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Abstract: - Nuclear radiation detection laboratories are confronted with huge number of products 
to be analyzed for dangerous radiation levels. Since the precision in determining the right level of 
radioactivity for a given product is directly proportional to the time allocated for that particular 
product, then the limited working hours for these laboratories become the scarce resource. In this 
paper, a nonlinear constrained model is developed to find the optimal allocation of time for each 
product in order to obtain the best possible estimate for the level of radiation for each given 
product. A validation procedure for this model was carried out using special cases. 
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1   Mathematical Background 
Nuclear radiation detection laboratories are 
overwhelmed with huge number of products 
to be analyzed for dangerous radiation levels 
constrained by limited working hours 
available at these laboratories.  Such a 
situation was encountered during the 
Chernobyl accident when many nuclear 
laboratories were flooded by foodstuffs and 
other products to be analyzed [1-5].   The most 
recent work related to finding the optimal 
allocation of nuclear detector’s time for a 
given number of products, under time 
constraints was done by Aljohani [1].  His 
methodology was based on minimizing the 
sum of associated standard deviations of the 
net counting rate of products. The 
assumption in Aljohani’s [1] was based on 
having a constant radiation background for 
all products which may not be exactly true if 
products are measured by a spectrometer or 
if products are measured in different 
locations. 
In nuclear radiation counting detection, only 
small fraction of nuclei are picked up and 
recorded by the detector.  This is depicted as 
a sampling process done by the detector.  
The more samples picks up by the detector, 

the better will be the accuracy of the 
detector’s readings.  Therefore, the accuracy 
in measuring radioactivity of a product is 
directly proportional to the time allocated 
for measurement.  The case of counting 
nuclear radiation events can best be modeled 
by a binomial distribution.  Knoll [5] states 
that in the case of a trial that consists of 
observing a given radioactive nucleus for a 
period of time it , the number of trials is 
equal to the number of nuclei in the product 
under observation, and the measurement 
consists of counting those nuclei that 
undergo decay.  The probability of success 
is identified as the proportion of nuclei that 
undergo decay, which is: 

 
tep λ−−= 1   (1) 

 
where λ  is the decay constant of the 
radioactive product. 
It is well known that the mean μ in a 
binomial distribution is equal to np  and the 
variance 2σ  is equal to )1( ppn − , where 
n  is the number of trials and  p  is the 
probability of success. 
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Binary processes with low probability of 
success for each individual trial can best be 
estimated by a Poisson distribution.  In 
nuclear counting experiments large numbers 
of nuclei (in the order of Avogadro’s 
number 1023) make up the number of trials, 
whereas a relatively small fraction of these 
give rise to recorded counts.  This small 
fraction of nuclei to be recorded by the 
detector is the primary focus in this study.  
Under these conditions, where p ‹‹ 1  and x  
is the reading from a radiation counter for a 
time interval, the binomial distribution can 
be mathematically simplified by a Poisson 
distribution, as follows: 

!
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x
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=         (2) 

Since the relationship xnp =  holds, then 
equation (2) becomes: 
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where x  is the average of successive 
readings from a radiation counter for 
repeated time intervals of equal length.  If x  
is large (traditionally > 20) then more 
simplification can be achieved as follows: 
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Under the aforementioned conditions this 
distribution is characterized by a single 
parameter x , which is equal to np   which is 
also equal to the predicted variance 2σ  .  
From now on the main focus will be this 
single parameter 2σ  or x=σ . 

 
 

2   Problem Formulation 
The large number of radioactive products 
coming for measurement is constrained by 
time limits.  This time is usually dictated by 
the supplier of these products and/or by the 
laboratory conditions.  Since radioactivity 
usually differs from one product to another, 
the measurement time needed for each 
product has to be different.  Thus, the 
challenge is to optimize the allocation of 
measurement time among these products.  

The longer the time allocated for 
measurement the higher the accuracy of 
results.  However, with scarcity of time one 
cannot measure indefinitely.   
In this paper, assuming that the number of 
products is (n) the mathematical 
manipulation and all related data is adopted 
from the authors’ previous work.  Since a 
smaller value for the standard deviation is 
used as a measure of accuracy, the problem 
translates into minimizing the standard 
deviations under time constraint.  The 
objective is to minimize the sum of 
associated standard deviation of counting 
rates for (n) products.  This objective 
function is nonlinear one, and thus, requiring 
a nonlinear programming algorithm to solve 
it.  The solution found using the proposed 
nonlinear model was verified by analytically 
solving the system of equations under the 
assumption that the background radiation is 
negligible.  Two examples are introduced; 
the results found in the examples for the 
verification stage are identical to the results 
found using the nonlinear model. 

 
 

3   Definition of Variables 
iM  = Counts due to both radioactive 

product i  and background. 
iB  = Counts due to background only while 

testing product i . 

iMr =  Counting rate due to both radioactive 
product i  and background.  

ir   =  Counting rate due to the radioactive 
product i  without background.  

ib  =  Counting rate due to background while 
testing product i . 

it   =  Measurement time of radioactive 
product i  with background. 

bit  =  Measurement time for background 
only while testing product i . 

