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Abstract: The problem of state-feedback control design for a class of singularly perturbed systems with time
delays and norm-bounded nonlinear uncertainties is studied in this paper. The system under consideration
considers discrete delays in both slow and fast dynamics and norm-bounded nonlinear uncertainties. It is shown
that the control gains are obtained to guarantee the stability of the closed-loop system for all perturbed
parameters in terms of linear matrix inequalities (LMIs). We present an illustrative example to demonstrate the

applicability of the proposed design approach.
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1 Introduction

Two-time scale systems have been intensively
studied for the past three decades and a popular
approach adopted to handle these systems is based
on the so-called reduced technique. Singularly
perturbed systems often occur naturally because of
the presence of small parasitic parameters
multiplying the time derivatives of some of the
system states. Singularly perturbed control systems
have been intensively studied for the past three
decades; see, (for example, [7]-[11], [17], [22], [28]-
[31]). A popular approach adopted to handle these
systems is based on the so-called reduced technique
[18]. The composite design based on separate
designs for slow and fast subsystems has been
systematically reviewed by Saksena, et al. in [22].
Recently, the robust stabilization of singularly
perturbed systems based on a new modeling
approach has been investigated in [12].

The stability problem (&bound problem) in
singularly  perturbed systems differs from
conventional linear systems, which can be designed
as: characterizing an upper bound ¢, of the positive
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perturbing scalar & such that the stability of a
reduced-order system would guarantee the stability
of the original full-order system for all perturbed
parameters [1]-[2]. It is known, by the lemma of
Klimushchev and Krasovskii ([15]-[18]), that if the
reduced-order system is an asymptotically stable,
then this upper bound &,always exists. Researchers

have tried various ways to find either the stability
bound ¢, or a less conservative lower bound for ¢,
see ([2], [18]-[27], [29]-[31]). Also, Shao and
Rowland in [25] considered a linear time-invariant
singularly perturbed system with single time delay
in the slow states. Then, the research on time-scale
modeling was extended to include singularly
perturbed systems with multiple time delays in both
slow and fast states ([20], [21]). Recently, the
problem of robust stabilization and disturbance
attenuation for a class of uncertain singularly
perturbed systems with norm-bounded nonlinear
uncertainties has been considered by Karimi and
Yazdanpanah in [14]. Also, the robust stability
analysis and stability bound improvement of
perturbed parameter(€)in the singularly perturbed

systems by using linear fractional transformations
and structured singular values approach (p) has
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been investigated by Karimi and Yazdanpanah [13].
Recently, a dynamical model for two-time scale
systems is presented such that a portion of the
dynamics may be treated as a norm-bounded
dynamic uncertainty. Clearly, it means that the
proposed approach deals with only those two-time
scale systems where the fast subsystem is norm-
bounded. Although, this might be considered as a
restriction on systems under consideration, it covers
many control systems, for instance mechanical
systems having two types, i.e., slow and fast,
behaviors. In this view, the synthesis is performed
only for certain dynamics of the system.

This paper presents novel results on control
synthesis for stabilization and disturbance
attenuation of a class of time-delayed singularly
perturbed systems with norm-bounded nonlinear
uncertainties. The system under consideration
consists of systems in state-space form with linear
nominal parts, norm-bounded nonlinear
uncertainties and time delays. Robust stabilization
and disturbance attenuation of such systems is
investigated using the Hamiltonian approach. The
state feedback gain matrices can be constructed
from the positive definite solutions to a certain
Riccati inequality. Another advantage to this
approach is that we can preserve the characteristic
of the composite controller, i.e., the whole-
dimensional process can be separated into two
subsystems ([1]-[4]). Moreover, the presented
stabilization design insures the stability for all
€ €(0,) and independently of the time delay.

Notation: The notations used throughout the paper
are fairly standard. I and O represent identity matrix
and zero matrix; the superscript 'T' stands for matrix
transposition. ||.|| refers to the Euclidean vector
norm or the induced matrix 2-norm. The notation
P > 0 means that P is real symmetric and positive
definite.

