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Abstract: - This paper presents a fuzzy tracking control design based on H∞ performance for nonlinear systems. 

The Takagi-Sugeno fuzzy model is employed to approximate a nonlinear system. Based on the H∞ tracking 

performance, the nonlinear system output is controlled to track a reference signal, and at the same time the 

tracking performance is attenuated to a prescribed level. Linear matrix inequalities (LMI) techniques are used 

to solve the fuzzy tracking control problem. The proposed method has been applied to control of a laboratory 

pendulum-cart system. Hence, the performance has been evaluated in simulations as well as in real-time 

control. 
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1 Introduction 
The Takagi-Sugeno (T-S) fuzzy model has become 

popular because of its efficiency in controlling 

nonlinear systems. The T-S fuzzy model has been 

proved to be a good representation for a class of 

nonlinear systems [1]. The main property of T-S 

fuzzy model is to describe the local dynamics by 

linear models. The overall model of the nonlinear 

system is obtained by fuzzy blending of these linear 

models through nonlinear fuzzy membership 

functions. 
The tracking control design based on the Takagi-

Sugeno fuzzy model has been treated by several 

researchers, for instance, Ma [2], Zhang [3], Tseng 

[4], and Uang [5]. The most important issue for 

fuzzy tracking control systems is that the output of 

the nonlinear system tracks a reference signal. In 

Ma [2], the tracking problem of nonlinear systems is 

solved using a synthesis of the fuzzy control theory 

and the linear multivariable control theory. 

Simulation results show that the proposed tracking 

control system can make the output of the system to 

asymptotically track the reference signal. The robust 

fuzzy tracking controller based on internal model 

principle is introduced to track a reference signal in 

[3]. Simulation results on the inverted pendulum 

system show that the stepwise signal for uncertain 

nonlinear system can be tracked via the proposed 

method. The nonlinear H∞ control schemes have 

been introduces to deal with the robust performance 

design problem of nonlinear systems. In general, 

conventional H∞ control scheme are not suitable for 

practical control system design [6]. In the work of 

Tseng [4], a fuzzy tracking control design method 

with a guaranteed H∞ model reference tracking 

control scheme is proposed to systematically design 

for continuous-time systems. The proposed design is 

applied for the multi input multi output (MIMO) 

systems. However, the application of the design for 

single input multi output systems, we have to make 

adjustment on the structure of reference model. 

Despite the fact that much progress has been made 

in studying the tracking problem of nonlinear 

systems, it is still a challenge to apply the control 

system to the real plant. 

For practical control design, a simple fuzzy 

tracking control design with guaranteed control 

performance is more appealing for nonlinear 

systems. In this work, the T-S fuzzy model is used 

to describe the dynamics of the nonlinear system. 

Then, a fuzzy tracking controller is introduced to 

track a reference signal, and the H∞ tracking 

performance is guaranteed for a prescribed level for 

all external disturbance and reference signal. The 

LMI convex programming technique is used to 

solve this problem. The proposed technique is 

validated by means of a laboratory experiment; a 

pendulum-cart system. 

The paper is organized as follows. Section 2 

addresses the problem formulation. The H∞ tracking 

control design is discussed in Section 3.  In Section 

4, the application of the proposed method in 
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pendulum-cart system is derived. Also, the 

simulation and experiment results are provided in 

this section. Finally, Section 5 concludes this paper. 

 

 

2 Problem Formulation  
The main feature of Takagi–Sugeno fuzzy models is 

to represent the nonlinear dynamics by linear model 

according to the so-called fuzzy rules and then to 

blend all the linear models into an overall single 

model through nonlinear fuzzy membership 

functions [7]. The ith rule of the fuzzy model is of 

the following form: 

 Plant Rule i: 

If z1(t) is Fi1 and ··· and zg(t) is Fig 

Then )()()()( twtuBtxAtx ii ++=ɺ   

)()( txCty i=   Li  ,,2 ,1for ⋯=     (1) 

where 1)( ×∈ nRtx  denotes the state vector, 

1)( ×∈ mRtu  denotes the control input, 1)( ×∈ nRtw  

denotes the bounded external disturbance, qRty ∈)(  

denotes the system output, nn
i RA ×∈ , mn

i RB ×∈ ,  

and nq
i RC ×∈ , Fij is the fuzzy set,  L is the number 

of If-Then rules, and )(,),(),( 21 tztztz g…  are the 

premise variables. 

The final output of fuzzy model is inferred as 

follows [4],[5]: 
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and where Fij(zj(t)) is the grade of membership 

function of zj(t) in Fij.   

It assumed that 

0))(( ≥tziµ , and ∑
=

>
L

i

i tz
1

0))((µ   

for all t. 

Therefore, we get [7], [8] 

,0))(( ≥tzhi ∑
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i tzh
1

1))(( Li  ,,2 ,1for  ⋯= . (4) 

The T-S fuzzy model in (2) is a general nonlinear 

time-varying equation and has been used to model 

the behaviours of nonlinear dynamic systems [7].  

Consider the following reference model [9]: 

)()()( trBtxAtx rrrr +=ɺ  (5) 

where xr(t) denotes the reference state, Ar and Br are 

the known linear system and input matrices, 

respectively; r(t) is the bounded reference input 

(signal). 

