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Abstract: In this paper we study a new simple quadrature rule based on integrating a spline quasi-interpolant
operator on a bonded interval. We also give estimates of the quadrature error for smooth functions in the case of
uniform partition by using the associated Peano kernel. We improve the degree of exactness of quadrature formulae
with the knots depending on a parameter.
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1 Introduction
Denote by

Hn[a, b] :=
{
f ∈ Cn−1[a, b], f (n−1) abs. cont.

}
.

Theorem 1 (Peano´s theorem) Let L(f) be an ar-
bitrary linear functional defined in Hn[a, b] such
that the function K(t) := L

[
(x− t)n−1

+

]
is in-

tegrable over [a, b]. Suppose that L(p) = 0
for each polynomial p ∈ Pn−1. Then L(f) =

1
(n− 1)!

∫ b

a
K(t)f (n)(t)dt, for each f ∈ Hn[a, b].

Definition 2 [2] The function s(x) is called a spline
function of degree n with knots {ti}d

i=1 if−∞ := t0 <
t1 < · · · < td < td+1 := ∞ and
i) for each i = 0, . . . , d, s(x) coincides on (ti, ti+1)
with a polynomial of degree not greater then n;
ii) s(x), s′(x), . . . , s(n−1)(x) are continuous func-
tions on (−∞,+∞).

We shall denote by Sn(t1, . . . , td) the class of all
spline functions of degree n with knots at t1, . . . , td.
For fixed {ti}d

i=1, Sn(t1, . . . , td) is a linear space and
dim Sn(t1, . . . , td) = n + d + 1.

Let x0 ≤ · · · ≤ xn+1 be arbitrary points in [a, b]
such that x0 < xn+1.

Definition 3 [2] The spline function
B(x0, . . . , xn+1; x) = (· − x)n

+ [x0, . . . , xn+1] is
called a B-spline of degree n with knots x0, . . . , xn+1.

We denote by (· − x)n
+ [x0, . . . , xn+1] the di-

vided difference of the function (· − x)n
+ at the points

x0, . . . , xn+1.

A property of B-spline it is:
∫ b

a
B(x0, . . . , xn+1; t)dt =

1
n + 1

.

Given the sequence (finite or infinite) of points
{xi}, such that

· · · ≤ xi ≤ xi+1 ≤ · · ·
and xi < xi+n+1 for all i, we shall denote by Bi,n(t)
the B-spline

Bi,n(t) = (· − x)n
+ [xi, . . . , xi+n+1] .

Theorem 4 [2] Let a < xn+2 ≤ . . . ≤ xm < b
be fixed points such that xi < xi+n+1 for all admis-
sible i. Choose arbitrary 2n + 2 additional points
x1 ≤ · · · ≤ xn+1 ≤ a and b ≤ xm+1 ≤ · · · ≤
xm+n+1 and define Bi,n(t) = B(xi, . . . , xi+n+1; t).
The B-spline B1,n(t), . . . , Bm,n(t) constitute a basis
for Sn(xn+2, . . . , xm).

The B-spline basis for the space
Sn(xn+2, . . . , xm) was constructed by Curry
and Schoenberg in [7].

The spline function Ni,n(t) = (xi+n+1 −
xi)Bi,n(t) is called normalized B-spline and satisfy
the relation

Ni,n(t) =
xi+n+1 − t

xi+n+1 − xi+1
Ni+1,n−1(t)

+
t− xi

xi+n − xi
Ni,n−1(t),

Ni,0(t) =

{
1, t ∈ [xi, xi+1),
0, t < xi and t ≥ xi+1.
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From the above relation, we have

Ni,1(t) =





xi+2 − t

xi+2 − xi+1
, xi+1 ≤ t ≤ xi+2,

t− xi

xi+1 − xi
, xi ≤ t ≤ xi+1,

(1)
and

Ni,2(t)=





t−xi

xi+2−xi
· t−xi

xi+1−xi
, xi≤ t≤xi+1,

xi+3−t

xi+3−xi+1
· t−xi+1

xi+2−xi+1
+

t−xi

xi+2−xi
· xi+2−t

xi+2−xi+1
, xi+1≤ t≤xi+2,

xi+3−t

xi+3−xi+1
· xi+3−t

xi+3−xi+2
, xi+2≤ t≤xi+3.