2. PROBLEM FORMULATION
Consider a linear time-invariant state-delayed

singularly perturbed system with norm-bounded
nonlinear uncertainties in the form:
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|: X.l(t) i|=|:an a12:||:X1(t):|+|:rlj|Xl(t—h)
eX, (1) ay Ay |[X,(1) L
fl h dl
+ £, X,(t—=h)+ dq, w(t)

2 e 200
b, A, (x,(1)

(1)
X, (=¢(t) te[-h,0] (2)
z(t) = ¢ X (t)+C2 X, (t)+Du(t) 3)

wherex, e R"™,x, e R™, n(=n, +n,) is the order of
the whole system,ueR™,w e R*,z e R'are control
vector, disturbance and controlled output,
respectively, A, (x,) (1=1,2) are nonlinear terms
of the uncertainty space. The certain matrices

a, eR" ja,eR"™ a, eR"™, a, eR"™,
b,eR™™, b,eR™™, d,eR™, d,eR™",
r,eR"™™ | f eR"™™ | f, eR™and r, e R™™
are constant and €>0 1is scalar and real. For a

vector v, v' 1is its transpose, and ||V|| is its

Euclidean norm and L’is the Lebesque space of
square integrable functions.

Assumption 1. There exist the known real constant
matrixes G,, G, such that the known nonlinear

uncertainties A, (x,(t)) i=1,2) satisfy the
following bounded condition,
A @) <G x, 0] vx, ) eR”
“)

Denote the corresponding uncertainty set by

2, (x) ={A,x, ()] A,x, ()| <[ G x, O} (=12)
®)

Definition 1.
1) A state feedback

u=-k x, -k,x,,

kl e R™™ , k2 e R™m
global asymptotic stability if for w=0 and any
A(x))€E(x,) (i=12) the closed-loop system

is said to achieve robust
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X, | -b, k, alz—bk X,
SXZ - bZkl aZZ XZ
+[ }x (t—h)j{ }x (t—h)
I‘2
(%)
h) +
om0

is globally asymptotically stable in the Lyapunov
sense for all € €(0,) and independently of the time

delay (h).

(6)

2) A state feedback

u=-k, x, -k, x,

is said to achieve robust disturbance attenuation if
under zero initial condition there exists 0 <y < oo for
which the performance bound is such that:

Vwel’ A (x,)eE (x,)
fori=1,2

|z < | wo)

(7

The main objective of the paper is to design
k, e R™", k, eR™" such that the state feedback
_kz X,
global asymptotic stability and robust disturbance
attenuation for all & €(0,)and independently of

u=-k x, achieves simultaneously robust

the time delay(h). The main approach employed

here is the standard HJI method. Hence, we define a
quadratic energy function in the form:

E(x,,X,)=X,Px, +& X, P,x, + j'xlT(G)Qxl(G) do
t—h
t
+ [x,"(6)Zx,(0) do
t-h

®)

where P, >0,P,>0,Q>0 and Z>0 are to be
determined. Define the Hamiltonian function

)

H[u,w,A](x]),Az(xl)]:sz—yszwi—f

where derivative of E(t) is evaluated along the
trajectory of the closed-loop system. It is well
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known that a sufficient condition for achieving
robust disturbance attenuation is that the inequality

Hlu,w,A (x,),A,(x,)]<0,
vwel’A (x,)eE (x,),1=1,2
(10)

results in an E(x) which is strictly radially
unbounded ([5]-[6]), E(x) may be regulated as a

Lyapunov function for the closed-loop systems, and
hence, robust stability is guaranteed for all
¢ € (0,00) and independently of the time delay (h).

In this paper we will establish conditions under
which

Inf, Sup, - Sup _.H[u,w,A,A,]<0
suchthat A=A, (x,), =, =Z,(Xx,).

1

fori=1,2

(11)
3. MAIN RESULTS

Before deriving the main results, some preliminary
lemmas are reviewed.

Lemma 1 [32]. For any matrices X and Y with
appropriate dimensions and for any constant n >0,

we have:
1
XTY+Y ' X<nX'X+-Y"Y. (12)
n
Lemma 2. For an arbitrary positive scalar ¢, >0
and a positive definite P, > 0, we have:

AL (D) Px (D) +x7(8) P A (x (1)

i

<X () (5, P + -Gl G)) x, (1)
g
(13)

Proof. By using assumption 1 and lemmal, we can
conclude (13).

One of the key technical contributions of this paper
is utilization of Lemma 2, which establishes a
representation of the nonlinear uncertainty set by the
certain terms. This observation leads to the
following Theorem, which is the main result of this
paper. The approach employed here is the standard
method of Riccati inequalities, which have been
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used, extensively in linear control for state-space
systems [32]-[34].