T  = Total time given to test all (n) products. 
iσ = Associated standard deviation of net 

counting rate for product i . 
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4   Theory 
Consider the measurement of the net 
counting rate from a long-lived radioactive 
product in the presence of background.  The 
net counting rate due to the radioactive 
product must be corrected by subtracting the 
background counting rate(2) as:  
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Applying error propagation formula(1) results 
in: 
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From the mathematical background above, it 
is known that iM M

i
=σ  and iB B

i
=σ . 

Substituting into equation (7) yields: 
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By definition, counting rates are ir + ib =
i

i

t
M
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and 
bi

i
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Bb = , then equation (8) becomes : 
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Assuming that (n) products are available for 
measurement and products are independent 
of each others, the total associated standard 
deviation of counting rates for all products 
is: 

nT σσσσσ ++++= .........321          (10) 
 
Substituting (9) into (10) one gets: 
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Equation (11) represents the objective 
function that needs to be minimized with the 
following constraint:  
   nttttT ++++= .........321               (12) 

 
 

5   Validation 
The nonlinear objective function in (11) 
under the constraint in (12) is to be solved 
using any nonlinear programming package.  
Assuming that background radiation is 
negligible (i.e. 0=ib ), equation (11) may be 
simplified; and Tσ   becomes: 
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By differentiating Tσ  with respect to 

nttt ,,........., 21 , setting all the derivatives to 
zero and rearranging terms, the following set 
of equations is obtained: 
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This set of equations (14) ((n-1) equations & 
(n) unknowns), along with equation (12) can 
now be solved analytically. The results can 
then be compared with the results found 
using the proposed numerical nonlinear 
model. 

Without loss of generality, equation (14) 
above can be rewritten as: 
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Substituting for it  in the constraint equation 
(12) yields: 
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Since 1t  is the only unknown variable in 
equation (16) one can solve for 1t . The 
values for all ),3,2( niti L=  can then be 
found by substituting the value of 1t  in 
equations (15).   
To illustrate the steps discussed above, two 
examples are presented.  The first one will 
be solved using the proposed nonlinear 
model.  The second example is solved using 
both, the proposed nonlinear model and the 
analytical method formulated specially for 
verification purposes.   

 
 

6   Examples 
The following examples are presented below 
along with their corresponding solutions: 
 
 
6.1   Example 1   
The total time allotted for testing the 
radioactivity of 8 products is T = 7224.9923 
minutes.  The counting rates in counts per 
minute due to both product and background 
and that due to background alone are given 
below: 

 
11 br +  22 br + 33 br +  44 br +

611 1017 2022 1781 
    

55 br +  66 br + 67 br +  88 br +  
922 792 1415 921 

 
And, 

1b  2b  3b  4b  
121 140 230 180 
    

5b  6b  6b  8b  
160 90 160 80 

 
The above example was solved using the 
proposed nonlinear model presented in this 
paper.  The minimum objective function is 

Tσ  = 12.0944 and the optimal allocations 
for the 7224.9923 minutes allotted to the 8 
products are: 

 
1t  2t  3t  4t  

532.36    642.101 814.1235 784.1783
    

5t  6t  7t  8t  
614.696 595.68 722.9819 633.1941

 
And, 

1bt  2bt  3bt  4bt  
236.909 238.2416 274.5851 249.3172 

    

5bt  6bt  7bt  8bt  
256.0668 200.8176 243.1223 186.6179 

 
 
6.2 Example 2  
This example was solved using the proposed 
nonlinear model and validated using the 
analytical method. The background 
radiation is assumed negligible (i.e. b = 0). 
The total time allotted for testing 6 products 
is T = 2117 minutes.  Counting rates per 
minute are given below: 
 

1r  2r  3r  4r  5r  6r  

1015 921 102 201 333 621
 

 
Using the proposed nonlinear model, the 
minimum value for the objective function is 

Tσ  = 6.730412; the optimal allocation of 
the 2117 minutes allotted to 6 products is: 

 
1t  2t  3t  

464.8093 449.9932 216.0991
   

4t  5t  6t  
270.9265 320.5783 394.5935

 
The same example was solved using the 
analytical method, the minimum value for 
the objective function is Tσ  = 6.7304; and 
the optimal allocations of the 2117 minutes 
allotted to 6 products are: 
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1t  2t  3t  
464.8093 449.9933 216.0991
   

4t  5t  6t  
270.9265 320.5784 394.5936

 
 
7   Discussion 
It should be noted that the objective function 

Tσ  in equation (11) along with the 
constraint equation (12) constitute a 
nonlinear model; both are functions of 

ntttt ,,.........,, 321 , bt . Fortunately, the 
objective function Tσ  is a monotonically 
decreasing function of ntttt ,,.........,, 321 , bt  
and the constraint equation (12) is purely 
linear.  Therefore, the solution found is a 
global minimum.  Comparison of results 
found from the nonlinear model with those 
from the analytical one show a high degree 
of compatibility between them. This degree 
of consistency between results establishes a 
proof of effectiveness of the proposed 
nonlinear model presented in this paper. 
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