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Abstract: - One of the most important decisions for shipowners is to determine how big a containership to 
order. The optimal containership problem represents a trade-off between the cost and revenue resulting from 
size and speed. In reality, there is a tendency toward increasing containership size and speed, which is resulted 
from some factors related to profit. However, most of the past studies devoted their attention to the problem 
from the cost perspective. These models omitted the effect of ship speed on profit, and might result in 
inadequate solutions to the problem. Based on the cost-volume-profit analysis, a nonlinear programming model 
is formulated to approach the problem. The objective function is a strictly concave function with a globally 
unique optimal. An example of the Trans-Pacific Route is employed to test the model’s formulation. The results 
provide shipowners with a beneficial reference for planning deployment and routing of big containerships. 
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1 Introduction 
One of the most important decisions for shipowners 
is to determine how big a containership to order for 
liner services. This problem represents an optimal 
trade-off between the cost and revenue, resulting 
from the different combination of ship size and speed. 
However, most of the past studies devoted their 
attention to the problem from the cost perspective. 
These models omitted the effect of ship speed on cost 
and revenue, and probably result in inadequate 
solutions to the problem. In this paper, we propose an 
adequate model for addressing the characteristics of 
the traditional problem in the industry, with 
achieving the purpose of profit maximization for 
shipowners.  

Since Jansson and Shneerson proposed a 
mathematical model for solving the containership 
size problem, some advances have been made on this 
issue in the maritime transportation field [1]. For 
example, Jansson and Shneerson contend that the 
main check on the optimal ship size problem depends 
on port costs [2]. They conclude that the deployment 
of containerships implies that economies of ship size 
are enjoyed at sea and diseconomies of ship size 
suffered in port. Cullinane and Khanna develop a 
disaggregated function to determine the optimal 
containership size [3, 4]. The results reveal that 
economies of containership operation are crucially 
dependent on port productivity, and suggest that the 
deployment of larger containership depends on are 

special nodes of serving as intermediate switching 
and consolidation points for connecting many origins 
and destinations voyage distance. Tally proposes a 
cost model to investigate the effect of the changes in 
ports calls, sailing distance, and time in port on the 
same problem [5]. Later, Pope and Tally formulate a 
periodic-review inventory model for testing the work 
of [2], and conclude that one may not make general 
statements about optimal containership size [6]. Lim 
formulates a revenue model to examine the ship size 
problem [7]. Some of models focus on the factors of 
size growth and forecast a limit to the advantages of 
larger ship [8, 9]. These studies workout minimal 
unit cost; however the lowest cost does not guarantee 
that a ship can maximize profit to shipowners.   

In addition to ship size involved in analyzing the 
problem, one key factor to take into account is ship 
speed [10]. The ship speed can easily be neglected in 
analyzing the problem. The rationale for the concern 
is that: (1) for two same size containerships, one that 
has more power of speed costs more to purchase; (2) 
for a given route a containership that makes faster 
speed can execute more roundtrips within a horizon 
planning time, thus increasing amount of the cargo 
carried and revenue; (3) for a given route a 
containership making faster speed needs more fuel 
consumption within a horizon planning time, thus 
increasing bunker cost. As ship speed will highly 
affect both revenue and cost, it supposes not to be a 
constant in the problem. 
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In this paper we propose a model optimizing ship 
size with speed being considered, based on the 
cost-volume-profit method for approaching the 
problem. The model is a strictly concave function 
with a globally optimal and unique solution. The 
model employs two-fold computing stages: “one 
variable” and “two variables”, while maximizing the 
transportation profit to solve the problem. Finally, 
this paper utilizes an empirical example that tests the 
model formulation, utilizing six major container 
ports on the Trans-Pacific Route. 

The next section presents the model formulation 
and solution process. Section three provides the 
economies analysis for costs related to ship size and 
speed. Section four provides a real case along with 
implication of the problems. Finally, we present our 
conclusions and directions for future research.  
 
 
2 Model Formulations 
To specify the problem for model formulation, some 
postulates are used in this process as set forth below: 
• The fixed cost of a containership depends on its 

ship size and ship speed. 
• Tariff between ports are given and constant. 
• Loading factor for a containership between ports 

is available and given.  
• No consideration for empty container leasing 

cost and shipper inventory cost. 
 

