SGS available. They can
be distinguished into activity and time
incrementation. The so called serial SGS performs
activity-incrementation and the so called parallel SGS
performs time-incrementation [26].

The constructive heuristic used to construct
active schedules is based on a scheduling generation
scheme that does time incrementing, called parallel
modified.

This heuristic makes use of the priorities and the
delay times defined by the genetic algorithm and
constructs parameterized active schedules. The
concept of parameterized active schedules is
proposed in Gonçalves and Beirão [27], Mendes [20],
Gonçalves et al. [5] and Mendes et al. [6].

Figure 5 illustrates where the set of
parameterized active schedules is located relative to
the class of semi-active, active, and non-delay
schedules.

Fig. 5 – Parameterized active schedules.

The heuristic used to construct parameterized

active schedules is based on a scheduling generation
scheme that does time incrementing. For each
iteration g, there is a scheduling time tg. The active
set comprises all activities which are active at tg, i.e.

{ }|g j j g jA j J F d t F= ∈ − ≤ <

.

The remaining resource capacity of resource k at

instant time tg is given by

Parameterized Actives

Non-Delay

Active

Semi-active

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 491 Issue 11, Volume 5, November 2008

() () ,
g

j k
j A

r
∈

= − ∑k g k gRD t R t
.

Sg comprises all activities which have been

scheduled up to iteration g, and Fg comprises the
finish times of the activities in Sg. Let Delayg be the
delay time associated with iteration g, and let Eg
comprise all activities which are precedence feasible
in the interval [tg , tg + Delayg], i.e.

{ }1\ | ()g g i g g jE j J S F t Delay i P−= ∈ ≤ + ∈
.

The algorithmic description of the scheduling

generation scheme used to create parameterized
active schedules is given by the pseudo-code shown
in Figure 6.

Initialization: { } { } { } ()1 0 01, 0, 0 , 0 , 0 , 0 ()= = = Γ = = = ∈o k kg t A S RD R k K

while 2< +gS n repeat

{
Update gE

 while Eg ≠ {} repeat
{
 Select activity with highest priority

Calculate earliest finish time (in terms of precedence only)

{ }* *max
ji P ij j

EF F d∈= +

Calculate the earliest finish time (in terms of precedence and capacity)

{

}

* * * *

* * *

,

,

min , | () ,

| 0 , ,

τ

τ

⎡ ⎤= ∈ − ∞ ∩ Γ ≤⎣ ⎦
⎡ ⎤∈ > ∈ + +⎣ ⎦

g kj j j j k

j k j j

F t FMC d r RD

k K r t t d d

Update { }*

1g gS S j−= ∪ , { }*Γ = Γ ∪g g-1 j
F

Iteration increment: g = g+1

Update * * * *,

, , () | , , | 0g g k j j j j k
A E RD t t F d F k K r⎡ ⎤∈ − ∈ >⎣ ⎦

}
Determine the time associated with activity g

{ }1 1min |− −= ∈Γ >g g gt t t t

 }

{ }* argmax
g

j
j E

j PRIORITY
∈

=

Fig. 6 - Pseudo-code to construct parameterized active

schedules, Mendes et al. [6]

The basic idea of parameterized active schedules
is incorporated in the selection step of the procedure,

{ }* argmax
g

j
j E

j PRIORITY
∈

= .

The set Eg is responsible for forcing the selection

to be made only amongst activities which will have a
delay smaller or equal to the maximum allowed
delay.

The parameters PRIORITYj and Delayg (priority
of activity j and delays used at each g) are supplied
by the genetic algorithm.

6 Local Search
Local search algorithms move from solution to
solution in the space of candidate solutions (the
search space) until a solution optimal or a stopping
criterion is found. In this paper was applying
backward and forward improvement based on Klein
[10].

Initially is constructed a schedule by planning in
a forward direction starting from the project’s
beginning, see Fig. 7. After is applying backward and
forward improvement based on Klein [10].

The backward planning consists in reversing the
project network and applying the scheduling
generator scheme.

R1=4

4 1 4 5

3

2 2 3 6

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resource –1

4

3 R2=2

2 1 4

1 2 3 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resource -2

Fig.7 – Feasible schedule with a makespan of 14.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 492 Issue 11, Volume 5, November 2008

Fig. 8 presents the solution obtained by backward
planning. Having scheduled the dummy end activity
7, activities 5 and 6 which are backward eligible at t =
14 can be executed in parallel. Due to the precedence
constraint, activities 3 and 4 are scheduled that they
finishes at t = 13 and t = 10, respectively. Finally
activities 1 and 2 are scheduled. By reducing all the
scheduled starting and finisinh times by 3, a schedule
with a makespan of 11 is obtained, i.e., the initial
schedule (Fig. 7) is improved.