(2)
Given a function f , the basic problem of quasi-

spline approximation is to determine B-spline coeffi-
cients (ci)m

i=1 such that

Pf =
m∑

i=1

ciNi,n

is a reasonable approximation to f .
Interesting results about spline quasi-interpolants

were obtain by P. Sablonière in [12], [13], [14], [15],
[16], T. Lyche and K. Morken in [10], D. Barrera, M.J.
Ibáñez, P. Sablonière, D. Sbibih in [3], [4], [5], B.G.
Lee, T. Lyche and L.L.Schumaker in [8].

In [10] is given the following procedure for deter-
mining the B-spline coefficients.

Let x = (xj)m+n+1
j=1 be arbitrary points in [a, b],

nondecreasing with xn+1 = a and xm+1 = b. We as-
sume that f is defined on [a, b]. We fix j and propose
the following procedure for determining cj :

1) Choose a local interval I = (xµ, xν) with the
property that I intersects the support of Nj,n:

I ∩ (xj , xj+n+1) 6= φ.

Denote the restriction of the space
Sn(xn+2, . . . , xm) to the interval I by Sn,I , namely

Sn,I = span {Nµ−n,n, . . . , Nν−1,n} .

2) Choose some local approximation method P I

with the property that P Ig = g for all g ∈ Sn,I .
3) Let f I denote the restriction of f to the interval

I . Then there exist B-spline coefficients (bi)ν−1
i=µ−n

such that P If I =
ν−1∑

i=µ−n

biNi,n. Note that µ − n ≤
j ≤ ν − 1 since suppNj,n intersects I .

4) Set cj = bj .

2 A quadrature formula with degree
of exactness equal to 1

Let S1(x3, · · · , xm) be the space of spline functions of
degree 1 with knots at x3, · · · , xm. Let f be a function
defined by [x2, xm+1]. The spline quasi-interpolant
operator is

P1f =
m∑

j=1

cjNj,1.

To determine B-spline coefficients, cj , by choos-
ing the local interval I = [xj , xj+1] and the local ap-
proximation method

P I
1 f(x) =

j∑

i=j−1

biNi,1(x). (3)

We consider that local approximation method is
the polynomial interpolation at knots

x
(1)
j = (1− α)xj + αxj+1

x
(2)
j = αxj + (1− α)xj+1

where α ∈ [0, 1]\
{

1
2

}
. We have

{
P I

1 f(x(1)
j ) = f(x(1)

j ),
P I

1 f(x(2)
j ) = f(x(2)

j ),

namely
{

bj−1Nj−1,1(x
(1)
j ) + bjNj,1(x

(1)
j ) = f(x(1)

j ),
bj−1Nj−1,1(x

(2)
j ) + bjNj,1(x

(2)
j ) = f(x(2)

j ).
(4)

Using relations (1) and (4) we obtain
{

(1− α)bj−1 + αbj = f(x(1)
j )

αbj−1 + (1− α)bj = f(x(2)
j )

(5)

From (5) we have

bj =
1

2α− 1

[
αf(x(1)

j )− (1− α)f(x(2)
j )

]

and the spline quasi-interpolant operator will be

P1f =
m∑

j=1

1
2α− 1

[
αf(x(1)

j )−(1−α)f(x(2)
j )

]
Nj,1.

(6)
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Let x1 = x2 = a, xm+1 = xm+2 = b and (xi)m
i=3

are the equidistant nodes from the interval [a, b]. If we
integrate the approximation formula of function f

f(x) =
m∑

j=1

1
2α−1

[
αf(x(1)

j )−(1−α)f(x2
j )

]
Nj,1(x)

+ rm[f ]

to obtain following quadrature formula with the exact-
ness degree 1
∫ b

a
f(x)dx =

1
2α− 1

m∑

j=1

xj+2 − xj

2

[
αf(x(1)

j )

− (1− α)f(x(2)
j )

]
+Rm[f ]. (7)

If we choose α = 1 or α = 0, then the quadrature
formula (7) have degree of exactness equal to 1 and
can be written:
∫ b

a
f(x)dx =

m∑

j=1

xj+2 − xj

2
f(xj+1) +Rm[f ]. (8)

For m = 2 we have trapezoid quadrature formula.
If we consider m = 3, to obtain the following quadra-
ture formula
∫ b

a
f(x)dx=

b−a

4

[
f(a)+2f

(
a+b

2

)
+f(b)

]
+R3[f ].

For m = 4 we have the following quadrature formula
∫ b

a
f(x)dx =

b− a

6

[
f(a) + 2f

(
2a + b

3

)

+ 2f

(
a + 2b

3

)
+ f(b)

]
+R4[f ].