2.1 Objective Function 
Max  
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Subject to 

4010 ≤≤ iV ……………………….………………..(6) 
160001000 ≤≤ iS ………………………………….(7) 

 
Where the decision variables of the problem are 
defined as Vi, representing the average speed of a 
containership i in knot on a voyage leg, and Si, size 

for containership i in TEU (twenty-foot equivalent  
unit). Input data for the mode are below:  

y
iR = Revenue for containership i within one-year 

planning horizon in USD, 
y

iC = Total transportation cost for containership i 
within one-year planning horizon in USD, 

y
iQ = Frequency of service for containership i within 

one-year planning horizon,  
abF = Freight rate between ports a and b in USD per 

TEU,  
baF = Freight rate between ports b and a in USD per 

TEU,  
kL = Loading factor for containership i at port k, 

k∈(a, b) in percentage,  
abD = Sailing distance between ports a and b in 

nautical mile,  
fiC = Bunker cost for containership i in USD per ton, 
k
iN = Number of cargo loading for containership i at 

port k per hour,  
k
iO = Loading fee for containership i at port k in 

USD per TEU /hour,  
ciC = Purchasing prices for containership i in USD,  
y
ciC = Annual capital cost for containership i in USD,  
y
piC = Annual operation cost for containership i in 

USD,  
k
wiC = Daily wharfing fees for ship i at port k in USD 

per day,  
k
iE = Number of berthing days for containership i 

berthing at port k in day, 
s
iE = Number of sailing days for containership i per 

voyage leg (a, b) in day. 
 

The objective function (1) represents the profit 
obtained from revenue minus cost. The model (2) is 
the revenue function and (3) the cost function. The 
revenue is decided by freight rate, number of cargo 
carried and frequency of service, which is related to 
ship size and ship speed. The cost item will be 
classified into capital cost, operation cost, bunker 
cost, and wharfing cost, which are related to ship size 
and ship speed. The model (4) is the frequency of 
service depending on ship speed and (5) the berthing 
time for a ship at port. The time is determined by 
number of cargo carried and cargo loading per hour 
in port, which is related to ship size. Constraints (6) 
and (7) ensure that the observed range of the size and 
speed of a containership is restricted.  
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2.2 Solution Method 
The procedures of model formulation to the problem 
are as described below: Step 1. Define the decision 
variables, parameters and cost items related to the 
problem. Step 2. Formulate a profit maximization 
model based on a cost-volume-profit approach. Step 
3. Formulate regression model of costs related to the 
decision variables. Step 4. Simplify the profit 
maximization model with two decision variables. 
Step 5. Interpret the ship size and speed economies 
and the objective value.  

The solution processes to the problem are outline 
below: Step 1. Examine if the optima of the functions 
exists, by given the first order condition, φ=∇f , 
then locating the value at X* = (Vi, Si). Step 2. 
Compute the second order condition, by Hessian 
Matrix donated H. Step 3. If )( *

1 XH  <0 and 

)( *
2 XH  >0, then d2f(X*) <0, the value at X* = (Vi, 

Si) is the global optimum. Step 4. Compute the 
objective value of the model at different locations of 
X* = (Vi, Si). 
 
 
3 Regression Formulations 
This section will use regression analysis to simplify 
the nonlinear programming model and interpret the 
economies of ship size and speed [1, 5]. The equation 
of ii

y
ci VSC lnlnln γβα ++=  is equivalent to the power 

model as below:  
γβ

ii
y

ci VASC = ……………………………….……(8) 
Where β is the elasticity of capital cost ( y

ciC ) related 
to ship size (Si), meaning that a 1% increase in the 
ship size results in a β % increase in its capital cost, 
regardless of ship speed (Vi). When the value of β is 
less than 1, there are economies of capital cost 
related to ship size; γ is the elasticity of capital cost 
related to ship speed.  
 
3.1 Capital Cost  
Capital costs shares about 59 % of total cost for a 
containership [11]. The annual capital costs depend 
on ship useful life (n) and the cost to purchase (P) [5]. 
The capital cost is through capital recovery factor 
(CRF) to obtain. This equation can be expressed as 
CRF = [r (1+r) n]/ [(1+r) n-1], where r is interest rate. 
For example, if the ship cost to purchase is P, then 
the annual capital cost is obtained by multiplying 
CRF by P [12]. The cost data used for computation 
consists of 107 different containerships from 
Containerization International [13]. In the model, it 
is assumed that average interest rate (r) is to be 10 % 

and ship useful life (n) 20 years, similar to that as 
assumed by Talley [5]. After regression estimating, 
the capital cost equation is obtained as below: 

586.0598.0170.3
ii

y
ci VSeC −=    (R2 = 0.930, F = 721.159, 

P< 0.001)………………………………………….(9)  
The regression (9) certainly supports that there is 
economies of capital cost related to ship size and 
ship speed, respectively as the statistics of regression 
are significant.  
 
