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Abstract: - many natural systems have intrinsic delays, caused by input, output or state variables. In an open-
loop system, input delay doesn’t affect the stability but if feedback of the state is utilized for controlling the 
systems, the delay is transferred to closed-loop state and would affect the stability of the system. It is important 
to evaluate/examine the stability of continuous and discrete delayed-systems. In continuous systems existence 
of delay increases system dimension to infinity (number of poles is infinite). In discrete systems, number of 
poles increases but it is finite. Due to the lack of proper and powerful tools in discrete systems, the evaluations 
of stability in these systems are very important. In this paper, an approach has been proposed based on 
Lyapunov equation and frequency domain stability analysis for systems which have delay in their states. In this 
approach, stability conditions have been obtained for discrete systems with delay in a specific interval. All 
previous works on discrete systems are often for single-delay in state. The purpose of this paper is to extend the 
existence approaches for systems that have multiple delays in their states. Performance of the proposed method 
has been studied in several examples. 
 
Key-Words: - Discrete-time systems with delay, stability, Lyapunov equation, state delay 
 
1 Introduction 
 
The existence of time delay in different industrial 
systems such as the turbojet engines of aircrafts, 
electricity networks, microwaves, vibrometers, 
nuclear reactors, roller machines, chemical 
processes, and power transmission lines is often the 
cause of instability in these systems. This delay can 
appear in the input, output, or the variables of state. 
In this article, the subject of delay in state variables 
is investigated. The issue of delay of state has been 
encountered many times in the control problems and 
physical systems. In recent years, the continuous 
systems with delays in state have attracted the 
attention of numerous investigators, and a large 
volume of research data has been prepared 
regarding the stability of these systems. The works 
related to the subject of the present study have also 

been presented in [1] and [2]. In [3-7], the stability 
conditions associated with delay have been 
considered; although, these conditions have been 
expressed conservatively, and only for a state in 
which the delay occurs in a specific interval.  
On the other hand, less attention has been paid to 
discrete systems with delay in state, which have 
been expressed in the following equation. 
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In the single-delay state, we have: 
 

0 1( 1) ( ) ( )x k A x k A x k N+ = + −                      (2) 
 
Where nx R∈ is a variable of state. It is not 
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surprising to have less attention; because by 
defining a new variable of state according to the 
following equation, system (2) can be converted to 
an equivalent non-delayed system: 
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Thus, there will be an equivalent non-delayed 
system as follows: 
 

( 1) ( )Nz k A z k+ =                                           (4) 
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Now the stability of (2) can be determined by 
examining the stability of an ordinary non-delayed 
system (4). However, there are two important issues 
that indicate that the examination of the stability of 
the equivalent non-delayed system (4) is not 
sufficient for the fulfillment of the stability of 
system (2). The first issue is when the delay of state 
( N ) is very large. The second issue is when the 
amount of delay of state ( N ) is not known exactly, 
and we only know that it is in a certain interval.  
If N is very large, then matrix NA in equation (4) 

will be very large as well ( 1) ( 1)n N n N
NA R + × +∈ ; thus, 

the numerical evaluation of the stability of NA will 
be exhaustive, and sometimes, numerical 
calculations will be difficult to perform. 
If we know that the delay of state ( N ) is in a 
specific interval, but its value is not known (for 
example, [ ]0, MaxN N∈ ), therefore, the stability 

for N should be checked for the 
interval [ ]0, MaxN N∈ , which itself is a difficult 
and exhaustive numerical task, especially for the 
case where maxN is large.  

In order to deal with the above two cases (especially 
for large N ), we will show that for equation (4), 

the solving of the Lyapunov's equation can be 
turned into a simple linear equation whose only N-
dependent component is the Nth power of a constant 
matrix. Then, this constant matrix is combined with 
the expression of the frequency domain, and while 
considering the existence of delay of state in a 
specific interval, a stability condition is proposed for 
equation (2).   