Next to study the quadrature formulae for m > 4.
For simplicity of calculations we choose a = 0, b = 1.

If denote h =
1

m− 1
, we have xi = (i−2)h, i = 3, m

and the quadrature formula (8) can be written

∫ 1

0
f(x)dx=

h

2



f(0)+2

m−2∑

j=1

f(jh)+f(1)



+Rm[f ].

(9)
The exactness degree of quadrature formula (9) is

equal with 1 and from Theorem 1, the remainder term
has the form

Rm[f ] =
∫ 1

0
K(t)f ′′(t)dt, where f ∈ H2[0, 1]

K(t) = Rm [(· − t)+] (10)

=
(1− t)2

2
− h

2


2

m−2∑

j=1

(jh− t)+ + (1− t)


 .

Lemma 5 The Peano´s kernel defined in relation (10)
verifies

K(t) = K(1− t), any t ∈ [0, 1]; (11)
K(t) ≤ 0, any t ∈ [0, 1]; (12)

max
t∈[0,1]

|K(t)| = h2

8
; (13)

∫ 1

0
K(t)dt = − 1

12(m− 1)2
. (14)

Proof: Using the symmetry of nodes and coefficients
we obtain

K(1−t) =
t2

2
−h

2


2

m−2∑

j=1

(t−(m−1−j)h)++t




=
t2

2
− h

2


2

m−2∑

j=1

(t− jh)+ + t


 . (15)

If in the quadrature formula (9), we choose
f(x) = x− t ∈ P1 to obtain the following relation

(1− t)2

2
− t2

2
=

h

2


−t + 2

m−2∑

j=1

(jh− t) + (1− t)


 .

(16)
From the relation (10), (15), (16) and the formula

(ti − t)+ − (t− ti)+ = (ti − t)

we have K(t) = K(1− t). We denote

K(t) = Ki(t) for t ∈ [(i− 1)h, ih], i = 1, m− 1.

From the relation (15) we obtain

K1(t) =
t2

2
− h

2
t, t ∈ [0, h]

Ki(t) =
t2

2
− h

2



2

i−1∑

j=1

(t− jh) + t





=
t2

2
− (2i− 1)

h

2
t +

h2

2
i(i− 1),

for t ∈ [(i− 1)h, ih] , i = 2, m− 1.
We have

K ′
1(t) = t− h

2
, t ∈ [0, h]

K ′
i(t) = t− (2i− 1)

h

2
, t ∈ [(i− 1)h, ih] ,

i = 2,m− 1.
(17)

From relation (17) we obtain K(t) ≤ 0, i = 1, m− 1

and max
t∈[0,1]

|K(t)| = h2

8
.
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We have

∫ 1

0
K(t)dt =

∫ h

0

(
t2

2
− h

2
t

)
dt

+
m−1∑

i=2

∫ ih

(i−1)h

[
t2

2
− (2i− 1)

h

2
t +

h2

2
i(i− 1)

]
dt

=
h3

12
(1−m) = − 1

12(m− 1)2
.

ut

Theorem 6 If f ∈ H2[0, 1] and there exist real num-
bers γ, Γ such that γ ≤ f ′′(t) ≤ Γ, t ∈ [0, 1], then

|Rm[f ]| ≤ 1
24(m− 1)2

[Γ− γ + |Γ + γ|] .

Proof: We can write

Rm[f ]=
∫ 1

0
K(t)f ′′(t)dt=

∫ 1

0
K(t)

[
f ′′(t)− γ+Γ

2

]
dt

+
γ + Γ

2

∫ 1

0
K(t)dt =

∫ 1

0
K(t)

[
f ′′(t)− γ + Γ

2

]
dt

− 1
24(m− 1)2

(γ + Γ)

and we obtain

|Rm[f ]| ≤ max
t∈[0,1]

∣∣∣∣f ′′(t)−
γ + Γ

2

∣∣∣∣ ·
∫ 1

0
|K(t)| dt

+ |γ + Γ| · 1
24(m− 1)2

=
1

12(m− 1)2

·
{

max
t∈[0,1]

∣∣∣∣f ′′(t)−
γ + Γ

2

∣∣∣∣ +
∣∣∣∣
Γ + γ

2

∣∣∣∣
}

=
1

12(m− 1)2

{
Γ− γ

2
+
|Γ + γ|

2

}

=
1

24(m− 1)2
{Γ− γ + |Γ + γ|} .

ut

Theorem 7 If f ∈ H2[0, 1] and there exist real num-
bers γ, Γ such that γ ≤ f ′′(t) ≤ Γ, t ∈ [0, 1], then we
have

1
24(m−1)2

(3T−5Γ) ≤ Rm[f ] ≤ 1
24(m−1)2

(3T−5γ),

where T = f ′(1)− f ′(0).