Theorem 1. Let the matrix D" D be nonsingular. If
there exist positive scalars ¢€,€,,€, and positive
definite solutions P, >0,P,>0,Z>0 and Q>0 to
the Matrix inequality

Rll RlZ Pl r1 P2 fl Pl dl 8l]‘:)l 82P2

R, R, P, Pf, P,d, 0 0

'P, P, -Q 0 0 0 0

f'P, f,P, 0 -7 0 0 0 |<0

d/P, d,P, 0 0 —y1 0 0

P 0 0 0 -gl 0
L &,P, 0 0 0 0 —g,l]

(14)

such that

A

R, =P a, +a],P,+Q+c/c,—2P, b (D'D)'D'c,
+£,'G/G—¢/D(D'D)"'D'¢c, +7, —2P,

lin =P,a,, +a;2 P, + C—zrcz +Z-2P,b, (DTD)leTcz
+€;'G]G, —¢jD (D'D) " D"c, +7, —2P,

I’\{12 = Pl a, +a; Pz -l‘ClTC2

+&,(%, —2P, =2P,b,(D'D)"D'¢, —¢/D (D'D) "' D'c,)

+&" (7, —2P, 2P, b,(D'D)'D'c, —¢;D (D'D) "' D'c,)

with %=L and L= and

%, =b,(D'D)'b; >0 and y,=b,(D'D)"'b, >0.

Then, the control law

u(®)==(D'D)" ((b;P, +D’¢,)x, +(b,P, + D'c,)x,)
(15)

achieves robust global asymptotic stability and

robust disturbance attenuation in the sense of (6)

and (7), respectively and independently of the time
delay (h).

Proof. We will prove the Theorem by showing that
the control law (15) will guarantee the inequality of

(10).

Noting to the expression (8) and according to (9),
we have:
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T T T
H(u,w,A,A))=x,(a, P, +P a, +cc +Q)x,
+x,(ap, P, +P,a, +cic, + Z)X,
T T T
+ Xl (Pl a12 +a21 PZ +Cl CZ)XZ

T/, T T
+X2(312P1 +P2321 +02C1)X1

+u'(b/P, +D'c))x,

+u'(b) P, +D'c,)x,
+x,(¢c;D+P/b)u
+x,(c;D+P,b,)u+u'D'Du
—y’w'w+w'(d/P x, +d; P,x,)
+(x,Pd, +x,P,d,)w — x;, Qx,,
+x, (P x, +1'P x,) = x5, ZX,,
+x,, (f;P, x, + P, x,)

+(, P, x, +1'P, x,)" x, +A] P, x,
+x/P A +A P, x, +x, P, A,

(16)
such that x, :=x,(t—h),x,, Ax,(t-h).

It is easy to show that the worst case disturbance
occurs when

w” :'Yiz(le P, X1+dg P,x,). (17)
It follows that
H, (u,A,,A,)=SupH(u,w,A, A,)
WEL2
= X1TRll X+ X; R, x,+ X1TR12X2
+X§ RTZ Xl +uT G’IF(X]’XZ)
+G,(x,,x,)u+u’'D'Du
_X;rh Qxlh _th ZXZh
+2x1Th Gz(xl,x2)+2x§h G,(x,,x,)
+xlTP1A1+AT1P1 xl+x§P2A2+AT2P2x2
(18)
where
Ry = alTl P +Pa, +C1TCl +"/72P1 d, d1T P, +Q

R,,=a,P,+P,a,, +cic,+y P,d,d} P, +Z

T T ) T
R, =a, P, +Pa,+c/c,+y P dd,P,
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G (x,x,) = X1T(Pl b, +01TD)+X§(P2 b, +C;D)
G,(x,x,) =r1TP1 X +r2TP2 X2
G;(x,,x,) = f1TP1 X, +f2TP2 Xy

According to Lemma 2, we have

1
SupH, (u,A[,A,) < X1T(Rn +81P12 +_G1TG1)X1
€

AjeE; 1

1
T 2 T
+X, (Rzz +82P2 +_G2G2)X2
€,
T Tp T
+X, R12 X, +X2R12 X
TAT
+u G, (x,,x,)+G,(x,,x,)u
+u'D'Du-x,Qx,,
T T
_XZhZXZh +2th Gz(xlaxz)

+2x5, G,(x,,X,)

(19)