3.2 Operation Cost 
The operating cost of containerships is the sum of 
wages, subsistence, stores, supplies, maintenance, 
repairs and insurance. Facing a similar data obtained 
problem as Cullinane and Khanna and Lim [3,7], we 
use the estimation of Buxton, who asserts that the 
operation cost are approximately 10~15 % of the 
total cost for containerships [14], close to the cost 
construct from Lloyd’s Shipping Economist [15]. In 
doing so, we employ the data of annual capital cost 
obtained for further computing of operation cost [15]. 
The effective operation cost equation is obtained as 
below: 

506.0603.0461.8
ii

y
pi VSeC =     (R2 = 0.902, F = 499.526, 

P< 0.001)…………………….……………….….(10)  
The regression (10) also supports that there is 
economies of operation cost related to ship size and 
ship speed, respectively as the regressions are 
statistically significant. 
 
3.3 Bunker Cost 
The data used for bunker cost test is based on bunker 
oil consumption of 655 different containerships from 
Containerization International [13], omitting 
lubricating oil because it shares only 3 % of the total 
consumption [3]. After regression estimating, the 
bunker cost equation is obtained as below: 

001.2493.0462.0
iifi VSeC −=    (R2 = 0.947, F = 5821.341, 

P < 0.001)…….……………………………….....(11)  
It is noticeable that the equation is not consistent in 
coefficient of ship size and ship speed in the 
regression estimation. As the regression (11) is 
statistically significant, it supports that there is 
economies of bunker cost with related to ship size; 
but as the value of β is 2.001, higher than 1, there is 
diseconomies of bunker cost to ship speed. 
 

Table1 Elasticity value of costs with related  
to ship size and ship speed 

Elasticity Capital 
cost 

Operation 
cost 

Bunker 
cost 

Wharfing
fee 

β 0.598 0.603 0.493 0.582 
γ  0.586 0.506 2.001 -- 
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3.4 Wharf Cost 
Wharf fee is the major factor to be related to ship 
size among port charges, and the rest of the charges 
may be only negligible because of no significance [3]. 
In the model, it is assumed that there is not 
significant difference in wharf fee offered from ports. 

The cost data used for test is from the Kaoshiung 
Harbor Bureau, Taiwan. As wharf fee is related to 
ship size only, the effective equation is obtained as 
below: 582.09517.23 i

k
wi SC =    (R2 = 0.943, F = 83.34, 

P < 0.001)…………………….……...………….(12)  
As the regression figure is statistically significant, it 
supports that there is economies of wharf cost related 
to ship size. Finally, these cost regressions (9~12) 
resulted in high value of R2 (> 0.9), i.e., a better fit to 
the data, both explanatory variables of ship size and 
speed to costs are significant at the 0.01 level or 
better.  

The elasticity value with related to ship size and 
ship speed is listed in Table 1. Holding ship speed 
constant, there are cost economies of ship size since 
all β values to ship size are less than 1. However, it is 
unable to know if the cost economies of ship speed 
exist. Table 1 shows that there is a different elasticity 
value of γ in cost regressions related to ship speed. 
That is, the γ value of capital cost and operation cost 
with related to speed are less than 1; however, the γ 
value of bunker cost is found to be 2.001, more than 
1, which means that a 10% increase in ship speed 
will result in 5.86 % increase in capital cost, 5.06 % 
in operation cost, and 20.01 % in bunker cost 

From the statistics in Table 1, it is easily seen that 
larger ship size may achieve lower unit transportation 
cost because of economies of costs. As for faster 
speed, we need to compare the changes in increase in 
bunker cost with the decrease in capital cost and 
operation cost. Therefore, it is the key point for 
observing ship speed to affect the trade-off problem. 
As previously discussed, high bunker price should be 
one of important factors to drive the result. This 
interesting finding has not been mentioned in past 
literature.  
 