Proof: We have
∫ 1

0
K(t)

[
f ′′(t)− γ

]
dt = Rm[f ] +

γ

12(m− 1)2
.

Since
∫ 1

0
K(t)

[
f ′′(t)−γ

]
dt≤ max

t∈[0,1]
|K(t)|

∫ 1

0

(
f ′′(t)−γ

)
dt

=
h2

8
[
f ′(1)− f ′(0)− γ

]
=

h2

8
(T − γ)

=
1

8(m− 1)2
(T − γ),

we obtain

Rm[f ] ≤ 1
24(m− 1)2

(3T − 5γ).

On the other hand we have
∫ 1

0
K(t)

[
Γ− f ′′(t)

]
= − Γ

12(m− 1)2
−Rm[f ],

∫ 1

0
K(t)

[
Γ−f ′′(t)

]
dt≤ max

t∈[0,1]
|K(t)|

∫ 1

0

(
Γ−f ′′(t)

)
dt

=
h2

8
(
Γ− f ′(1) + f ′(0)

)
=

1
8(m− 1)2

(Γ− T ).

From above relations we obtain

Rm[f ] ≥ 1
24(m− 1)2

(3T − 5Γ).

ut

3 The improvement of degree of
exactness

In this section we want to improve the degree of ex-
actness of quadrature formulae (7).

For simplicity of calculations we choose a = 0,

b = 1. If denote h =
1

m− 1
, we have xi = (i− 2)h,

i = 3,m.
Now, we study the quadrature formula obtained

for m = 3. In this case we have the following quadra-
ture formula

∫ 1

0
f(x)dx =

1
4(2α− 1)

{(2α− 1)f(0)

+2
[
αf

(
α

2

)
+(α−1)f

(
1−α

2

)]
+αf

(
α+1

2

)

+(α− 1) f

(
2− α

2

)}
+R3[f ]. (18)

This quadrature formula has degree of exactness equal
1. If we claim thatR3[e2] = 0, where e2(x) = x2, we
obtain

18α3 − 27α2 + 13α− 2 = 0, namely α ∈
{

1
3
,
2
3

}
.
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We consider α ∈
{

1
3
,
2
3

}
and we observe that

R3[e3] = −18α3 − 27α2 + 13α− 2
32(2α− 1)

= 0,

where e3(x) = x3. Therefore, for α ∈
{

1
3
,
2
3

}
, the

quadrature formula (23) has degree of exactness equal
3 and can be written

∫ 1

0
f(x)dx =

1
4

{
f(0)− 2f

(
1
6

)
+ 4f

(
1
3

)

− f

(
2
3

)
+ 2f

(
5
6

)}
+R3[f ]. (19)

For m ≥ 4 the quadrature formula (7) can be writ-
ten

∫ 1

0
f(x)dx =

h

2α− 1

{
2α− 1

2
f(0)

+
m−1∑

j=2

[αf ((j+α−2)h)−(1−α)f ((j−1−α)h)]

+
1
2

[αf ((m+α−2)h)−(1−α)f ((m−1−α)h)]}
+Rm[f ]. (20)

The quadrature formula (20) has degree of exactness
equal 1 and we want to obtain the values of parame-
ter α such that to improve degree of exactness of this
quadrature formula.

We claim that Rm(e2) = 0, where e2(x) = x2

and we obtain
∫ 1

0
x2dx =

h3

2α− 1





m−1∑

j=2

[
α(j + α− 2)2

− (1− α)(j − 1− α)2
]
+

1
2

[
α(m + α− 2)2

− (1− α)(m− 1− α)2
]}

,

namely

h3





m−1∑

j=2

[
(j − 1)2 + α(α− 1)

]

+
1
2

[
(m− 1)2 + α(α− 1)

]}
=

1
3
. (21)

From relation (21) we obtain

3(2m− 3)α2 − 3(2m− 3)α + m− 1 = 0, (22)

and degree of exactness of quadrature formula (20) is
equal 2 for

α ∈




1
2


1 +

√
2m− 5
6m− 9


 ,

1
2


1−

√
2m− 5
6m− 9






 .

We observe that α ∈ [0, 1]\
{

1
2

}
for m ≥ 1.

