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Abstract: The problem of state-feedback control design for a class of singularly perturbed systems with time 

delays and norm-bounded nonlinear uncertainties is studied in this paper. The system under consideration 

considers discrete delays in both slow and fast dynamics and norm-bounded nonlinear uncertainties. It is shown 

that the control gains are obtained to guarantee the stability of the closed-loop system for all perturbed 

parameters in terms of linear matrix inequalities (LMIs). We present an illustrative example to demonstrate the 

applicability of the proposed design approach. 
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1 Introduction 
 

Two-time scale systems have been intensively 

studied for the past three decades and a popular 

approach adopted to handle these systems is based 

on the so-called reduced technique. Singularly 

perturbed systems often occur naturally because of 

the presence of small parasitic parameters 

multiplying the time derivatives of some of the 

system states. Singularly perturbed control systems 

have been intensively studied for the past three 

decades; see, (for example, [7]-[11], [17], [22], [28]-

[31]). A popular approach adopted to handle these 

systems is based on the so-called reduced technique 

[18]. The composite design based on separate 

designs for slow and fast subsystems has been 

systematically reviewed by Saksena, et al. in [22]. 

Recently, the robust stabilization of singularly 

perturbed systems based on a new modeling 

approach has been investigated in [12]. 

The stability problem (-bound problem) in 

singularly perturbed systems differs from 

conventional linear systems, which can be designed 

as: characterizing an upper bound 
0 of the positive 

perturbing scalar  such that the stability of a 

reduced-order system would guarantee the stability 

of the original full-order system for all perturbed 

parameters [1]-[2]. It is known, by the lemma of 

Klimushchev and Krasovskii ([15]-[18]), that if the 

reduced-order system is an asymptotically stable, 

then this upper bound 
0 always exists. Researchers 

have tried various ways to find either the stability 

bound 
0
 or a less conservative lower bound for 

0
 , 

see ([2], [18]-[27], [29]-[31]). Also, Shao and 

Rowland in [25] considered a linear time-invariant 

singularly perturbed system with single time delay 

in the slow states. Then, the research on time-scale 

modeling was extended to include singularly 

perturbed systems with multiple time delays in both 

slow and fast states ([20], [21]).  Recently, the 

problem of robust stabilization and disturbance 

attenuation for a class of uncertain singularly 

perturbed systems with norm-bounded nonlinear 

uncertainties has been considered by Karimi and 

Yazdanpanah in [14]. Also, the robust stability 

analysis and stability bound improvement of 

perturbed parameter )( in the singularly perturbed 

systems by using linear fractional transformations 

and structured singular values approach ( ) has 
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been investigated by Karimi and Yazdanpanah [13]. 

Recently, a dynamical model for two-time scale 

systems is presented such that a portion of the 

dynamics may be treated as a norm-bounded 

dynamic uncertainty. Clearly, it means that the 

proposed approach deals with only those two-time 

scale systems where the fast subsystem is norm-

bounded. Although, this might be considered as a 

restriction on systems under consideration, it covers 

many control systems, for instance mechanical 

systems having two types, i.e., slow and fast, 

behaviors. In this view, the synthesis is performed 

only for certain dynamics of the system. 

This paper presents novel results on control 

synthesis for stabilization and disturbance 

attenuation of a class of time-delayed singularly 

perturbed systems with norm-bounded nonlinear 

uncertainties. The system under consideration 

consists of systems in state-space form with linear 

nominal parts, norm-bounded nonlinear 

uncertainties and time delays. Robust stabilization 

and disturbance attenuation of such systems is 

investigated using the Hamiltonian approach. The 

state feedback gain matrices can be constructed 

from the positive definite solutions to a certain 

Riccati inequality. Another advantage to this 

approach is that we can preserve the characteristic 

of the composite controller, i.e., the whole-

dimensional process can be separated into two 

subsystems ([1]-[4]). Moreover, the presented 

stabilization design insures the stability for all 

),0(   and independently of the time delay. 

Notation: The notations used throughout the paper 

are fairly standard. 𝐼 and 0 represent identity matrix 

and zero matrix; the superscript ′𝑇′ stands for matrix 

transposition.  .   refers to the Euclidean vector 

norm or the induced matrix 2-norm. The notation 

𝑃 > 0  means that 𝑃 is real symmetric and positive 

definite.  