The optimal control law, which minimizes the right-
hand side of (19), is given by

u(t)=—(D" D)™ ((b/P, +D"¢c,)x, +(bsP, +D'c,)x,).
(20)

As a result, we have:

Inf SupH,(u,A,,A,) <F(x,,x,,Xx,

U AjeE;

e2))

where

F(XI’XZ’Xh)::

™ ™ o
=X, R x, +x,R, X, +X, R, x,
TR T T T
+X2R12 X=Xy Qth —Xon QXZh
T T
+2X1h GZ(XI’X2)+2X2h Gz(xlaxz)
(22)

and

En =P a, +alT1 P, +Q+c1Tcl -i—y’zPl d, le P, +81P12
1 ~
+8—G1TG—(P1 b,+¢,D)(D'D)"'(P,b, +¢; D)’
1
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I_{zz =P,a,, +a, P, +cic, +Z+y°P,d,d} P,
+¢,P; +8iGgG2 —(P,b, +¢c;D) (D'D)'(P, b, +¢,D)"
2
R,=P a,+a, P, +c/c,+y°P,d,d) P,
—(P,b, +¢;D)(D'D) ' (P, b, +c;D)"
<P a,+a, P, +c/c,+y P d d,P,
—&,(P,b, +¢,D)(D'D) (P, b, +¢,D)"
—&, (P,b, +¢c,D)(D'D)"'(P,b, +c,D)"

Rll E12 P 1 rl P2 fl
M — I_{TZ E22 PZ r2 PZ f2 (23)
', P, -Q 0
f'P. f’P, 0 -Z
Consequently, if there exist positive definite
solutions

P,>0,P,>0,Q>0 and Z>0
to the Matrix inequality
M<0
then we have

Hlu,w, A, (x,(1)),A,(x,(1)]<0,
vV wel’, A (x,(t)e = (x,(t),i=1,2

(24)

It is clear that the inequality M <0 is no longer a
linear matrix inequality (LMI). By noticing that

%, =b,(D'D)'b] >0

and

%, =b,(D'D)"'b; >0,
we have

L -Px,(x, -P) =0
and

()_Cz _Pz)Xz()_Cz —PZ)ZO,

which are equivalent to

Issue 12, Volume 6, December 2011



WSEAS TRANSACTIONS on SYSTEMS and CONTROL

- IXIPI S)_Cl _2P1 (253)

—-Px,P, <%, —2P, (25b)

where 7, =y, and %, =y,".

Consequently, applying Schur complement to
M<Oand considering (25a)-(25b), the LMI (14)
holds. Thus the proof is completed.

Corollary 1. Let the matrix D" D be nonsingular.
If there exist positive scalars ¢,¢,,e, and positive
definite solutions P, >0,P, >0 to the linear Matrix

inequality
Rll R12 Pl dl 81131 82132
R;I-Z R22 P2 d2 0 0
d/P, djP, —v’I 0 0 |<0
g,P, 0 0 —-¢I O
1e,P, 0 0 0 —g,l]
such that

A

R, =Pa,+a,P,+Q+c/c,—2P b, (D'D)"'D'c,
+¢,'G/G-¢;D (D'D)'D'c, +7, — 2P,

ﬁn =P, a,, +a§1 P, +c1Tc2
+8,(%, —2P, =2P,b,(D'D) "' D¢, —¢/D (D'D)"'D'¢))
+&,' (X, 2P, 2P, b,(D'D) 'D’c, —¢,D (D'D) 'D'c,)

R,, =P,a,, +al, P, +clc, +Z—2P, b,(D"D)"' D¢,
+¢,'G;G, —c;D (D'D)'D'¢, +7%, — 2P,

then, the control law

u(t)=—(D"D)" ((b;P, +D"c)x, +(byP, +D'c,)x,)

achieves robust global asymptotic stability and
robust disturbance attenuation in the sense of (6)
and (7), respectively.