4 Numerical Examples 
4.1 Kaoshiung-Los Angeles  
We now test the model employing an experimental 
data set from the Trans-Pacific Route. The data with 
six ports1includes freight rate, loading factor, bunker 
price, loading fee, labor hours and traffic flow. The 
paper uses Mathematica 4.0 to implement the 
solution algorithms. The data set related for test is 

                                                      
1Ports: (1) Kaoshiung, (2) Hong Kong, (3) Shanghai, (4) 
Pusan, (5) Tokyo, (6) Los Angeles. 

2500 5000 7500 10000 12500 15000
s

5×106
1×107

1.5 ×107
2×107

2.5 ×107
3×107

3.5 ×107

π

 
Fig.1 The relationship between the optimal value (π ) and ship 
size (s) holding ship speed constant 
 
from various sources2. To easily interpret the results, 
this paper takes a voyage leg from Kaoshiung to Los 
Angeles for model test. It is assumed i to be 1 (i.e., 
one containership) and loading factor 0.7 for two 
ports.  

First, holding ship speed constant, we change the 
value of ship size to observe the objective value. The 
relationship between the optimal value (π ) and ship 
size (s) is shown in Fig.1. The pattern shows that the 
objective value rises with the increases of ship size. 
This increase seems intuitively to be that there is no 
limit with ship size given. The outcome appears to be 
supported by economies of ship size. As previous 
discussion, all of β values of cost regressions are less 
than 1, meaning that large ship can enjoy the lower 
unit transportation cost.  

Secondly, holding ship size constant, we adjust 
ship speed to check the objective value of the model. 
Fig.2 shows the relationship between the objective 
value (π ) and ship speed (v). It can be seen that the 
objective value rises with the increases of ship speed 
between 10~20 knots, leveling at speed 24~26 knots, 
and then sharply declining when speed over 26 knots. 
This curve reveals that the highest point is obtained 
when ship speed is about 24 knots. The point means 
that margin revenue equals margin cost. If ship speed 
is faster than 24 knots, it means margin revenue is 
less than margin cost, thus resulting in the objective 
value declines. The same rationale can explain the 
situation when ship speed is lower than 24 knots. 
From the Fig.2, it is interesting to note that fast speed 
over 24 knots would not be easy to produce the 
profit.  

Next, we observe the objective value with two 
variables of ship size and speed taking into account. 

                                                      
2 Sources: (1) Institute of Transportation, Ministry of 
Transportation & Communciations, Taiwan, R.O.C, (2) 
Containerization International Yearbook, 2005, (3) Official 
U.S. Waterborne Transportation Statistics, Maritime 
Administration, Department of Transportation, 2005. 
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Fig. 2 The relationship between the optimal value (π ) and ship 
speed (v) holding ship size constant  
 
Fig. 3 is the three-dimension plot of the model with 
ship size and ship speed. As it can be seen, the 
optimal point rises up as ship size increases; however, 
the point moves up to a stationary point and declines 
as ship speed increases. With size and speed taking 
into account, the highest point is obtained at the 
location of X* ={s =16,000 TEU, v = 24 knot}, 
meaning that it is a global optimal. As in previous 
discussion, the reason resulted from the different 
elasticity value of ship size and speed. Observing the 
Fig.1 and Fig.2, we understand that an increase in 
margin cost after ship speed over 24 knots is higher 
than an decrease in margin cost as ship size increases, 
resulting in the objective value decreases. High 
bunker price should be reasonable one to explain this 
outcome. From the result of the example, it reveals 
that if shipowners will deploy ships for service from 
profit prospective, an optimal strategy for suggestion 
would be the ship size of 16,000 TEU with speed at 
24 knots on the Kaoshiung to Los Angeles route.  

 
4.2 Sensitivity Analysis 
The postulate in the model is that market demand is 
given and constant, meaning that shipping liners are 
only price followers. The issue regarding the market 
demand is not included in this study. Next, we will 
examine if the optimal value is influenced by the 
parameters, such as the changes in loading factor, 
sailing distance, labor work time, and bunker price. 

Next, taking a voyage leg from Kaoshiung to 
Tokyo as an example, we alter the loading factor for 
a ship to examine the objective value. The result is 
shown Table 2. The result reveals that as the loading 
factor decreases, the profit also decreases, but ship 
size increases and ship speed decreases. To achieve 
the model, if the loading factor increases, the model 
tends towards utilizing smaller ships to enhance slot 
capacity and increasing speed to raise ship roundtrip.  