 

2. PROBLEM FORMULATION 

Consider a linear time-invariant state-delayed 

singularly perturbed system with norm-bounded 

nonlinear uncertainties in the form: 
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where 1n

1
Rx  , 2n

2
Rx  , n(

21
nn  ) is the order of 

the whole system,
mRu ,

kRw , lRz are control 

vector, disturbance and controlled output, 

respectively, )2,1i()x(
1i

  
are nonlinear terms 

of the uncertainty space. The certain matrices 
11 nn

11
Ra
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 , 21 nn
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21
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are constant and 0  is scalar and real. For a 

vector , 
Tv  is its transpose, and v  is its 

Euclidean norm and 2L is the Lebesque space of 

square integrable functions.  

Assumption 1. There exist the known real constant 

matrixes 
1

G , 
2

G  such that the known nonlinear 

uncertainties )2,1i())t(x(
1i

  satisfy the 

following bounded condition, 

1n

11i1i
R)t(x)t(xG))t(x(             

(4) 

Denote the corresponding uncertainty set by 

)2,1i(})t(xG))t(x(:))t(x({)x(
1i1i1i1i



                                                                              (5) 

Definition 1.  

1) A state feedback  

2211
xkxku  , 

1nm

1 Rk


 , 2nm

2 Rk


  is said to achieve robust 

global asymptotic stability if for 0w   and any 

)2,1i()x()x( 1i1i   the closed-loop system 
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is globally asymptotically stable in the Lyapunov 

sense for all ),0(  and independently of the time 

delay )h( . 

2) A state feedback  

2211 xkxku   

 is said to achieve robust disturbance attenuation if 

under zero initial condition there exists 0   <  for 

which the performance bound is such that: 
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The main objective of the paper is to design 
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  such that the state feedback 

2211
xkxku   achieves simultaneously robust 

global asymptotic stability and robust disturbance 

attenuation for all ),0(  and independently of 

the time delay )h( . The main approach employed 

here is the standard HJI method. Hence, we define a 

quadratic energy function in the form: 
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where 0P,0P 21  , 0Q   and 0Z   are to be 

determined. Define the Hamiltonian function 

dt

dE
wwzz)]x(),x(,w,u[H T2T

1211
   (9) 

where derivative of )t(E  is evaluated along the 

trajectory of the closed-loop system. It is well 

known that a sufficient condition for achieving 

robust disturbance attenuation is that the inequality 

2,1i),x()x(,Lw

,0)]x(),x(,w,u[H
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2

1211
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results in an )x(E  which is strictly radially 

unbounded ([5]-[6]), )x(E
 
may be regulated as a 

Lyapunov function for the closed-loop systems, and 

hence, robust stability is guaranteed for all 

),0(   and independently of the time delay )h( . 

In this paper we will establish conditions under 

which 

2,1ifor0],,w,u[HSupSupInf
21Lwu 2ii
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3. MAIN RESULTS 

Before deriving the main results, some preliminary 

lemmas are reviewed. 

Lemma 1 [32]. For any matrices X and Y with 

appropriate dimensions and for any constant 0 , 

we have: 

           .YY
1

XXXYYX TTTT


  (12)                                     

Lemma 2. For an arbitrary positive scalar 0i 
 

and a positive definite 0Pi  , we have:  
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Proof. By using assumption 1 and lemma1, we can 

conclude (13). 

One of the key technical contributions of this paper 

is utilization of Lemma 2, which establishes a 

representation of the nonlinear uncertainty set by the 

certain terms. This observation leads to the 

following Theorem, which is the main result of this 

paper. The approach employed here is the standard 

method of Riccati inequalities, which have been 
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used, extensively in linear control for state-space 

systems [32]-[34]. 

Theorem 1. Let the matrix DDT  be nonsingular. If 

there exist positive scalars 
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achieves robust global asymptotic stability and 

robust disturbance attenuation in the sense of  (6) 

and (7), respectively and independently of the time 

delay )h( . 

