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Abstract: Value at Risk defines the maximum expected loss on an investment over a specified horizon at a given 
confidence level. Together with conditional Value at Risk today is used by many banks and financial institutions as a 
key measure for market risk. For any investor on stock market it is very important to predict possible loss, depending 
on if he holds "long" or "short" position. By forecasting stock risk investor can be ensured "a priori" from estimated 
market risk, using financial derivatives, i.e. options, forwards, futures and other instruments. In that sense we find 
financial econometrics as the most useful tool for modeling conditional mean and conditional variance of 
nonstationary financial time series. Besides the assumption of normal distributed returns does not represent asymmetry 
of information influence, normal distribution also is not the most appropriate approximation of the real data on the 
stock market. Using assumption of heavy tailed distribution, such as Student's t-distribution in GARCH(p,q) model, it 
becomes possible to forecast market risk much more precisely. Even more, using Student's distribution with non-
integer degrees of freedom leads approximation to minimal differences between theoretical and real values. Such 
modeling enables time-varying risk forecasting, because the assumption of constant risk measures between stocks is 
unrealistic. The basic aim of this paper is comparative analysis of historic and prognostic risk measures, taking into 
account appropriate distribution assumption. The complete procedure of analysis has been established using real 
observed data at Zagreb Stock Exchange. For these purpose daily returns of the most frequently traded stocks from 
CROBEX index is used. 
 
Key-Words: theoretical distribution comparison, non-integer degrees of freedom, heavy-tails, scale and shape 
parameters, risk measuring, conditional variance, risk forecasting of stock returns 
 
1   Introduction 
Predicting dependence in the second order moments 
of asset returns is important for many issues in 
financial econometrics. It has been shown that 
financial volatilities move together over time across 
assets and markets. Volatility modeling opens the 
door to better decision tools in risk measuring. Value 
at Risk (VaR), conditional Value at Risk (CVaR) and 
conditional Value at Risk plus (CVaR+) will be 
presented. 

Value at Risk has become the most common 
measure that financial analysts use to quantify market 
risk. Even so VaR is proposed, by Basel Accords, as 
the basis for calculation of capital requirements for 
risk hedging. In category of parametric models the 
most are used GARCH(p,q) models in forecasting 
conditional mean and conditional variance within VaR 
framework. 

During optimization procedure it is important to 
take into account, not only first two moments, but also 
skewness and kurtosis of empirical distribution. 

Unfortunately the assumption that the returns are 
independently and identically normally distributed is 
unrealistic. 

Furthermore, empirical research about financial 

markets reveals following facts: 
 financial return distributions are leptokurtic, i.e. 

they have heavy tails and a higher peak than a 
normal distribution, 

 equity returns are typically negatively skewed and 
 squared return series shows significant 

autocorrelation, i.e. volatilities tends to cluster 
Returns from financial instruments such as exchange 

rates, equity prices and interest rates measured over short 
time intervals, i.e. daily or weekly, are characterized by 
high kurtosis.  

The complete procedure of analysis is established 
using daily observations of Pliva stocks as the most 
frequently traded stock from CROBEX index at Zagreb 
Stock Exchange. If the distribution of returns is heavy 
tailed, the VaR and conditional Value at Risk (CVaR) 
calculated using normal assumption differs significantly 
from Student's t-distribution. 

As it's known, Student's distribution belongs to family 
of extreme value distributions. In case of volatility 
modeling and CVaR estimating of Pliva stock returns it's 
found that kurtosis and degrees of freedom from 
Student's t-distribution are closely related. Statistical 
significance of existing heavy tailed distribution has been 
shown by Q-Q plot and tested using Jarque-Bera test. 
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2   Extreme value diagnostics 
To identify outliers and another extreme values Box and 
Whisker plot has been used. 

From Figure 1. outliers can be identify as Pliva returns 
which deviates from quartiles more than ( )1323 QQ/ − . 
The extreme values are Pliva returns which deviates from 
quartiles more then . ( )133 QQ −

Extreme values from Box and Whisker plot are 
perceived as circles with plus sign on both side of 
distribution. These extreme values and outliers are cause 
of existence fat tailed distribution. 

 
Figure 1.  

Box and Whisker plot of Pliva returns 
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Source: According to ZSE 

 
There are various analytical and graphical methods to 

detect heavy tails from observed distribution. The most 
common used are Jarque-Bera test, while Q-Q plot 
graphically determines fat tails. 

 
Figure 2. 