In this paper, the suggested method in [1] and [2] 
(which has been evaluated only on single-delay 
systems) has been extended to two-delay, three-
delay, and multi-delay systems, and the simulation 
results totally agree with those obtained from the 
proposed method. For example, a solution has been 
presented in [2] for determining the stability range 
for the single-delay systems with state delay N . In 
that article, the amount of delay has been considered 
as indefinite, and the maximum delay for which the 
system remains stable has been calculated. The 
authors of that paper have completed in their next 
article in [1], the necessary and sufficient conditions 
for the establishment of stability of a discrete-time 
system with delay. However, no specific method has 
been presented so far for discrete systems with 
multiple delays-in-state. 
In the present article, for the estimation of the 
maximum delay for which a system is stable, some 
methods have been proposed and evaluated. The 
notion that the solving of the Lyapunov's equation 
for equation (4) can be transformed into a simple 
linear equation whose only N-dependent component 
is the Nth power of a constant matrix, has been 
described in section 2. Then in section 3, this 
constant matrix has been combined with the 
expression of the frequency domain, and a stability 
condition has been proposed for equation (2) while 
considering the existence of delay of state in a 
specific interval. In section 4, the approach stated 
for single-delay systems has been extended to multi-
delay systems. In section 5, numerical examples 
have been given to clarify the results obtained in 
this article, and in section 6, the conclusion has been 
presented. 
 
2 Solving The Lyapunov Problem For 
Single-Delay Systems 
 
The candidate function of Lyapunov for equation 
(4) is defined as follows: 
 

( ( )) ( ) ( )TV z k z k Pz k≡                                   (6) 
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Where the symmetric matrix 
( 1) ( 1)n N n NP R + × +∈ is adapted to dimension ( )z k , 

and is expressed as follows: 
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01 11 11

10 11 11

( ) (1)
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P P N P
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⎣ ⎦

"
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# # % #
"

       (7) 

 
The changes of the candidate function are given in 
the following relation. 
 

  (8) 
( ( 1)) ( ( )) ( ) ( ) ( )T T

N NV z k V z k z k A PA P z k+ − = −
 
System (4) is stable if, and only if, there is 

0TP P= >  which satisfies relation 
0T

N NA PA P− < . By using the particular structure 
of ( )z k  ( ( )z k is stable if, and only if, ( )x k is 

stable), condition 0T
N NA PA P− < can be modified 

into the following principle. 
 
Principle 1: System (2) is stable if, and only if, 
there is 0TP P= > with 00 0P > , which is true for 

0T n nQ Q R ×= ∈ >  in the following relation. 
 

0
0

0 0
T
N N

Q
A PA P

⎡ ⎤
− + =⎢ ⎥

⎣ ⎦
                                (9) 

 
Matrix P has three variables: 00P , 

01 10( ) ( )TP i P i= , and 11 11( , ) ( , )TP i j P j i= . 
The following principle has simplified the 
expression of P by using the variable ( )X i .   
            
Principle 2: The solution of P , which satisfies 
equation (9), has been given in the following form: 
 

00 01 1

1 1
11

1 1

(0), ( ) ( ) ,

( ) , 0 ,
( , )

( ) , 0 ,

T T

T

P X P i X i A

A X i j A j i N
P i j

A X j i A i j N

= =

⎧ − ≤ ≤ ≤⎪= ⎨
− ≤ ≤ ≤⎪⎩

    (10) 

 
In which, ( ), 0X k k N≤ ≤ is expressed as 
follows: 
 

0 0 1 0 0 1

1 1

0 1

(0) ( ) ( )

(0) (0) 0,

(0) (0) ,
( 1) ( ) ( )

, 0 1

T T T

T

T

T T

A X A A X N A A X N A

A X A X Q

X X
X k A X k A X N k

k N

+ + +

− + =

=

+ = + −

≤ ≤ −

    (11) 

 
Proof: The correct calculations of equation (9) 
result in equations (10) and (11) [1]. 
Since the matrix differential equation (the third 
equation) in equation (11) doesn't have a simple 
solution form, this matrix differential equation has 
been transformed into a kind of two-point boundary 
value problem in the next principle. Throughout this 
article, 0A  has been considered as a non-singular 
matrix. It should be mentioned that most of the 
discrete systems have a non-singular 0A  matrix. 
 