Now, we want to give the values of m such
that degree of exactness of quadrature formula (20)
is equal 3. From condition Rm(e3) = 0, where
e3(x) = x3 we have

1
(m− 1)4





m−2∑

j=1

[
j3 + 3α(α− 1)j − α(α− 1)

]

+
1
2

[
(m−1)3+3α(α−1)(m−1)−α(α−1)

]}
=

1
4

and using relation (22) we obtain m = 3. Therefore,
there is not value of m ∈ IN, m ≥ 4, such that the
quadrature formula (20) to have degree of exactness
equal 3.

4 A quadrature formula with degree
of exactness equal to 3

Let S2(x4, . . . , xm) be the space of spline functions of
degree 2 with knots at x4, . . . , xm. Let f be a function
defined on [x3, xm+1]. The spline quasi-interpolant
operator is

P2f =
m∑

j=1

cjNj,2.

To determine B-spline coefficients, cj , by choos-
ing the local interval I = [xj+1, xj+2] and the local
approximation method

P I
2 f(x) =

j+1∑

i=j−1

biNi,2(x).

We consider that local approximation method is
the polynomial interpolation knots

x
(1)
j = (1− α)xj+1 + αxj+2,

x
(2)
j =

xj+1 + xj+2

2
,

x
(3)
j = αxj+1 + (1− α)xj+2,

where α ∈ [0, 1] \
{

1
2

}
. We have





P I
2 f(x(1)

j ) = f(x(1)
j ),

P I
2 f(x(2)

j ) = f(x(2)
j ),

P I
2 f(x(3)

j ) = f(x(3)
j ),

namely
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bj−1Nj−1,2(x
(1)
j ) + bjNj,2(x

(1)
j )+

bj+1Nj+1,2(x
(1)
j ) = f(x(1)

j ),

bj−1Nj−1,2(x
(2)
j ) + bjNj,2(x

(2)
j )+

bj+1Nj+1,2(x
(2)
j ) = f(x(2)

j ),

bj−1Nj−1,2(x
(3)
j ) + bjNj,2(x

(3)
j )+

bj+1Nj+1,2(x
(3)
j ) = f(x(3)

j ).

(23)

Using relations (23) and (2) we obtain

(1−α)2
xj+2−xj+1

xj+2−xj
bj−1+

[
1+α2 xj+1−xj+2

xj+3−xj+1
+

(1−α)2
xj+1−xj+2

xj+2−xj

]
bj+α2 xj+2−xj+1

xj+3−xj+1
bj+1 =f(x(1)

j ),

xj+2−xj+1

4(xj+2−xj)
bj−1+

[
1
2
+

1
4

(
xj+3−xj+2

xj+3−xj+1
+

xj+1−xj

xj+2−xj

)]
bj

+
xj+2 − xj+1

4(xj+3 − xj+1)
bj+1 = f(x(2)

j ),

α2 xj+2−xj+1

xj+2−xj
bj−1+

[
1+(1−α)2

xj+1−xj+2

xj+3−xj+1
−

α2 xj+2−xj+1

xj+2−xj

]
bj+(1−α)2

xj+2−xj+1

xj+3−xj+1
bj+1 =f(x(3)

j ).

From the above relations we obtain

bj = − 1
2(2α− 1)2

[
f(x(1)

j )

− 4(α2 + (1− α)2)f(x(2)
j ) + f(x(3)

j )
]
,

for 1 < j < m.

The expression for bj is valid whenever xj+1 <
xj+2 which is not the case for j = 1 and j = m, since
x1 = x2 = x3 and xm+1 = xm+2 = xm+3. The first
value of j for which the general procedure works is
j = 2. To obtain the value of b1 by solving the above
system with j = 2. We have





(1− α)2b1 +
[
1− α2 x4 − x1

x5 − x1
− (1− α)2

]
b2+

α2 x4 − x1

x5 − x1
b3 = f(x(1)

2 ),

1
4
b1 +

[
1
2
+

1
4
· x5−x4

x5−x1

]
b2+

1
4
· x4−x1

x5−x1
b3 =f(x(2)

2 ),

α2b1 +
[
1− (1− α)2

x4 − x1

x5 − x1
− α2

]
b2+

+(1− α)2
x4 − x1

x5 − x1
b3 = f(x(3)

2 ),

namely

b1 =
1

(1−2α)2
{(1−α)f ((1−α)x1+αx4)

− 4α(1−α)f
(

x1+x4

2

)
+αf (αx1+(1−α)x4)

}
.