Table 3 shows the result of sailing distances. It 
reveals that as sailing distance increases, the profit, 
ship size and ship speed increase. A review of Table 
2 shows that there are cost economies of ship size to 

500010000
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v

0
1×10 7
2×107
3×10 7

π

500010000
15000 s

0 10
20
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40

v

 
Fig. 3 The three dimensions plot of a model with ship size (s) 
and ship speed (v) 
 
sailing distance. However, Table 3 also shows that an 
increase in profit and ship speed on the short voyage 
from Kaoshiung to Shanghai is higher than those of 
Kaoshiung to Pusan and Tokyo. The reason is 
because Shanghai offers lower loading fee than that 
of other ports. A similar result was also found in our 
previous study [16]. 

Table 4 shows the relationship between the 
objective value, ship size and ship speed related to 
labor work time. It should be noted that as labor 
work time increases, the profit increases; but ship 
speed increases and ship size remains unchanged. 
This result is similar to real-world cases.  

The result of sensitivity analysis for bunker price 
is shown in Table 5. It can be seen that as bunker 
price increases, the profit decreases; but ship size 
increases and ship speed decreases. The rationale for 
this outcome is because of diseconomies of bunker 
price to ship speed as previously discussed.  

From the result of sensitivity analysis, it should 
be noted: (1) Liner operators may consider choosing 
optimal hubs or operation alliances for satisfying the 
needs of bigger containerships. (2) Liner operators 
may plan a network system for their fleet, such as 
hub-and-spoke marine networks, in which bigger 
containerships run in hub links; whereas, smaller 
ones operate on spoke links[17].(3) Management of 
ports may provide an effective policy (e.g., loading 
fee, operation time) to attract ship port-calling. 

 
5 Conclusions 
In this paper, we propose a nonlinear programming 
model to capture the characteristics of the optimal 
containership problem, with achieving the profit 
maximization for shipowners. The model is a strictly 
concave function with a global unique optimal. An 
example of the Trans-Pacific Route is employed to 
test the model’s formulation and stability. This study 
technically has achieved the objectives of problem 
solving. 

The results indicate that bigger containerships 
can enjoy benefits of size economies; however, faster 
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speed does not guarantee that it will increase profit to 
shipowners. Other results exhibit that an optimal ship 
size and speed is sensitive to loading factor, sailing 
distance, labor work time, and bunker price. The 
model introduced can be expanded to examine the 
optimal number of ships and frequency of service for 
a fleet. An advantage of the study would provide 
shipowners with a reference for the deployment and 
routing of big containerships. 

 
Table 2 Sensitivity analysis of the changes in loading factor 

Loading 
factor 

Ship size 
(TEU) 

Increase (%) 
in ship size 

Ship speed 
(knot) 

Decrease (%)
in ship size

Profit 
(USD) 

0.9 6,998 -- 20.61 -- 15,442,000 
0.8 7,416 5.63% 19.71 -6.57% 14,493,900 
0.7 7,709 5.89% 18.34 -6.64% 13,469,500 
0.6 8,016 5.95% 17.60 -6.67% 12,296,100 

  
Table3 Sensitivity analysis of the changes in sailing distance  

Item/Voyage Kaoshiung-  
Hong Kong 

Kaoshiung- 
Shanghai 

Kaoshiung- 
Pusan 

Kaoshiung - 
Tokyo 

Kaoshiung -
Los Angeles

Ship speed (knot) 18.01 20.31 19.80 20.61 24.00 
Ship size (TEU) 3,651 3,894 5,284 6,998 16,000 
Profit (USD) 12,657,600 15,823,700 14,341,300 15,442,000 37,534,700

  
Table 4 Sensitivity analysis of the changes in labor work time  

Labor work time 
Per day 

Ship size 
(TEU) 

Ship speed 
(knot) 

Profit 
(USD) 

18 hours 16,000  19 23,825,300 
20 hours 16,000  22 28,297,400 
22 hours 16,000  23 32,877,900 
24 hours 16,000  24 37,534,700 

  
Table 5 Sensitivity analysis of the changes in bunker price  

Price/Item Ship size  
(TEU) 

Increase in  
Ship size 

Ship speed  
(knot) 

Decrease in 
Ship speed 

Profit  
(USD) 

$120/Ton 5,927 5.63% 24.45 -6.57% 15,651,500 
$140/Ton 6,299 5.89% 22.82 -6.64% 15,568,300 
$160/Ton 6,698 5.95% 21.30 -6.67% 15,484,100 
$180/Ton 7,140 6.18% 19.81 -6.70% 15,397,800 
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