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Abstract: - As is well known, process capability analysis for more than one quality variables is a complicated 
and sometimes contentious area with several quality measures vying for recognition. When these variables 
exhibit non-normal characteristics, the situation becomes even more complex. The aim of this paper is to 
measure Process Capability Indices (PCIs) for bivariate non-normal process using the bivariate Burr 
distribution. The univariate Burr distribution has been shown to improve the accuracy of estimates of PCIs for 
univariate non-normal distributions (see for example, [7] and [16]). Here, we will estimate the PCIs of bivariate 
non-normal distributions using the bivariate Burr distribution. The process of obtaining these PCIs will be 
accomplished in a series of steps involving estimating the unknown parameters of the process using maximum 
likelihood estimation coupled with simulated annealing. Finally, the Proportion of Non-Conformance (PNC) 
obtained using this method will be compared with those obtained from variables distributed under the bivariate 
Beta, Weibull, Gamma and Weibull-Gamma distributions. 
 
 
Key-Words: - Process Capability Index (PCI), bivariate Burr distribution, simulated annealing algorithm, non-
normal distribution, multivariate processes. 
 
1 Introduction 
In the field of statistical quality control, it is 
generally assumed that the distributions of quality 
characteristics are normal. But, in most practical 
cases this assumption is not valid and the 
distribution of the quality characteristics may follow 
non-normal distributions such as Gamma, Beta, and 
Weibull distributions.  
Many industries are using a quantitative measure 
called Process Capability Indices (PCIs) for the 
purpose of process assessment and improvement. 
The objective of these statistical measures is to 
estimate process variability relative to process 
specifications. Additionally, process capability 
provides a common standard of product quality for 
suppliers and customers. The standard Process 
Capability Index is based on certain assumptions 
which are as follow: 
Data are collected from an in-control process. 

Collected process data are independent and 
identically distributed. 
Collected process data are normally distributed. 
For non-normal stable processes, capability ratio Cp 
and process capability ratio for off center process 
Cpk , defined by Kane (1986) (equation (1) and (2)), 
are not appropriate. 
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USL is the upper specification limit, LSL is the 
lower specification limit, µ is the process mean, and 
σ is the process standard deviation. If µ and σ are 
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not known, one can replace them by X  and  
respectively, where 

S
X  is the sample mean and  is 

the sample standard deviation. 
S

In the past decade, several modifications of classical 
PCIs have been proposed to resolve the issue of non-
normality of quality characteristics data. Castagliola 
(1996) presented a new approach to compute 
process capability. This approach is based on using 
probability distribution to compute the proportion of 
non-conforming items and then use these to estimate 
the capability index. This approach is 
straightforward, logical and easy to deploy by 
engineers and managers, for normal as well as for 
non-normal data. Castagliola et al. (2005) have also 
extended univariate method in Castagliola (1996) to 
bivariate distribution but again limited it to bivariate 
normal data, and compared the results against 
existing methods for multivariate normal processes. 
In this paper, we will use method presented by 
Castagliola et al. (2005) to evaluate PCI for bivariate 
non-normal quality characteristics data. Preliminary 
to this, we also use the bivariate Burr distribution 
with three parameters (Durling (1975)) to fit our 
bivariate non-normal data. 
This paper is organized in the following manner. A 
capability analysis for univariate non-normal data 
and multivariate normal data is discussed in Section 
2. A review of the bivariate Burr distribution is 
discussed in Section 3.  Section 4 explains our 
proposed method to estimate the Burr parameters 
using simulated annealing algorithm (SA). 
Simulation studies for different bivariate non normal 
distributions are presented in Section 5 and, finally, 
we conclude the paper with suggestions for future 
works. 
 
2 PCI for Non-Normal Data and 
Multivariate Normal Data  
Many researchers have proposed several methods to 
handle the issue of non-normality in the quality 
characteristics data.  Most of these efforts have been 
devoted to estimate PCI for multivariate normal 
data. In case of multivariate non-normal quality 
data, this field is still wide open for researchers due 
to the complex nature of the problem. In the 
proceeding section; we will review research 
literature related to the subject mater. 
 