Principle 3: The matrix differential equation in (11) 
is equivalent to the following relations. 
Matrix n nM C ×∈ can be represented as: 
 

11 1

1

n

n nn

m m
M

m m

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# # #

"
                                    (12) 

 

csM is defined as: 

 
2 1

11 1 1

T n
n n nncsM m m m m C ×⎡ ⎤≡ ∈⎣ ⎦" " "      (13) 

 

1 1

( 1)
( 1)

( )
( )( )

csX k
csX N k

A B csX k
csX N kA BA A I BB− −

+⎡ ⎤ =⎢ ⎥− −⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−− − ⎣ ⎦⎣ ⎦

       (14) 

 
where 0 1( ), ( )T TA I A B I A T≡ ⊗ ≡ ⊗ , and the 
symbol ⊗ denotes the Kronecker product. 
 

2

2 2
1

1 2 1
, n

ln n
T T T T T T R ×

−
⎡ ⎤≡ ∈⎣ ⎦…              (15) 

 
And the row vectors 2,1lT l n≤ ≤ have been 
defined as follows: 
 

( 1) ( 1) , 1 , ,i n j j n iT e i j n− + − +≡ ≤ ≤                     (16) 
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Where 
2 1 2, 1n

le R l n×∈ ≤ ≤ is a row vector whose 
lth element is 1 and the rest of its elements are zero 
(0).   
              
Proof: The following properties are mentioned. 
 

( ) ( )T

T

cs ABC C A csB
csA TcsA

= ⊗

=
                                 (17) 

 
In these relations, , , n nA B C R ×∈ , and by using 
these properties, we obtain from the forward 
difference equation in (11) : 
 

0

1

( 1) ( ) ( )

( ) ( ) ( ) ( )

T

T

csX k I A csX k

I A TcsX N k AcsX k BcsX N k

+ = ⊗ +

⊗ − = + −
 
So, we have: 
 

( 1) ( ) ( )csX k AcsX k BcsX N k+ = + −           (18) 
 
Thus, the equation below can be obtained from the 
above equations (it should be mentioned that A is 
non-singular if, and only if, 0

TA is non-singular). 
 

1 1( ) ( 1) ( )csX k A csX k A BcsX N k− −= + − −   (19) 
 
By inserting 1k N k≡ − − into the above equation, 
we will have: 
 

1

1

( 1) ( )
( ) ( )

csX N k A BAcsX k
A I BB csX N k

−

−

− − = − +

− −
               (20) 

 
 
By combining equations (18) and (20), equation 
(14) is obtained. 
The two matrices of H  (equation (14)) and J are 
defined as follows 
 

1 1

0
,

( ) 0
A B I

H J
A BA A I BB I− −

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

    (21) 

 
Now, we get back to the solving of equation (11) to 
obtain theQ . The Lyapunov's matrix equation (the 
first equation) and the matrix differential equation 
(the third equation) have been combined in equation 
(11). 
To solve the Lyapunov's equation, it is necessary to 
obtain a pair of (0)X and ( )X N  which satisfy the 
matrix differential equation, or equivalently, 

equation (14). The application of constraint on every 
pair of (0)X and ( )X N  that satisfy equation (14) 
can be expressed by using the following boundary 
conditions. 
 

( ) (0)
(0) ( )

NcsX N csX
H

csX csX N
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                            (22) 

 
And by using J  (equation (21)), the above equation 
is written as:   
 

(0)
( ) 0

( )
N csX

I JH
csX N
⎡ ⎤

− =⎢ ⎥
⎣ ⎦

                                  (23) 

 
Principle 4: The following equation is established 
[2]. 
  

2dim ( )NNull I JH n− =                                    (24) 
 
Principle 5: If z is an eigenvalue of H , then, 

1z − will also be an eigenvalue of H  [1]. 
 
3 Review Of Stability Conditions For 
Single-Delay Systems 
 
In this section, it will be demonstrated that the 
eigenvalues and eigenvectors of H are almost 
associated with the stability of the frequency 
domain of equation (2). 
 
Based on this observation, a new stability condition 
is proposed, which provides the stability of equation 
(2) for all the [ ]max0,N N∈ . 
 
Equation (2) is stable if, and only if, all the roots of 
the characteristic equation (25)  are inside the unit 
circle. 
 