Q-Q plot of Pliva stock returns distribution 

Quantiles of Standard Normal

P
liv

a 
st

oc
k 

re
tu

rn
s

-2 0 2

-0
.1

0
-0

.0
5

0.
0

0.
05

   Source: According to ZSE 
 

In table 1. essential statistics are presented. 
 

Table 1. 
Essential statistics of Pliva stock returns distribution 

   stats |  plivaret 
---------+---------- 
    mean |  .0002185 
     min |  -.123698 
     max |   .088411 
skewness | -.0651446 
kurtosis |  7.615428 
      sd |  .0181509 

    -------------------- 
Source: According to ZSE 

 
Each of shape measures, i.e. skewness and kurtosis are 

tested separately, indicating that skewness isn't 
statistically significant whereas excess kurtosis of 4.6154 
is significantly greater than 3. In general, joint test shows 
that null hypothesis of normality distribution assumption 
can't be accepted. This joint test is presented as Jarque-
Bera test in table 2. 

 
Table 2. 

Normaly test of Pliva return distribution 
 

Skewness/Kurtosis tests for Normality 
                                                 ------- joint ------ 
    Variable |  Pr(Skewness)   Pr(Kurtosis)      chi2(2)    Prob>chi2 
-------------+------------------------------------------------------- 
    plivaret |      0.781         0.000          103.70       0.0000 

Source: According to ZSE 
 
From results presented in table 2, it's obvious that 

skewness, which is very close to zero, is not statistically 
significant at empirical p-value of 78.1%. From the other 
side high kurtosis (7.6154) is statistically significant. 
According to joint chi-square test null hypotheses of 
normality can not be accepted.  

 
3   Degrees of freedom estimation using 
method of moments 
In practice, the kurtosis is often larger than six (which is 
confirmed in this empirical example), leading to 
estimation of non-integer degrees of freedom between 
four and six. Thus, degrees of freedom can easily be 
estimated using the method of moments. 

Generally, there are three parameters that define a 
probability density function (pdf): 

 location parameter, 
 scale parameter and 
 shape parameter. 

The most common measure of location parameter is 
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the mean. The scale parameter measure variability of pdf, 
and the most commonly used is variance or standard 
deviation. The shape parameter (skewness and/or 
kurtosis) determines how the variations are distributed 
about the location parameter. 

The density of a non-central Student t-distribution has 
the following form: 
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where μ  is location parameter, β  is scale parameter and 
df is a shape parameter, or degrees of freedom and ( )⋅Γ  
is gamma function. Standard t-distribution 
assumes 0=μ , 1=β , with integer df. However, there are 
no mathematical reasons why the degrees of freedom 
should be an integer. Even so, the degrees of freedom can 
be estimated using method of moments, which means that 
kurtosis and degrees of freedom are closely related: 
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So, when empirical distribution is leptokurtic, then 
Student's t-distribution with parameter 304 ≤< df  
should be used to allow heavy tails of high kurtosis 
distribution. 

Second and fourth central moments are given as: 
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with excess kurtosis (greater then 3): 
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Hence, we may apply method of moments to get 
consistent estimators: 
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where variance from sample  is biased estimator of 
scale parameter 

2σ
β . 

According to equations (2) to (5) estimated degrees of 
freedom equal 5.3. Thus, non-integer degrees of freedom 
are used: 
• during optimization of likelihood function to 

estimate GARCH parameters, within quasi-Newton 
algorithm, and 

• to precisely calculate left percentile of heavy tailed 
distribution for VaR and CVaR estimation. 

 
4 Identifying ARCH and leverage effects 
Before we continue to create the model to capture 
volatility of Pliva returns it is necessary to investigate if 
there is asymmetry in volatility clustering, i.e. if there is 
leverage effect. The tendency for volatility to decline 
when returns rise and to rise when returns fall is called 
the leverage effect, i.e. "bad" news seems to have a more 
effect on volatility than does "good" news. 

A simple test to investigate the leverage effect is to 
calculate first-order autocorrelation coefficient between 
lagged returns and current squared returns: 
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Table 3. 

Testing for leverage effects 
Correlations
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Source: Tested according to data on ZSE 
  

Figure 3. 
Pliva's stock returns from June 2002 to October 2006 
ACF of returns, ACF and PACF of squared returns 
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Daily Pliva stock returns
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It can be concluded that there is no asymmetric 
volatility clustering of Pliva returns at p-value of 33%, 
because the above autocorrelation coefficient is positive 
and it is not significantly different from zero. 