2.1 PCI for Univariate Non-Normal 
Processes  
One simple method to handle non normal data is to 
transform the data into normal form using 
mathematical functions and then use traditional 
normal methods to estimate PCI. For transformation 

purpose, Johnson (1949) built a system of 
distributions based on moment method, called the 
Johnson transformation system. Box & Cox (1964) 
presented a useful family of power transformations 
which transform non-normal data into normal ones. 
Somerville & Montgomery (1996) also used a 
square-root transformation to transform a skewed 
distribution into a normal one. Niaki & Abbasi 
(2007) presented the transformation called “root 
transformation” to transform skewed discrete 
multivariate data to multivariate normal data. 
Another conceptually simple way to treat the non-
normal data is to use non-normal percentiles to 
modify classical PCIs. Clements (1989) proposed 
the method of non-normal percentiles to calculate 
process capability Cp and process capability for off 
center process Cpk indices for a distribution of any 
shape, using the Pearson family of curves. 
Clements’s method is widely used in industry. Pearn 
& Kotz (1994) applied Clements’s method to 
construct the second generation index Cpm and the 
third generation Cpmk for non normal data. Pearn et 
al. (1999) presented a generalization of Clements’ 
method with asymmetric tolerances. These quantile-
based indices, Cp and Cpk for non normal data are 
defined as follow: 

135.0865.99 XX
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=               (5) 
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In the above equations,  percentile value 
of the data. Although Clements’s method is 
commonly used in industry, a research study by Wu 
et al. (1998) indicated that the Clements’s method 
can not accurately measure the PCI values, 
especially when the underlying data distribution is 
skewed. Tang & Than (1999) also did a 
comprehensive review of the process capability 
indices for non normal processes. 

th
p pX 100* is 

Liu & Chen (2006) proposed a modified Clements 
method to evaluate PCI for non-normal data. They 
suggested that accuracy of the estimated PCI for non 
normal data can be improved by using Burr 
distribution instead of the Pearson curves 
percentiles. The parameters of a Burr probability 
density distribution function can be set as to fit the 
normal, Gamma, Beta, Weibull, log-normal, 
extreme value type I distribution. Wang et al. 
(1996), Zimmer et al. (1998), Kan and Yazici 
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(2006) and Mousa & Jaheen (2002) have presented 
a comprehensive review of Burr distribution and its 
application to many non-normal situations. 
Liu & Chen (2006) has used 3rd and 4th sample 
moments of the data to get the standardized 
moments and used Burr tables to fit Burr 
distribution to process data.  
Using simulation study, Liu & Chen (2006) showed 
that Burr distribution is superior to Clements’s 
method in estimation Cpu but both methods over 
estimate the Cpu in cases of highly skewed 
distributions (skewness ≥1.5). 
Bai & Choi (1997) have developed a “weighted 
variance” (WV) approach to measure PCIs for 
skewed distributions. Pal (2005) evaluated PCI 
using process capability of non normal to 
generalized Lambda distribution. Parchami et. al 
(2005) used a fuzzy approach to estimate PCI. 
Castagliola (1996) defined the relationship between 
process capability and proportion of non-
conforming items and presented a new approach to 
evaluate PCI for non normal data. Castagliola used a 
method based on the generalized Burr distribution to 
assess the capability of the process data. Through 
the sample empirical distribution function, he used a 
polynomial function to approximate a Burr 
distribution and from this obtained the Process 
Capability Indices. 
 
 For normal data, it is easily shown that 

3

))(5.05.0(1 ∫+−Φ
=

usl
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where f(x) represents the probability density 
function of the process and T its mean.  For non-
normal distribution, the above equations can still be 
used to obtain PCIs but T now represents the 
median. 
 
2.2 PCI for Multivariate Normal Process 
Data 
Multivariate process capability indices, in general, 
can be obtained from (a) the ratio of a tolerance 
region to a process region, (b) the probability of 
nonconforming product, and (c) other approaches 
using loss functions. Hubele et al. (1991,) using 
multivariate normal distribution, defined the PCI as 

the ratio of the rectangular tolerance region to 
modified process region which is the smallest 
rectangle around the ellipse with 0027.0=α . The 
number of quality characteristics in the process is 
taken into account by taking the  root of the ratio 
where 

thυ
υ  present the number of quality 

characteristics.  

υ
1

region process gengineerin  theof vol.
region  tolerancegengineerin  theof vol.