1
0 1det( ) 0N Nz I A z A+ − − =                                (25) 

 
Since det det TM M= , therefore equation (2) is 
stable if, and only if, all the roots of the following 
characteristic equation are inside the unit circle. 
 

1
0 1det( ) 0N T N Tz I A z A+ − − =                            (26) 

 
In this article, a simple method is presented for 
checking to see whether all the roots of equation 
(26) are inside the unit circle.   
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{ }
{ }

1
0 1( , ) det( ),

( ) ( , ) 0 ,

ˆ ˆ( , ) , ( ) .

r T r T

B

f z r z I A z A

W r z C f z r

W r z C z z z W rε ε

+≡ − −

≡ ∈ =

≡ ∈ − < ∈

         (27) 

 
Principle 6: If equation (2) is stable for 0N = , and 
for every real number [ ]max0,r N∈ , ( )W r has no 
element on the unit circle, then, equation (2) will be 
stable for every [ ]max0,N N∈  [1].   
The next principle shows that the unit circle element 
of ( )W r can be evaluated from the eigenvalues of 
H .   
    
Principle 7: If ( )W r has an element on the unit 
circle, then, that root will be an eigenvalue of H as 
well [2]. 
By using principle 7, maxN can be so calculated as 
to make equation (2) stable for every 

[ ]max0,N N∈ .  

Assume that , 0ijw
ie w R∈ ≥ is an eigenvalue of 

the unit circle H , and iv is the eigenvector 
associated with it, and 0ir R∈ ≥ is defined as 
follows: 
 

lim

0

0 0

k

k
i i

i

i

Ln
r

β
γ

ω
ω

ω

⎧ ⎫⎛ ⎞⎛ ⎞
⎪ ⎪⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠≡ ⎨ ⎬≠
⎪ ⎪
⎪ ⎪=⎩ ⎭

                       (28) 

 
 
where kβ is the k th element iν  and kγ is the 

( )2n k+ th element from vector iv . 2k n≤ , which 

can be arbitrarily chosen to the length of the k th 
non-zero element of iv . 
(i) If equation (2) is stable for 0N =  and maxN is 
the largest whole number not bigger than min ir , 
then, equation (2) will be stable for all the 

[ ]max0,N N∈ . 

(ii) If equation (2) is stable for 0N = and H has no 
eigenvalue on the unit circle, then, equation (2) will 
be stable for 0N ≥ . 
 

Proof of (i): Let's assume that in equation (28), 
1k = . From equation [ ]Tv u u= , 

22nv C∈ , we 
obtain: 
 

  1

1

i ijw reβ
γ

=  

 
where ir r= is a root on the unit circle from 

( , ) 0f z r = . From principle 7, it is concluded that 
( )W r has no element on min ir r< . Therefore, 

equation (26) doesn't have a root on the unit circle 
for min iN r< . So, according to principle 6, 

equation (2) is stable for all the [ ]max0,N N∈ . 
 
4 Extending The Expressed Method 
To Multi-Delay Systems 
 
In this section, the intention is to extend the method 
expressed for single-delay systems to multi-delay 
systems. Consider the system given in equation (1). 
To extend the method cited in the previous section 
to multi-delay systems, we first find a realization 
that transforms system (1) into system (2); in other 
words, we find a realization that transforms the 
multi-delay system into an equivalent single-delay 
system. Then, the stability condition obtained in the 
previous section can also be applied to these 
systems. The equivalent single-delay system is 
defined as follows: 
 

0 1( 1) ( ) ( )y k A y k A y k N′ ′ ′+ = + −                    (29) 
 
In equation (29), the delay of N ′ has been specified 
as 1M MN N N −′ = − . It should be mentioned that 
in this state, the goal is to obtain the interval of 
delay of MN for which the system is stable. 
Variables ( ), ( 1)y k y k + have been defined as: 
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 By considering (29) and (30), we will have: 
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With regards to (21), the two matrices of H and 
J are defined for multi-delay systems as follows: 
 

1 1 ,
( )

0
0

A B
H

A B A A I B B

I
J

I

− −

′ ′⎡ ⎤
= ⎢ ⎥′ ′ ′ ′ ′ ′− −⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

          (32) 

 
where 0 1( ), ( )T TA I A B I A T′ ′ ′ ′≡ ⊗ ≡ ⊗ . 
 