Proof. We will prove the Theorem by showing that 
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.                    (23) 

Consequently, if there exist positive definite 

solutions  

0P,0P 21  , 0Q   and 0Z   

to the Matrix inequality 

0M   

then we have 

2,1i)),t(x())t(x(,Lw

,0))]t(x()),t(x(,w,u[H

1i1i

2

1211




 

        (24) 

It is clear that the inequality 0M   is no longer a 

linear matrix inequality (LMI). By noticing that  

0b)DD(b T

1

1T

11  

 

and 

0b)DD(b T

2

1T

22   , 

we have 

0)P()P(
11111
  

and 

0)P()P(
22222
 , 

which are equivalent to 
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11111
P2PP                                  (25a) 

22222
P2PP                                  (25b) 

where 1

11 :   
and 1

22 :  . 

Consequently, applying Schur complement to 

0M  and considering (25a)-(25b), the LMI (14) 

holds. Thus the proof is completed.     

 Corollary 1. Let the matrix DDT  be nonsingular. 

If there exist positive scalars 321 ,, 
 
and positive 

definite solutions 0P,0P 21 
 
to the linear Matrix 

inequality 

0
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then, the control law 

)x)cDPb(x)cDPb(()DD()t(u 22

T

2

T

211

T

1

T

1

1T                                                                              

achieves robust global asymptotic stability and 

robust disturbance attenuation in the sense of  (6) 

and (7), respectively. 

                                                                                               

4. EXAMPLE 

Consider a fourth-order singularly perturbed system 

with time delay in the slow state variable: 
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(26)                                                                                      
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ff2
]xx[x

21
  and the 

uncertainty terms )2,1i()x(
1i

 , are assumed 

to be norm-bounded such that the matrixes 1G , 2G

have been considered as follows: 
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Consider also 1.0  as the performance bound, 

1.0  as the perturbed parameter and 2h   second 

as the time delay parameter. From (14), we can 

choose the positive definite solutions 0P,0P 21 

and 0Q  as follows: 
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Also, positive numbers of 
21

,  are obtained as 

follows: 

1,8.1
21
  

The required state feedback control law is given by 

2211
xkxku 
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Robust stability and disturbance attenuation of the 

slow and fast dynamics in the presence of 

disturbance (Gussian noise) have been depicted in 

Figures 1 and 2. Therefore, we conclude that system 

(26) can be stabilized by the control law (15) for all 

),0(   and independently of the time delay )(h , 

which has been depicted in Figure 3 and the 

correctness of the attenuation level of the 

disturbance on the controlled output has been 

depicted in Figure 4. 

 

 

 

 

 

 

 

 

 

Fig. 1. Robust stability and disturbance 

attenuation of slow dynamics  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Robust stability and disturbance 

attenuation of fast dynamics  

 

 

 

 

 

 

 

Fig. 3. Control law by means of state feedback 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Attenuation level of the disturbance on the 

controlled output 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Robust stability and disturbance attenuation 

of slow dynamics  

 

 

 

 

 

 

 

 

 

Fig. 6. Robust stability and disturbance attenuation 

of  fast dynamics  
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Fig. 7. Control law by means of state feedback 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Attenuation level of the disturbance on the 

controlled output 

 

 

In the case 10
21
  as the perturbed parameter 

and 8h   second as the time delay parameter, from 

(14), we can find the positive definite solutions

0P,0P
21
 and 0Q  as follows: 









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0411.01845.0
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0477.00015.0

0015.00377.0
P
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Figures 5 and 6 represent time behavior of slow and 

fast dynamics of the system. The control signal is 

depicted in Figure 7 and the correctness of the 

attenuation level of the disturbance on the controlled 

output has been depicted in Figure 8. 

 

5.    CONCLUSION 

The problem of robust control design for a class of 

uncertain singularly perturbed system with discrete 

time-delay was investigated in this paper. A robust 

control design methodology is proposed to achieve 

the robust stabilization and disturbance attenuation 

for all ),0( 
 
and independently of time delay. 

Major contributions of the paper are threefold: One 

is that the type of norm-bounded nonlinear 

uncertainties considered in this class of systems 

coincides with the certain terms by utilization of 

Lemma 2. The other is that the state feedback gain 

matrices can be determined in terms of linear matrix 

inequalities (LMIs), and the last is that the closed-

loop system is stable for all ),0(  . In this paper, 

the results are presented on the two-time-scale case, 

and the extension of results to multiple-time-scale 

and multiple time delays such as discrete and neutral 

and distributed delays is a topic currently under 

study. 
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