This procedure can obviously be used to deter-
mine value of bm. For j = m− 1 we have





α2bm+
[
1−α2−(1−α)2

xm+1−xm

xm+1−xm−1

]
bm−1+

(1− α)2
xm+1 − xm

xm+1 − xm−1
bm−2 = f(x(1)

m−1),

1
4
bm +

[
1
2

+
1
4
· xm − xm−1

xm+1 − xm−1

]
bm−1+

1
4
· xm+1 − xm

xm+1 − xm−1
bm−2 = f(x(2)

m−1),

(1−α)2bm+
[
1−(1−α)2−α2 xm+1−xm

xm+1−xm−1

]
bm−1+

α2 xm+1 − xm

xm+1 − xm−1
bm−2 = f(x(3)

m−1),

and we obtain

bm =
1

(1−2α)2
{αf ((1−α)xm+αxm+1)

− 4α(1−α)f
(

xm+xm+1

2

)

+ (1−α)f (αxm+(1−α)xm+1)} .

For α = 0 or α = 1 we obtain the following
spline quasi-interpolant operator

P2f =
m∑

j=1

cjNj,2,
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where

cj =





f(x1), for j = 1,

1
2

[
−f(xj+1)+4f

(
xj+1+xj+2

2

)

−f(xj+2)] , for 1<j <m,

f(xm+1), for j = m.

Let x1 = x2 = x3 = a, xm+1 = xm+2 =
xm+3 = b and (xi)m

i=3 are the equidistant nodes from
the interval [a, b]. If we integrate the approximation
formula of function f

f(x) =
m∑

j=1

cjNj,2(x) + rm[f ]

to obtain following quadrature formula

∫ b

a
f(x)dx =

m∑

i=1

xi+3 − xi

3

[
−1

2
f(xi+1) (24)

+ 2f
(
xi+1+xi+2

2

)
− 1

2
f(xi+2)

]
+Rm[f ].

The quadrature formula (24) was studied in paper [1].
For m = 3 we have the Simpson ′s quadrature for-

mula. We shall choose the equidistant nodes (xi)m
i=4

from the interval [a, b].
For m = 4 we obtain the following quadrature

formula
∫ b

a
f(x)dx =

b− a

3

[
2f

(
3a + b

4

)
− f

(
a + b

2

)

+ 2f

(
a + 3b

4

)]
+R4[f ],

and for m = 5 we have
∫ b

a
f(x)dx=

b−a

3

[
4
3
f

(
5a+b

6

)
− 5

6
f

(
2a+b

3

)
+

2f

(
a+b

2

)
− 5

6
f

(
a+2b

3

)
+

4
3
f

(
a+5b

6

)]
+R5[f ].

Next to study the quadrature formula for m ≥ 6.
For simplicity of calculations we choose a = 0, b = 1.

If denote h =
1

m− 2
, we have xi = (i−3)h, i = 4, m

and the quadrature formula (24) can be written

∫ 1

0
f(x)dx=h

{
4
3
f

(
h

2

)
− 5

6
f(h)+2

m−3∑

k=2

f

(
2k−1

2
h

)

−
m−4∑

k=2

f(kh)− 5
6
f((m−3)h)+

4
3
f

(
2m−5

2
h

)}
+Rm[f ].

(25)
The exactness degree of quadrature formula (25)

is equal to 3 and from Theorem 1 the remainder term
has the form

Rm[f ] =
1
6

∫ 1

0
K(t)f (4)(t)dt, where f ∈ H4[0, 1]

K(t) = Rm[(· − t)3+] =

(1− t)4

4
− h

{
4
3

(
h

2
− t

)3

+
− 5

6
(h− t)3+

+2
m−3∑

k=2

(
2k − 1

2
h− t

)3

+
−

m−4∑

k=2

(kh− t)3+

−5
6

((m− 3)h− t)3+ +
4
3

(
2m− 5

2
h− t

)3

+

}
.

In paper [1] we obtain the following properties of
function K:

Lemma 8 [1] The function K verifies

K(t) = K(1− t) any t ∈ [0, 1] (26)
K(t) ≥ 0 any t ∈ [0, 1] (27)

max
t∈[0,1]

K(t) =
h4

12
(28)

∫ 1

0
K(t)dt =

1
480

· 29m− 88
(m− 2)5

. (29)

In paper [1] we give some estimates of the quadra-
ture error (24) for smooth functions by using the asso-
ciated Peano kernel.