R1=4

4 1 3 5

3

2 2 4 6

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resource-1

4

3 R2=2

2 1 3

1 2 4 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Resource -2

Fig.8 – Improved schedule with a makespan of 11.

Fig. 9 presents the solution obtained by forward

planning. Having scheduled the dummy initial
activity 0, activities 1 and 2 which are eligible at t = 0
can be executed in parallel. Due to the precedence
constraint, activities 3 and 4 are scheduled that they
finishes at t = 10 and t = 6, respectively. Finally
activities 5 and 6 are scheduled. A schedule with a
makespan of 11 is obtained without improving the
schedule in Fig. 7.

7 Computational results
This section presents results of the computational
experiments done with the algorithm proposed in this

paper. The experiments were performed on an Intel
Core 2 Duo CPU T7250 @2.00 GHz. The algorithm
was coded in Visual Basic 6.0. The GA-RKV
(Genetic Algorithm - Random Key Variant) was
tested on the instance sets:

• J30 (480 instances each with 30 activities)
• J60 (480 instances each with 60 activities)
• J120 (600 instances each with 120 activities)

available in PSPLIB. All problem instances require
four resource types.

Instances details are described in Kolisch et al.
[24].

R1=4

4 1 3

3

2 2 4 6 5

1

1 2 3 4 5 6 7 8 9 10 11 12

Resource -1

4

3 R2=2

2 1 3

1 2 4 6

1 2 3 4 5 6 7 8 9 10 11 12

Resource -2

Fig.9 – Final schedule with a makespan of 11.

7.1 Genetic algorithm configuration
Though there is no straightforward way to configure
the parameters of a genetic algorithm, we obtained
good results with values: population size of 5 ×
number of activities in the problem; mutation
probability of 0.001; top (best) 1% from the
previous population chromosomes are copied to the
next generation; stopping criterion of 250
generations.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 493 Issue 11, Volume 5, November 2008

7.2 Experimental results
The results obtained are given in Tables 5, 6 and 7.

Table 5, column 3, summarizes the average
deviation percentage from the optimal makespan
(DOPT), for the instance set J30. The GA-RKV
obtained DOPT = 0.01. The number of instances for
which the algorithm obtains the optimal solution is
476. For the set J30, GA-RKV ranks five.

Algorithm Reference J30
DOPT

MAPS Mendes and
Gonçalves [15]

0.00

GA-TS path
relinking

Kochetov and
Stolyar [11]

0.00

Decomp. & local
opt.

Palpant et al. [9] 0.00

F&F(5)
GA - RKV
GAPS

Ranjbar [14]
This paper

Mendes et al. [6]

0.00
0.01
0.01

Scatter Search - FBI Debels et al. [3] 0.01
VNS-activity list Fleszar

and Hindi [8]
0.01

GA - DBH Debels and
Vanhoucke [4]

0.02

GA – hybrid, FBI Valls et al. [12] 0.02
GA - FBI Valls et al. [13] 0.02

Table 5: Top-ten computational
results for J30 instances.

Algorithm Reference J60
DLB

F&F(5)
MAPS

Ranjbar [14]
Mendes and

Gonçalves [15]

10.56
10.64

GAPS Mendes et al. [6] 10.67
GA - DBH Debels and

Vanhoucke [4]
10.68

Scatter Search - FBI Debels et al. [3] 10.71
GA – hybrid, FBI Valls et al. [12] 10.73
GA, TS – path
relinking

Kochetov
and Stolyar [11]

10.74

GA - FBI
Decomp. & local opt.
GA - RKV

Valls et al. [13]
Palpant et al. [9]

This paper

10.74
10.81
10.88

VNS-activity list Fleszar
and Hindi [8]

10.94

Table 6: Top-ten computational
results for J60 instances.

Tables 6 and 7, columns 3, summarize the
average deviation percentage from the well-known
critical path-based lower bound (DLB) for the instance
set J60 and J120, respectively. For the instances set
J60 and J120, GA-RKV ranks ten. The lower bound
values (DLB) are reported by Stinson et al. [7].