5 Examples 
 
Now, the effectiveness of the proposed approach in 
this article is evaluated for systems with delay in 
state. 
 
Example 1- Consider the following single-delay 
system: 
 

0 1

0 1

( 1) ( ) ( ) ,
0.3 0.15 0.1 0.2

,
0 0.7 0.1 0.4

x k A x k A x k N

A A

+ = + −

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

            (33) 

 
This system is stable for 0N = , and the 
eigenvalues of H have been given as follows: 
 
{0.0081 - 0.0070i, -0.0432 + 0.0749i, -0.0802 + 
0.0322i, 0.5259 - 0.4565i, -0.0107,                  
0.0817 + 0.0283i, 0.0817 - 0.0283i, 0.6924} 
 
First, the eigenvalues of matrix H are plotted. As is 
clear from Fig. 1, matrix H has two eigenvalues on 
the unit circle; one of these eigenvalues has 

0ω ≥ and is equal to 0.2368ω = . Now, by 
considering equation (28) and (i), the value of 

MaxN can be calculated. 
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Fig. 1: Eigenvalues of matrix H (single-delay system) 

( ) ( )( )0.0081 0.0070 / 0.0107 0.0005 2.4289

2.4289 / 0.238 10.2572 10Max

Log i i

r N

− − = +

= = ⇒ =
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 In this system, 10MaxN = , and this means that the 
system is stable for the delay of 10N ≤ , and 
unstable for 11N = . Therefore, the system 
described in this example is stable for [ ]0,10N ∈ . 

Consider Fig.2, the poles of the characteristic 
equation (33) according to formula (26) for 11N =  
is plotted. 
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Fig. 2: The location of poles characteristic equation 

(33) for 11N =  
 
 
Conjugate poles of the characteristic equation of the 
system have been transferred outside the unit circle 
and have been lead to system instability. Unstable 
poles as follows: 
 

1
1 2

2

0.9763 0.2222
1.0012

0.9763 0.2222
P i

P P
P i
= + ⎫

⇒ = =⎬= − ⎭
 

 
Example 2- Consider the following two-delay 
system: 
 

0 1 1 2 2

1 2

0 1

2

( 1) ( ) ( ) ( )
,
0.3 0.15 0.2 0.2

, ,
0.1 0.6 0.1 0.1

0.1 0.4
0.6 0.55

x k A x k A x k N A x k N
N N

A A

A

+ = + − + −
≤

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 (34) 

 
 
This system is stable for 1 2 0N N= = . In his 

example, by assuming 1 1N = , the range of delay of 

2N is obtained. First, the eigenvalues of matrix 
H are plotted. It is observed in Fig. 3 that matrix 
H has four eigenvalues on the unit circle, which 
two of these eigenvalues have 0ω ≥ ; so, by 
considering equation (31) and using equation (28) 
and (i), the value of 2N can be estimated. 
 

[ ]

1 1

2 2

1 2

1 2 1

2 2

0.1565 10.8096
0.2087 14.8654

( , ) 10

1 10
11 1,11

r
r

Min r r N

N N N N
N N

ω
ω

= = ⎫
→⎬= = ⎭

′= =

′= → − = = →

= → ∈

 

 
It can be concluded that, for the delay of 1 1N = , 

this system will be stable for [ ]2 1,11N ∈  
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Fig. 3: Eigenvalues of matrix H (two-delay system) 
 
 
The poles of the characteristic equation (34)  
according to formula (35) for 1 1N =  and 2 12N =  
are plotted in Fig. 4 

(35) 
1 2 1 2 2 11

0 1 2det( ) 0N N N N N NT T Tz I A z A z A z+ + +− − − =   
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Fig. 4: The location of poles characteristic equation 

(34) for 1 1N =  and 2 12N =  
 
According to Fig. 4 , Because the two poles of the 
unit circle is outside, the system is unstable, 
Unstable poles as follows: 
 

1
1 2

2

0.9882 0.1538
1.0001

0.9882 0.1538
P i

P P
P i
= + ⎫

⇒ = =⎬= − ⎭
 

 
Now, for a delay value of 1 2N = , we want to 

determine the range of delay of 2N for system 
stability. In this state also, matrix H has two 
eigenvalues on the unit circle, one of which has 

0ω ≥ ; so, in view of equation (28) and (i), the 
amount of delay of 2N can be calculated. 
 