4. EXAMPLE

Consider a fourth-order singularly perturbed system
with time delay in the slow state variable:
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x,® | [-9 0 0 0.1[x,(D
X, (1) 0.1 -8 0.05 0.1]|x,(t)
ex, (| | 0 0 -15 0| x. ()
ex, (t)| |0.01 0.003 0 —1]|x.(t)
10 0
0 1 0 1
+1 0 x,(t—h)+ L 05 u(t)
0 1 05 0
[0.1
,|02 W(t)J{A](x](t))}
0.2 A, (x,(t))
0.5
(26)
x,()=[0.5 -05]" Vte[-h,0]

o[04 015)[x, 0] [02 —01][x,)
"0 01 06 ||x.0|-02 09 ||x.0

0.25 0.5
+ u(t)
0.5 0.1

where x, =[x, x_1', x,=[x, x.]' and the

S1
uncertainty terms A (x,) (i=1,2), are assumed
to be norm-bounded such that the matrixesG,,G,

have been considered as follows:

04 0
G, =G, = o 03l

Consider also y=0.1 as the performance bound,
£=0.1 as the perturbed parameter and h=2 second

as the time delay parameter. From (14), we can
choose the positive definite solutionsP, >0, P, >0

and Q> 0as follows:

[ 21137 -0.7639]
' [-0.7639 0.6814 |
[ 20760 —0.1406 ]
*7[-0.1406  0.1390 |

o- 1.5 0
“1-1500 0.015]|
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Also, positive numbers of ¢ ,e, are obtained as
follows:

g =18, g, =1

The required state feedback control law is given by

u=-kx, —-k,x,

with
" ~13.5405 5.0117
"l 11.2441  -6.5131)
. ~6.1792 —1.9220
21-0.1409  1.4103

Robust stability and disturbance attenuation of the
slow and fast dynamics in the presence of
disturbance (Gussian noise) have been depicted in
Figures 1 and 2. Therefore, we conclude that system
(26) can be stabilized by the control law (15) for all
£ €(0,00) and independently of the time delay (%),
which has been depicted in Figure 3 and the
correctness of the attenuation level of the
disturbance on the controlled output has been
depicted in Figure 4.

0.5
Xs1(t)
0 B
XSZ(t)
-0.5 - -
0 1 2 3
Fig. 1. Robust stability and disturbance

attenuation of slow dynamics

0.5 -
xf1(t)

ol &

hN

0.5 Xs, (t)
_1 L L
0 1 2 3
Fig. 2. Robust stability and disturbance

attenuation of fast dynamics
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o
T
y

Control Inputs

1
N

0 1 2 : 4 5
. 3. Control law by means 0} state feedback

!
7

10

10"

2 [
0 5 10 15 20

Fig. 4. Attenuation level of the disturbance on the

controlled output

10

0.6
0.4
0.2
0
-0.2
-0.4

s1

s2

0 2 4 6 8 10

Fig. 5. Robust stability and disturbance attenuation
of slow dynamics

0.5
/Xf1
0 [-' A
/\ 7
-0.5
1
-1.5
0 2 4 6 8 10

Fig. 6. Robust stability and disturbance attenuation
of fast dynamics
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2
1
u
0 L
-1 U1
-2
0 2 4 6 8 10

Fig. 7. Control law by means of state feedback

0.04
0.03
0.02 \
0.01
S~
O b b b b
0 2 4 6 8 10

Fig. 8. Attenuation level of the disturbance on the
controlled output

In the case g =¢, =10 as the perturbed parameter

and h =8 second as the time delay parameter, from
(14), we can find the positive definite solutions
P, >0,P, >0and Q> 0as follows:

_[0.1845 0.0411
'10.0411 0.0750

2

—-0.0015  0.0477

o- 0.1000 0
|0 0.1000

Figures 5 and 6 represent time behavior of slow and
fast dynamics of the system. The control signal is
depicted in Figure 7 and the correctness of the

_{ 0.0377 —0.0015}
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attenuation level of the disturbance on the controlled
output has been depicted in Figure 8.

5. CONCLUSION

The problem of robust control design for a class of
uncertain singularly perturbed system with discrete
time-delay was investigated in this paper. A robust
control design methodology is proposed to achieve
the robust stabilization and disturbance attenuation
for all € €(0,0) and independently of time delay.

Major contributions of the paper are threefold: One
is that the type of norm-bounded nonlinear
uncertainties considered in this class of systems
coincides with the certain terms by utilization of
Lemma 2. The other is that the state feedback gain
matrices can be determined in terms of linear matrix
inequalities (LMIs), and the last is that the closed-
loop system is stable for all € €(0,0) . In this paper,

the results are presented on the two-time-scale case,
and the extension of results to multiple-time-scale
and multiple time delays such as discrete and neutral
and distributed delays is a topic currently under
study.
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