Theorem 9 [1] If f ∈ H4[0, 1] and there exist real
numbers γ, Γ such that γ ≤ f (4)(t) ≤ Γ , t ∈ [0, 1] ,
then

|Rm[f ]| ≤ 29m− 88
2880(m− 2)5

{
Γ− γ

2
+

∣∣∣∣
Γ + γ

2

∣∣∣∣
}

.

(30)

Theorem 10 [1] Let f ∈ H4[0, 1] . If there exist a
real number γ such that γ ≤ f (4)(t) , t ∈ [0, 1], then

|Rm[f ]| ≤ 1
72(m− 2)4

·
[
T − γ +

29m− 88
40(m− 2)

|γ|
]

(31)
where T = f (3)(1)− f (3)(0) .

If there exist a real number Γ such that f (4)(t) ≤
Γ , t ∈ [0, 1] , then

|Rm[f ]| ≤ 1
72(m− 2)4

·
[
Γ− T +

29m− 88
40(m− 2)

|Γ|
]

.

(32)
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In this paper we give the following double in-
equality.

Theorem 11 If f ∈ H4[0, 1] and there exist real
numbers γ, Γ such that γ ≤ f (4)(t) ≤ Γ, t ∈ [0, 1],
then we have

1
2880(m−2)5

{40T (m−2)−Γ(11m+8)} ≤ Rm[f ]

≤ 1
2880(m−2)5

{40T (m−2)−γ(11m+8)}

where T = f (3)(1)− f (3)(0).

Proof: We have

1
6

∫ 1

0
K(t)

[
f (4)(t)− γ

]
dt =

Rm[f ]− γ

2880
· 29m− 88

(m− 2)5
.

Since
∫ 1

0
K(t)

[
f (4)(t)− γ

]
dt

≤ max
t∈[0,1]

|K(t)|
∫ 1

0

[
f (4)(t)− γ

]
dt

=
h4

12

[
f (3)(1)− f (3)(0)− γ

]

=
h4

12
(T − γ) =

1
12(m− 2)4

(T − γ),

we obtain

Rm[f ] ≤ 1
2880(m−2)5

{40T (m−2)−γ(11m+8)} .

On the other hand we have

1
6

∫ 1

0
K(t)

[
Γ− f (4)(t)

]
dt

=
Γ

2880
· 29m− 88

(m− 2)5
−Rm[f ],

∫ 1

0
K(t)

[
Γ− f (4)(t)

]
dt

≤ max
t∈[0,1]

|K(t)|
∫ 1

0
(Γ− f (4)(t))dt

=
h4

12

(
Γ− f (3)(1) + f (3)(0)

)
=

1
12(m− 2)4

(Γ− T ).

From above relations we obtain

Rm[f ] ≥ 1
2880(m−2)5

{40T (m−2)−Γ(11m+8)} .

ut

5 An intermediate point property in
the quadrature formulas

In this section we study a property of the intermediate
point for the quadrature formulae of type (9) and (25).

Lemma 12 [9] If −∞ < α < β < +∞ and w is a
weight on (α, β) and

∫ β

α
f(t)w(t)dt =

n∑

k=1

ckf(zk)+rn[f ] , f ∈ L1
w(α, β)

then

W (x) = w

(
α + (β − α)

x− a

b− a

)
,

x ∈ (a, b), −∞ < a < b < +∞
is a weight on (a, b) and

∫ b

a
F (x)W (x)dx =

b−a

β−α

n∑

k=1

ckF

(
(a+(b−a)

zk−α

β−α

)

+Rn[F ]

where F ∈ L1
w(a, b) and

Rn[F ]=
b−a

β−α
rn[F̃ ], F̃ (t)=F

(
a+(b−a)

t−α

β−α

)
.

Let f : [a, b] → R, f ∈ C2[a, b]. By using
Lemma 5 and Lemma 12, the quadrature formula (9)
can be written

∫ x

a
f(t)dt=

x−a

2(m−1)



f(a)+2

m−2∑

j=1

f

(
a+j

x−a

m−1

)

+f(x)}− (x− a)3

12(m− 1)2
f ′′(cx), cx ∈ (a, x), x ∈ (a, b].

(33)

Theorem 13 If f ∈ C4[a, b] and f ′′′(a) 6= 0, then
for the intermediate point cx that appears in formula
(33), it follows

lim
x→a

cx − a

x− a
=

1
2
.
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Proof: Let F, G : [a, b] → R defined as follows

F (x) =
∫ x

a
f(t)dt− x− a

2(m− 1)
f(a)− x− a

m− 1

·
m−2∑

j=1

f

(
a + j

x− a

m− 1

)
− x− a

2(m− 1)
f(x)

+
(x− a)3

12(m− 1)2
f ′′(a),

G(x) = (x− a)4.