Algorithm Reference J120
DLB

GA-DBH Debels and
Vanhoucke [4]

30.82

MAPS Mendes and
Gonçalves [15]

31.19

GAPS Mendes et al.[6] 31.20
GA – hybrid, FBI Valls et al. [12] 31.24
F&F(5) Ranjbar [14] 31.42
Scatter Search - FBI Debels et al. [3] 31.57
GA - FBI Valls et al. [13] 31.58
GA, TS – path
relinking

Kochetov and
Stolyar [11]

32.06

Decomp. & local opt. Palpant et al. [9] 32.41
GA - RKV This paper 32.50
GA - Self adapting Hartmann [16] 33.21

Table 6: Top-ten computational
results for J120 instances.

The maximum computational time dispended is

120 seconds for each instance of J60 and 300 seconds
for each instance of J120.

8 Conclusions and further research
This paper presents a new genetic algorithm (a
variant of the genetic algorithm proposed by
Goldberg [1] with binary code) for the resource
constrained project scheduling problem. The
chromosome representation of the problem is
based on random keys. Reproduction, crossover
and mutation are applied to successive
chromosome populations to create new
chromosome populations. These operators are
simplicity itself, involving random number
generation, chromosome copying and partial
chromosome exchanging.

The schedules are constructed using a
priority rule in which the priorities are defined by

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 494 Issue 11, Volume 5, November 2008

the genetic algorithm with a constructive
heuristic.

The constructive heuristic for constructing
feasible schedules is extended by the flexible use
of different planning directions including the
backward and forward planning (LS). For some
instance, a combination of a heuristic
constructive and the genetic algorithm may yield
a good result, but in another instance the LS can
improve the initial schedule.

The approach was tested on a set of 1560
standard instances taken from the literature and
compared with the best state-of-the-art
approaches. The algorithm produced good results
when compared with other approaches therefore
validating the effectiveness of the proposed
algorithm.

Further work could be conducted to explore
the possibility of using activities with multi-
mode usage of limited resources.

Acknowledgements
This work has been partially supported by the
Polytechnic of Porto, IPP/PADInv2007.

References:
[1] D. E. Goldberg. Genetic Algorithms in Search,

Optimization & Machine Learning, Addison-Wesley,
1989.

[2] D. Beasley, D.R. Bull and R.R. Martin, An Overview
of Genetic Algorithms: Part 1, Fundamentals,
University Computing, Department of Computing
Mathematics, University of Cardiff, UK, Vol. 15(2),
1993, pp. 58-69.

[3] D. Debels, B. De Reyck, R.Leus and M.Vanhoucke, A
Hybrid Scatter Search/Electromagnetism Meta-
Heuristic for Project Sheduling, European Journal of
Operational Research, Vol. 169, 2006, pp. 638-653.

[4] D. Debels and M. Vanhoucke. A Decomposition-Based
Heuristic for the Resource-Constrained Project
Scheduling Problem. Working Paper 2005/293, Faculty
of Economics and Business Administration, University
of Ghent, Ghent, Belgium, 2005.

[5] J.F. Gonçalves, J.M. Mendes, and M.C.G. Resende. A
hybrid genetic algorithm for the job shop scheduling
problem. European Journal of Operational Research,
Vol. 167, 2005, pp. 77-95.

[6] J.J.M. Mendes, J.F. Gonçalves and M.G.C. Resende,
A random key based genetic algorithm for the resource
constrained project scheduling problem, Computers &
Operations Research, Vol. 36, 2009, pp. 92-109.

[7] J.P. Stinson, E.W. Davis and B.M. Khumawala,
Multiple Resource-Constrained Scheduling Using

Branch and Bound, AIIE Transactions, Vol. 10, 1978,
pp. 252-259.

[8] K. Fleszar and K.S. Hindi, Solving the resource-
constrained project scheduling problem by a variable
neighbourhood search, European Journal of
Operational Research, Vol. 155, 2004, pp. 402-413.

[9] M. Palpant, C. Artigues and P. Michelon, LSSPER:
Solving the resource–constrained project scheduling
problem with large neighbourhood search, Annals of
Operations Research, Vol.131, 2004, pp. 237-257.

[10] R. Klein, Bidirectional planning : improving priority
rule-based heuristics for scheduling resource-
constrained projects, European Journal of Operational
Research, Vol. 127, 2000, pp. 619-638.