⎥⎦
⎤

⎢⎣
⎡=PMC  (13) 

Here the modified tolerance region is the largest 
ellipsoid centered at the target which falls 
completely within the original tolerance region.  
Another method for estimating PCI for multivariate 
normal was proposed by Chen (1994).  In that 
paper, a tolerance zone is defined by 

{ }0)0(: rXhVRXV ≤−∈= μ , where  is a 

positive number, 
0r

0μ  is a target value and  is a 
positive function. The process is capable if 

)(h x

α−≥∈ 1)( VXP . 
Let { }αμ −≥≤−= 1))0((:min cXhPcr . If the 
cumulative distribution function of )( 0μ−Xh  is 
increasing in a neighborhood of r , then r  is simply 
the unique root of equation αμ −=≤−( 0XhP 1))( c . 
The process is deemed capable if . Here  is 
the half-width of the tolerance interval centered at 
the target value, 

0rr ≤ 0r

0μ . Here, , is the half width of an 
interval centered on the target value such that the 
probability of a process realization falling within 
this interval is 

r

α−1 . 
Wang et al. (2000) compared the above three 
multivariate process capability indices and 
presented some graphical examples to illustrate 
them. Chen et al. (2006) extend Boyles’ work 
(1994) for normal distribution and Liao et al.’s work 
(2002) for non normal distribution. They have also 
extended Huang et al.’s (2002) work for 
multivariate data but they have not considered the 
correlation between the variables. They computed 
process capability for multivariate data (without 
correlation) and for each individual variable. 
Castagliola and Castellanos (2005) extended the 
univariate method developed in Castagliola (1996) 
to multivariate normal distribution by replacing the 
univariate probability density function   with 
the multivariate normal probability density function. 
They used equation (9)  but replaced  f(x)  with a 
multivariate normal pdf  , i.e.  

)(xf

),...,,( 21 pxxxf

3

1
1

)...21),...,2,1(2
2

 ...  5.05.0(1 ∫ ∫ ∫+−Φ

=

usl
lsl pdxdxdxpxxxfusl

lsl pusl
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                                                              (14) 
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Keeping in view the above literature survey, there is 
an opportunity for researchers to explore a suitable 
PCI evaluation method that can address the complex 
situation of multivariate non-normal data.  In this 
paper, we replace probability density function in 
equation (14) with a Burr distribution. The efficacy 
of the proposed method will be assessed by using 
the Proportion of Non-Conformance (PNC) 
criterion. 
 
 
3 Review of the Bivariate Burr 
Distributions 
Durling (1975) introduced the bivariate Burr 
distribution as follows: 
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The cumulative distribution function has the form: 
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In the bivariate Burr distribution there are three 
parameters, , to be estimated. These 
parameters can be estimated by maximizing the log 
likelihood function based on a sample of size n 
given by: 
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njjxjx ,...,2,1  ),2,1( =
is an observed bivariate 

sample. The first order condition for maximizing L 
with respect to  lead to the following 
differential equations: 
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In this paper, instead of solving equations (18), (19) 
and (20) for  our maximum likelihood estimators of 

, we will use, directly from equation 
(17),  a systematic random search algorithm called 
“Simulated Annealing” (see Abbasi et al. (2006)) to 
obtain the estimated parameters. 

pbb  and , 21

 
4. Computing CPI for Bivariate Non-
Normal Data Using Burr Distribution  
To use equation (14), one needs to calculate the 
probability of quality characteristics falling between 
specification limits. In order to calculate this 
probability we need to know the distribution of the 
data. In this paper we use bivariate Burr distribution 
to calculate the probability of non-conforming 
products in a bivariate non-normal process. 
Maximum likelihood estimation (MLE) method is 
used to estimate its unknown parameters 

 .Since the maximum likelihood function 
(MLF) of bivariate Burr is complex and may have 
some local optima, and numerical method to solve 
differential equations may also give local optima, 
we will maximize likelihood function by using 
Simulated Annealing algorithm (SA). Abbasi et al. 
(2006) used simulated annealing algorithm to 
estimate three parameters of Weibull distribution 
through MLE method and observed that it was fast 
and the results were very accurate. Having obtained 
the Burr distribution, we will then use equation (14), 
and replace  in the numerator with the 
bivariate Burr distribution (equation (15)) to 
compute process capability (C

pbb  and , 21

),...,,( 21 pxxxf

p). Table 1 outlines 
the procedure of the proposed procedure. 
 
5. Simulation studies 
The purpose of this section is to show the capacity 
of the proposed method for estimating the Cp value 
of non-normal bivariate processes. Simulation 
studies have been conducted for bivariate non-
normal processes. For this simulation study, 
bivariate non normal distributions such as Gamma, 
Beta and Weibull and Weibull- Gamma are used. 
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Table 2 depicts the simulation methodology for this 
research study. (We used NORTA method to 
generate simulation bivariate data. Refer to Cario & 
Nelson (1997) and Niaki & Abbasi (2007) for a 
discussion of the procedures used to generate these 
data.) 
 