We observe that F (a) = 0 and for i = 1, 4 we
have

F (i)(x) = f (i−1)(x)−
(

x− a

2(m− 1)

)(i)

f(a)−

i∑

k=0

(
i
k

) (
x−a

m−1

)(k)



m−2∑

j=1

f

(
a+j

x−a

m−1

)


(i−k)

−

i∑

k=0

(
i
k

) (
x−a

2(m−1)

)(k)

f (i−k)(x)+

(
(x−a)3

12(m−1)2

)(i)

f ′′(a).

(34)
From relation (34) we obtain

F (i)(a) = 0, for i = 1, 3,

F (4)(a) = f ′′′(a)



1− 4

(m− 1)4

m−2∑

j=1

j3 − 2
m− 1





= − f ′′′(a)
(m− 1)2

.

By using successive l′ Hospital we obtain:

lim
x→a

F (x)
G(x)

= lim
x→a

F (4)(x)
G(4)(x)

= − f ′′′(a)
4!(m− 1)2

, (35)

lim
x→a

F (x)
G(x)

= lim
x→a

− (x− a)3

12(m− 1)2
· f ′′(cx)− f ′′(a)

(x− a)4

= lim
x→a

− 1
12(m− 1)2

· f ′′(cx)− f ′′(a)
cx − a

· cx − a

x− a

= − 1
12(m− 1)2

f ′′′(a) · lim
x→a

cx − a

x− a
. (36)

From (35) and (36) we obtain

lim
x→a

cx − a

x− a
=

1
2
.

ut

Let f : [a, b] → R, f ∈ C4[a, b]. By using
Lemma 8 and Lemma 12, the quadrature formula (25)
can be written
∫ x

a
f(t)dt=

x−a

m−2

{
4
3
f

(
a+

1
2
· x−a

m−2

)
− 5

6
f

(
a+

x−a

m−2

)

+2
m−3∑

k=2

f

(
a+

2k−1
2

· x−a

m−2

)
−

m−4∑

k=2

f

(
a+k

x−a

m−2

)

− 5
6
f

(
a+(m−3)

x−a

m−2

)
+

4
3
f

(
a+

2m−5
2

· x−a

m−2

)}

+
(x− a)5

(m− 2)5
·29m− 88

2880
f (4)(cx), cx ∈ (a, x), x ∈ (a, b].

(37)

Theorem 14 If f ∈ C6[a, b] and f (5)(a) 6= 0, then
for the intermediate point cx that appears in formula
(37), it follows

lim
x→a

cx − a

x− a
=

1
2

Proof: Let F, G : [a, b] → R defined as follows

F (x) =
∫ x

a
f(t)dt− 4

3
x−a

m−2
f

(
a+

1
2
· x−a

m−2

)

+
5
6

x−a

m−2
f

(
a+

x−a

m−2

)

− 2
x−a

m−2

m−3∑

k=2

f

(
a+

2k−1
2

· x−a

m−2

)

+
x−a

m−2

m−4∑

k=2

f

(
a+k

x−a

m−2

)

+
5
6

x−a

m−2
f

(
a+(m−3)

x−a

m−2

)

− 4
3

x−a

m−2
f

(
a+

2m−5
2

· x−a

m−2

)

− (x− a)5

(m− 2)5
· 29m− 88

2880
f (4)(a),

G(x) = (x− a)6.

We have F (i)(a) = 0, for i = 0, 5 and

F (6)(a) =
f (5)(a)

(m− 2)5
· 29m− 88

8
.

By using successive l′ Hospital we obtain:

lim
x→a

F (x)
G(x)

= lim
x→a

F (6)(x)
G(6)(x)

=
29m−88

5760
f (5)(a)
(m−2)5

,

(38)
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lim
x→a

F (x)
G(x)

= lim
x→a

(x−a)5

(m−2)5
29m−88

2880
f (4)(cx)−f (4)(a)

(x−a)6

= lim
x→a

29m− 88
2880(m− 2)5

· f (4)(cx)− f (4)(a)
cx − a

· cx − a

x− a

=
29m− 88

2880(m− 2)5
f (5)(a) · lim

x→a

cx − a

x− a
. (39)

From (38) and (39) we obtain

lim
x→a

cx − a

x− a
=

1
2
.

ut
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