From figure 3. it's obvious that there is significant 
autocorrelation in squared return series of Pliva stocks for 
almost each time lag. It means that return series contain 
ARCH effects, i.e. relationship between volatility from 
one period to the next one shows the presence of 
heteroscedasticity. 

These ARCH effects are also tested using Lagrange 
multiplier test, which results are given in table 4. 

 
Table 4.  

Lagrange multiplier test 
------------------------------------------------- 
Test for ARCH Effects: LM Test 
Null Hypothesis: no ARCH effects 
 
Test Stat 68.8194 
  p.value  0.0001 
 
Dist: chi-square with 30 degrees of freedom 
Total Observ.: 1090 
------------------------------------------------- 
Source: Tested according to data on ZSE 
 
From table 4. it can be seen that variance is 
heteroscedastic because the square unexpected returns 
follows autoregressive process. Even more LM test value, 
for large samples, is significant at 0.01%. It means that 
variance is time-varying. 
 
5 Specification of GARCH(p,q) model and 

parameter estimation by quasi-Newton 
algorithm 
In mean equation constant is entered as regressor, 
because ACF of Pliva stock returns didn't show statistical 
significance for any time lag. If there is significant 
autocorrelation in returns, best fitted ARMA models are 
usually used, following Box-Jenkins procedure. It has 
been shown that ARCH(p) process with infinite number 
of parameters is equivalent to much generalized ARCH 
process called GARCH(1,1). As the time lag increases in 
an ARCH(p) model it becomes more difficult to estimate 
parameters. Besides it is recommended to use 
parsimonious model as GARCH(1,1) that is much easier 
to identify and estimate. 

In table 5. estimated parameters of GARCH(1,1) 
model are presented as well as appropriate diagnostics 
test. 

Results from diagnostics test indicates that there are 
no ARCH effects and no autocorrelation of standardized 
residuals left. Parameters in table 5. are estimate using 
BHHH (Berndt, Hall, Hall, Hausman) algorithm within 
quasi-Newton optimization. 

 
Table 5. 

Estimated GARCH(1,1) model 
------------------------------------------------------ 
Estimated Coefficients: 
               Value  Std.Error t value   Pr(>|t|)  
       C -0.00018119 0.00042886 -0.4225 0.33637565 
       A  0.00005835 0.00001597  3.6533 0.00013564 
 ARCH(1)  0.22614940 0.05345972  4.2303 0.00001265 
GARCH(1)  0.63441794 0.07000522  9.0624 0.00000000 
------------------------------------------------------ 
Information criteria: 
AIC(4) = -5876.871 
BIC(4) = -5856.895 
------------------------------------------------------ 
Normality Test: 
 Jarque-Bera P-value Shapiro-Wilk P-value  
        1037       0       0.9587       0 
------------------------------------------------------ 
Ljung-Box test for standardized residuals: 
 Statistic P-value Chi^2-d.f.  
     9.625  0.6489         12 
------------------------------------------------------ 
Ljung-Box test for squared standardized residuals: 
 Statistic P-value Chi^2-d.f.  
     6.637  0.8807         12 
------------------------------------------------------ 
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Lagrange multiplier test: 
   Lag 1  Lag 2  Lag 3 Lag 4   Lag 5  Lag 6   Lag 7 
 -0.9236 -1.078 -1.012 0.962 -0.5799 0.3408 -0.3561 
  TR^2 P-value F-stat P-value  
 9.191  0.6865 0.8427  0.7085 
------------------------------------------------------ 

Source: Estimated according to data on ZSE 
 
Maximization of likelihood function procedure is 

defined by the iteration formula: 
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In equations (7)   is the gradient vector 
premultiplied by the inverse of the Hessian 
approximation, which determines the direction in i-th 
iteration. Scalar 

ii gH 1−

iλ  is step size which in each iteration 
provides an increase in log-likelihood function. By 
assumption of Student's distribution log-likelihood 
function has following form:  
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According to results presented in table 5. estimated 
model has following form: 
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Figure 4. 

Maximization of likelihood function 
 
 
 
 
 
 
 
 
 

 
 
 

 
Source: According to data on ZSE 

 
In system (9) residuals tε , i.e. innovations, are 

defined with  by assumption of symmetric Student's 
distribution. 

tu

Sum of parameters ARCH(1)+GARCH(1), according 

to equations (9), indicates that there is persistence 
volatility of 86%, i.e. conditional variance decays slowly, 
not far from long-memory model. Hence the sum of 
parameters is less then one the condition of covariance 
stationary is confirmed. 