Table (1) – the procedure for  computation pC

 
Table (3) presents the parameters of the bivariate 
non-normal distributions used in the simulation 
study. The Cp value computed using the exact 
bivariate distributions, for example Gamma, is 
presented under heading Exact Distribution. We 
have generated m=30 samples of size n=100 and 
fitted a bivariate Burr distribution to each sample. 
The parameters  for the fitted Burr 
distribution are estimated using SA algorithm. The 
C

pbb  and , 21

p’s of these 30 samples are then calculated using 
equation (14). The mean and standard deviation for 
30 computed Cp’s are presented in the last two 
columns of Table (3).  The results in Table (3) show 
that the mean Cp values for different bivariate non-
normal distributions are very close to the exact Cp 
value. Therefore one can conclude that the proposed 
method enables one to estimate Cp value of the 
bivariate non-normal data reasonably accurately. To 
further assess the efficacy of the proposed method, 
we have also calculated the Proportion of Non-
Conformance (PNC) data using  in 
Table (4). This table also indicates that the 
proportions of non-conformance based on the 
proposed method are close to the proportion of non-
conformance obtained using the exact distributions. 

Cp) (-3 = PNC Φ

 

Table (2) – the procedure for simulation methodology 

Step 1

Generate 100 vectors from bivariate non-
normal using one of above distributions. 
(Compute expected proportion of non- 
conformance (p*) by using 1,000,000 data 
from the corresponding distribution e.g., 
Gamma and calculate the proportion of data 
falling out side the given USL.) 

Step 2-1 Fit MLF of Bivariate Burr distribution to 
data. 

Step 2-2 Estimate parameters of the fitted bivariate 
Burr distribution using SA. 

Step 3 Use Castagliola method to compute Cp for 
Bivariate Burr distribution Eq (14) 

Step 4 Compute proportion of non-conforming for 
Cp say p** )3( =PNC puCΦ −

Step 5
Compare p*and p** to evaluate the accuracy 
of the proposed method 

 
 

Table (3) – Simulation study for bivariate non-normal 
distribution 

 
 
 

 
 
 
 
 
 

Step 1 Select a sample from the process. 

Step 2
Write down the maximum likelihood function 
(MLF) for sample based on bivariate Burr 
distribution. 

Step 3 Maximize MLF by using Simulated Annealing 
and obtain estimates of b1, b2 and p. 

Step 4

From Eq (16) compute the difference between 
cumulative density function at the upper 
specification limits ( ) and the lower 
specification limits ( ), i.e. 

. 

21, uslusl

21 , lsllsl

),(),( 2121 lsllslFusluslFB −=

Step 5
3

)5.05.0(1 BC p
+Φ

=
−

. 

Step 6
Compute the corresponding PNC=  
and compare it with the PNC obtained from 
the exact distribution for example Gamma. 

)3( cp−Φ

Distribution Parameters1 Σ  

Gamma α=[3,4] 
β=[2.5,3]  

Gamma α =[3,6] 
β=[8,10] 

Beta α =[2,4] 
β=[5,4] 

Weibull α =[3,4] 
β =[1,2] 

Gamma, 
Weibull 

α =[5,2] 
β=[3,5]  
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Follow of Table (3) 

 

1 Note that each value in the pair represents the corresponding 
marginal distribution.  
2 Specification limits are selected to represent almost natural 
specification limits 

 
Table (4) – proportion of non-conformance 

 

Distribution Burr p** Expected PNC In 
the process p*

Gamma 0.0325 0.0199 
Gamma 0.0025 0.0018 

Beta 0.0151 0.0095 
Weibull 0.0064 0.0073 

Gamma, Weibull 0.0132 0.0104 

 
 
6. Conclusion 
In this paper, the method proposed in Castagliola et 
al. is used to estimate the process capability index 
for bivariate non-normal quality characteristic data. 
We used the bivariate Burr distribution to fit the 
probability density function of the data. The process 
combines both MLE and simulated annealing 
algorithm to estimate the parameters of the bivariate 
Burr distribution. We have presented the results 
using simulated data from bivariate distribution such 
as Gamma, Beta and Weibull. Thirty samples of size 
100 from each distribution are generated and used to 
assess the accuracy of the proposed approach.  
The simulation study results for different non-
normal bivariate distributions revealed that the 
proposed method perform well. Using the expected 
non-conformance proportion criterion, the results 
also indicate that proportion of non-conformance 
obtained using the proposed method is close to that 
obtained under the exact distributions.  

The extension of the proposed method to more than 
two non-normal multivariate quality data is 
straightforward and is recommended as a future 
research area. Using other metaheuristic algorithms 
such as Genetic Algorithm (GA) and Tabu Search 
(TS) to estimate bivariate Burr parameters could be 
another future research.  
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