[11] Y. Kochetov and A. Stolyar. Evolutionary local
search with variable neighborhood for the resource
constrained project scheduling problem. In
Proceedings of the 3rd International Workshop of
Computer Science and Information Technologies,
Russia, 2003.

[12] V. Valls, F. Ballestin and M.S. Quintanilla. A hybrid
genetic algorithm for the RCPSP. Technical report,
Department of Statistics and Operations Research,
University of Valencia, 2003.

[13] V. Valls, F. Ballestin and M.S. Quintanilla,
Justification and RCPSP: A technique that pays,
European Journal of Operational Research, Vol.165,
2005, pp. 375-386.

[14] M. Ranjbar, Solving the resource-constrained project
scheduling problem using filter-and-fan approach,
Applied Mathematics and Computation, Vol. 201,
2008, pp. 313–318.

[15] J.J.M. Mendes and J.F. Gonçalves, A Memetic
Algorithm-Based Heuristics for the Resource
Constrained Project Scheduling Problem, Proceedings
of II International Conference on Computational
Methods for Coupled Problems in Science and
Engineering, Spain, 2007, pp. 644-648.

[16] R. Kolisch and S. Hartmann, Experimental
investigation of heuristics for resource-constrained
project scheduling: an update, European Journal of
Operational Research, Vol.174 (1), 2006, pp. 23-37.

[17] M. Seda, Solving Resource-Constrained Project
Scheduling Problem as a Sequence of Multi-Knapsack
Problems, WSEAS Transactions on Information
Science & Applications, Issue 10, Vol. 3, 2006,
pp.1785-1791.

[18] M. Kljajc, U. Breskvar and B. Rodic, Computer aided
scheduling with use of genetic algorithms and a visual
discrete event simulation model, WSEAS Transactions
on Systems, Issue 3, Vol. 3, 2004, pp. 1021-1026.

[19] C.H. Yeh and H. Pan, System Development for Fuzzy
Project Scheduling, WSEAS Transactions on Business
and Economics, World Scientific and Engineering
Academy and Society, USA, Vol. 1(4), 2005, pp. 311-
317.

[20] J.J.M. Mendes, “Sistema de Apoio à Decisão para
Planeamento de Sistemas de Produção do Tipo
Projecto”, Ph.D. Thesis, Departamento de Engenharia
Mecânica e Gestão Industrial, Faculdade de

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 495 Issue 11, Volume 5, November 2008

Engenharia da Universidade do Porto, Portugal, 2003.
(In portuguese)

[21] R. Kolisch, Project Scheduling under Resource
Constraints, Physica-Verlag, Germany, 1995.

[22] P. Brucker, A Drexl, R. Mohring, K. Neumann, E.
Pesch, Resource-constrained project scheduling:
Notation, classification, models and methods,
European Journal of Operational Research, Vol.112
(1), 1999, pp. 3-41.

[23] N. Christofides, R.Alvarez-Valdés and J. Tamarit,
Problem scheduling with resource constraints: A
branch and bound approach, European Journal of
Operational Research, Vol. 29, 1987, pp. 262-273.

[24] R. Kolisch, Schwindt, A.Sprecher, Benchmark
instances for scheduling problems. In J.Weglarz, (ed.)
Handbook on recent advances in project scheduling,
Kluwer, Amsterdam, 1998, pp. 197-212.

[25] C. Patrick, Construction Project Planning and
Scheduling, PEARSON Prentice Hall, Columbus,
Ohio, 2004.

[26] R. Kolisch and S. Hartmann, Heuristic Algorithms
for Solving the Resource-Constrained Project
Scheduling Problem: Classification and
Computational Analysis, J. Weglarz (editor), Kluwer,
Amsterdam, the Netherlands, 1999, pp. 147–178.

[27] J.F. Gonçalves and N.C. Beirão, Um algoritmo
genético baseado em chaves aleatórias para
sequenciamento de operações, Revista Associação
Portuguesa Investigação Operacional, Vol. 19, 1999,
pp.123–37, (in Portuguese).

[28] H. Pan and C.H. Yeh, GA for Fuzzy Multi-Mode
Resource-Constrained Project Scheduling, WSEAS
Transactions on Systems, Issue 4, Volume 2, October
2003, pp.893-990.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS J. Magalhaes-Mendes

ISSN: 1109-9526 496 Issue 11, Volume 5, November 2008