 
Figure 5.  

Static and dynamic volatility forecasting 
Static forecast of conditional volatility
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Figure 5. shows static forecast of conditional standard 
deviation and dynamic forecast of unconditional long run 
variance, using Student's distribution assumption with 5.3 
degrees of freedom in GARCH(1,1) model. 
6 Tail function as the instrument of VaR 
and CVaR forecasting 
VaR is defined as the maximum potential loss of 
financial instrument with a given probability (usually 1% 
or 5%) over a certain time period. Based on the Student's 
distribution, Value at Risk can be calculated as: 
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where tμ̂  is expected mean and tσ̂  expected standard 
deviation, predicted from estimated GARCH(1,1) model. 
VaR expressed in equation (10) can be interpreted as 
expected minimal percentage loss within probability of 
α , when  is left percentile from standard Student's 
distribution. This is the case when investor holds "long" 
position, i.e. if he has bought an asset, in which case he 
incurs the risk of a loss of value of the asset. When 
investor holds "short" position (he has sold an asset, in 
which case he incurs a positive opportunity cost if the 
asset value increases), variable  presents the right 
percentile from standard Student's distribution. 

dftα

dftα

In formula (10) expected standard deviation is 
corrected to get unbiased estimator of standard Student's 
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scale parameter, according to equation (5). 
However, there is no rule for selection appropriate 

confidence level in VaR estimation. Hence, for achieving 
compromise solution in confidence level selection, it is 
better to estimate conditional Value at Risk, which 
includes more information about expected loss. 
Therefore, CVaR is defined as expected loss under tail 
area bounded by VaR: 

( ) ( )[ ]αα tttt VaRr/rECVaR ≤= .  (11) 
According to definition of conditional expectation CVaR 
can be expressed as:  
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where  is density function of Student's distribution 
according to equation (1). Value  presents left 
percentile of standard Student's distribution, i.e. 
standardized VaR. Also in equation (12) 

( )xf
q

( )qF  is 
cumulative density function. 
 
7 Historical versus prognostic VaR and 
CVaR estimation 
Simply using all past information on past price 
movements, i.e. historical VaR and CVaR, does not 
utilize heteroscedastic property of stock returns. In spite 
of the fact that those measures don't have prognostic 
power, they are frequently used in financial practice. It is 
necessary to note that all procedures based on historical 
estimation automatically use the normal distribution 
assumption. But financial time series implicate fat tails, 
hence normal distribution is unrealistic. 

Using the formula: 
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the assumption that all past returns have an equal 
relevance on future volatility is applied. This assumption 
is too crude as more recent volatility is likely to have 
more relevance than that of several days ago. 

On figure 6. historical estimation of market risk 
measures are presented according to daily continuously 
returns of Pliva's stock. 

 
Figure 6. 

Historical estimation of VaR, CVaR+ and maximal 
loss of Pliva stock returns 
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Source: According to data on ZSE 
 

From figure 6. CVaR+ is presented as expected loss 
strictly exceeding VaR (also called Expected Shortfall). 

Therefore, CVaR is a weighted average of VaR and 
CVaR+, depending on the parameter lambda: 

( ) 101 ≤≤−+⋅= + λλλ ,CVaRVaRCVaR , (14) 
where lambda is: 

( )
α
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−

−
=

1
VaR ,    (15) 

and ( )VaRφ  is probability that losses do not exceed VaR. 
In table 6. numeric values of risk measures are presented 
in percentages and in kunas by taking the price of Pliva 
stock on 12 October 2006, i.e. 700.50 kunas (price of 
Pliva stock at last observed day). 

According to results given in table 6. parameter 
lambda is estimated at the level of 0.0091743. Parameter 
lambda very close to zero in this case indicates that risk 
measures are estimated with high level of consistency.  

Table 6. 
Numeric values of risk measures presented in 

percentages and in kunas 
Risk measures Percentage Kunas 
VaR 
CVaR+ 
CVaR 
Max. Loss 

-2.731 
-4.061 
-4.048 
-12.37 

-19.13 
-28.45 
-28.36 
-86.65 

Source: According to data on ZSE 
The main question is: which percentages of possible 

losses we could expect, for example, for twenty days 
ahead? The answer based on historical estimation, 
presented in table 6., is very information indigent and 
unsatisfactory in econometric sense. Therefore, the 
answer based on prognostic estimation is more 
appropriate to real situations and fulfills the modern 
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econometric criteria. 
According to historical estimation investor could 

expect that his loss wouldn't exceed 19.13 kunas per 
stock with probability of 95%. On the other hand, he 
could expect that his loss will be 28.36 on average within 
probability of 5%, while CVaR+ presents upper bound of 
expected loss of 28.45 kunas. The maximum loss in this 
case is 86.65 kunas. Based on these calculations stock 
holder can make own investment decision depending on 
trade off between risk and return.    