[ ]
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2 2

1 2

1 2 1

2 2
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r
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N N N N
N N

ω
ω

= = ⎫
→⎬= = ⎭

′= =

′= → − = = →

= → ∈

 

 
As can be seen, for the delay of 1 2N = , this system 

will be stable for [ ]2 1,14N ∈ . By using the same 

approach, the range of delay of 2N for system 
stability can be obtained for different delay values 
of 1N . 
The poles of the characteristic equation (34)  
according to formula (35) for 1 2N =  and 2 15N =  
are plotted in Fig. 5 
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Fig. 5: The location of poles characteristic equation 

(34) for 1 2N =  and 2 15N =  
 
Unstable poles as follows: 
 

3
3 4

4

0.9779 0.2132
1.0009

0.9779 0.2132
P i

P P
P i

= + ⎫
⇒ = =⎬= − ⎭

 

 
Example 3- The following three-delay discrete-time 
system is considered: 
 

0 1 2

3 3 1 2 3

0 1

2 3

( 1) ( ) ( 1) ( 2)
( )

0.3 0.15 0.1 0.3
, ,

0 0.7 0.2 0.3

0.2 0.3 0.4 0.1
,

0.2 0.52 0.1 0.3

x k A x k A x k A x k
A x k N N N N

A A

A A

+ = + − + − +
− ≤ ≤

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (36) 

 
In the given three-delay system, the objective is the 
determination of the maximum amount of delay of 

3N for which the system remains stable. In equation 

(36), it has been assumed that 1 1N = and 2 2N = . 
First, the eigenvalues of matrix H are plotted. It is 
observed in Fig. 6 that matrix H has several 
eigenvalues on the unit circle, and one of these 
eigenvalues has 0ω ≥ which is equal to 

0.1656ω = . Now, by considering equation (31) 
and using equation (28) and (i), the value of 3N can 
be calculated.   
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Fig. 6: Eigenvalues of matrix H (three-delay 

system) 
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3 3

0.1656 8.0501 8

2 8
10 1,10

r N

N N N N
N N

ω ′= → = → =

′= → − = = →

= → ∈

 

 
As can be observed, for the delay values of 

1 1N = and 2 2N = , this system will be stable for 

[ ]3 1,10N ∈ . Using the same approach, for different 

delay values of 1N and 2N , the range of delay of 

3N for system stability can be obtained.  
 
 The poles of the characteristic equation (36)  
according to formula (37) for 1 21, 2N N= =  and 

3 11N =  are plotted in Fig. 7 
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Fig. 7: The location of poles characteristic equation 

(34) for 1 21, 2N N= =  and 3 11N =  

Conjugate poles of the characteristic equation of the 
system have been transferred outside the unit circle 
and have been lead to system instability. Unstable 
poles as follows: 
 

1
1 2

2

0.9941 0.1548
1.0061

0.9941 0.1548
P i

P P
P i
= + ⎫

⇒ = =⎬= − ⎭
 

 
6 Conclusion 
 
In this article, the proposed method in [1], which 
concerns the necessary and sufficient conditions for 
the stability of single-delay systems, has been 
extended to multi-delay systems. For this purpose, 
first, a simple approach for solving the Lyapunov's 
equation for a system with delay in state has been 
presented. By using the proposed approach, the 
Lyapunov's equation can be easily solved, even for 
large values of N .Then, by presenting a realization 
that transforms a multi-delay system into a single-
delay one, the stability conditions in [1] could be 
extended to multi-delay systems. It should be 
mentioned that this stability condition has been 
defined based on the relationship between the 
stability of the frequency domain and a constant 
matrix that appears in the Lyapunov's equation. The 
presented stability condition guarantees the stability 
of discrete systems with delay in state, whose delay 
of state is not specified exactly, and we only know 
that it falls in a particular interval. 
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