According to prognostic estimation, solving 
recursively based on GARCH equation (9), Value at Risk 
can be calculated in following way:     
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If on 12 October 2006 (the last day of observed 
period) investor has bought Pliva stocks at price of 
700.50 kunas, it can be predicted, for twenty days ahead, 
that his loss wouldn't exceed 26.39 kunas per stock with 
probability of 95%. 

According to estimated non-integer degrees of 
freedom that in this case amount 5.3, function  has 
the following expression: 
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The above defined function  in interval ( )xf
]3926., −∞−  is in fact tail function. Tail function of 

 for estimated  is shown on figure 7. ( )xf ( 05020 .RâV t+ )
From the figure 6. theoretical difference among VaR 

and CVaR is obvious. 
Figure 6. 

VaR and CVaR according to Student's distribution 
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Figure 7. 

Tail function 
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In the treated case by substitution of empirical data 

conditional expectation of continuously random variable 
can be calculated: 
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Therefore, conditional expectation is: 
( ) 49373926 ..x/xE −=−≤ , 

which means that investor can expect average loss of -
37.49 kunas per Pliva stock within 5% worst cases ( 
confidence level of 95%). 

Comparing results from the table 6., i.e. historical risk 
estimates, with prognostic results it can be concluded that 
historical risk measures are underestimated.  

The main advantage of prognostic risk estimation is 
including futures movements in risk forecasting versus 
historical estimation based only on observed values. 
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Hence, prognostic estimation is more realistic one 
because of econometric model forecasting power, i.e. 
generalized autoregressive conditional heteroscedastic 
model. 

Moreover, historical risk measurement implies normal 
distribution assumption, ignoring fat tails. Modern 
financial theory and numerous empirical researches 
confirm the fact that financial time series are fat tailed.   

Using assumption of heavy tailed distribution, such as 
Student's t-distribution in GARCH(p,q) model, it 
becomes possible to forecast market risk much more 
precisely. Even more, using Student's distribution with 
non-integer degrees of freedom leads to the best 
approximation to the tail behavior of the return 
distribution. 

 
7 Conclusion 
Models that forecast returns and volatility play important 
role in financial decision making. Empirical results of 
financial time series indicates phenomenon of clustering 
of volatility where a period of high volatility is likely to 
be followed by another period of high volatility and 
opposite. The focus on variance as the relevant risk 
measure is extended to time varying dimension. That's 
why this research is concerted to historical versus 
prognostic risk measuring. 

This paper deals with modeling volatility of returns of 
Pliva stocks on Zagreb Stock Exchange, measuring 
volatility reaction on market movements and the 
volatility persistence. As the most appropriate model for 
those analyses is GARCH(p,q) model. 

According to the market random walk hypothesis, the 
returns are serially uncorrelated with a zero mean and 
hence unpredictable random variables. Even so, 
autocorrelation of the squared returns suggests high 
dependency between them. This means that volatility is 
conditioned on its past values. In estimation procedure 
the assumption of Student's distribution is used to capture 
fat tails.  

Likelihood function is maximized with non-integer 
degrees of freedom, which are related with appropriate 
kurtosis of empirical distribution. Moreover, estimated 
degrees of freedom are used for precisely forecasting 
VaR and CVaR under non-normality assumption.  

Namely, in this paper the conditional expectation of 
continuously random variable is calculated under tail 
area. Therefore, depending on if investor on capital 
market holds "long" or "short" position it's essentially 
important to predict possible and expected loss. By this 
paper it has been shown that the sensitivity of risk 
measuring with respect to the theoretical distribution 
assumptions is larger than one with respect to the 
parametric specification of the GARCH model. 

Comparing historical risk estimates with prognostic 
results it can be concluded that historical risk measures 
are underestimated.  

The main superiority of prognostic risk estimation is 
giving by including futures movements in risk forecasting 
versus historical estimation based only on observed 
values. Taking into account estimated values of VaR, 
CVaR, CVaR+ stock holder can make his own scientific 
based investment decision depending on trade off 
between risk and return. 
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