The H∞ performance related to tracking error is 

denoted as follow [4], [5]: 
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T dttwtw
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2 )(~)(~ρ  (6) 

where Ttrtwtw )](),([)(~ = for all reference input r(t), 

and external disturbance w(t);  tf is terminal time of 

control, Q is a positive definite weighting matrix, ρ 

is a prescribed attenuation level. The physical 

meaning of (6) is that the effect of any )(~ tw  on 

tracking error x(t) – xr(t) must be attenuated below a 

desired level ρ from the viewpoint of energy, i.e. the 

L2 gain from )(~ tw  to x(t) – xr(t) must equal to or 

less than a prescribed value ρ2
. 
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By using the PDC scheme, the following fuzzy 

controller is employed to deal with the proposed 

control system design:   

Control Rule j: 

If z1(t) is Fi1 and ··· and zg(t) is Fig 

Then ))()(()( txtxKtu rj −= ,  Lj  ,,2 ,1 ⋯=  (7) 

where Kj is the controller gain for the jth controller 

rule. 

Hence, the overall fuzzy controller is given by 

∑
=

−=
L

j

rjj txtxKtzhtu
1

)))()(())((()(  (8) 

where the weight hj(z(t)) is the same as the weight of 

ith rule of the fuzzy system (2). Substituting (8) into 

(2) yields the closed-loop control system as follows: 
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Combining the controlled local linear model (9) 

and the reference model (5), we obtain the following 

augmented fuzzy system: 
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If the initial condition is also considered, the H∞ 

tracking performance in (6) can be modified as 

follows: 
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where P
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 is a symmetric positive definite weighting 

matrix and   
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3  H∞∞∞∞ Tracking Control Design  
The design purpose of this study is how to specify a 

fuzzy controller in (8) for the augmented system 

(10) with the guaranteed H∞ tracking performance in 

(11) for all w(t), and the output of system can follow 

the reference signal r(t). Furthermore, the closed-

loop system 

∑∑
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is quadratically stable.  

Let us choose a Lyapunov function for the 

system (10) as  

)(~~
)(~)( txPtxtV T=  (13) 

where the weighting matrix 0
~~

>= TPP . 

The time derivative of V(t) is 

)(~~
)(~)(~~

)(~)( txPtxtxPtxtV TT ɺɺɺ +=  (14) 

By substituting (10) into (14), we get 
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Then, we get the following result.   

Theorem 3.1  The  augmented  fuzzy system 

described by (10), if 0
~~

>= TPP  is the common 

solution of the following matrix inequalities: 

0
~~~~~1~~~~

2
<+++ QPEEPAPPA T

ij
T
ij

ρ
 (16) 

for all Lji ,,2,1, …= , then the H∞ tracking 

performance in (11) is guaranteed for a prescribed 

ρ2
. 

Proof: From (15), we get 
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= =
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i

L

j
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T
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Note that the inequality (16) can be written as  
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Therefore, from (17) and (18) we obtain 
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From the properties of hi(z(t)) in (4), (19) can imply 

the following inequality:  
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By substituting (13) into (21), we obtain 
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This is (11) and the H∞ tracking control performance 

is achieved with a prescribed ρ2
. This completes the 

proof.   

The tracking control problem can be formulated 

as the following minimization problem to obtain 

better tracking performance:  

min ρ2
 

subject to 0
~
>P  and (16). (23) 

In the case 0)(~ =tw , if the fuzzy controller (8) 

is employed in the closed-loop system (12) and 

there exists a positive definite matrix P
~

 such that 

the matrix inequalities in (16) are satisfied, then the 

closed-loop system (12) is quadratically stable. 

Proof: From (20) we obtain 
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Therefore, the closed-loop system (12) is 

quadratically stable. This completes the proof. 

To obtain the solution P
~

 from the minimization 

problem in (23) is not easy. Fortunately, (23) can be 

transferred into the linear matrix inequalities 

problem (LMIP) [10]. The matrix inequalities in 

(16) are transformed to the equivalent LMIs by the 

following procedure. 
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This inequality can be written as  

0
2221
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We can solve 11

~
P , 22

~
P , and Kj using the 

following two-step procedures [4]. First, find the 

solution of 011 <H , we obtain Kj and 11

~
P , then 

substituting them into (29) to obtain 22

~
P .  

In the first step, the solution of   

0
~~1

)(
~~

)( 111121111 <+++++ QPPKBAPPKBA jii
T

jii
ρ

 … (30) 

can be obtain by change of variables 1
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11YKX jj = , then (30) is equivalent to the following 

inequality 
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The parameters Y11 and Xj can be obtained by 

solving the LMIP in (32). 

In the second step, by substituting 11
~
P  and Kj 

into (29), then (29) become standard LMIs. 

Similarly, we can obtain 22
~
P  by solving the LMIP 

in (29). If there exits positive definite solutions for 

P
~

, then the closed-loop system is stable and the H∞ 

optimization design for fuzzy control system of (1) 

is formulated as the following optimization 

problem:  

2

}
~

,
~

{
     min

2211

ρ
PP

 

subject to 0
~~
1111 >= TPP , 0

~~
2222 >= TPP  and (29).

 … (33) 

According to the analysis above, the fuzzy tracking 

control based on H∞ performance for nonlinear 

systems is summarized as follows.  

Design Procedures: 

1) Select membership functions and construct 

fuzzy plant rules in (1). 

2) Given an initial attenuation level ρ2
.  

3) Solve the LMIP in (32) to obtain Y11 and Xj 

(thus 11

~
P  and Kj can also be obtained). 

4) Substitute 11

~
P  and Kj into (29) and then solve 

the LMIP in (29) to obtain 22

~
P . 

5) Decrease ρ2
 and repeat Steps 3–5 until positive 

definite solutions 11

~
P  and 22

~
P  can not be 

found. 

6) Construct the fuzzy controller (8). 

This minimization problem can be solved very 

efficiently by means of the Matlab LMI Toolbox 

software. 

 

4  Application in Pendulum-Cart 

System 
Consider the familiar pendulum-cart system 

experiment, found in many undergraduate control 

laboratories. The design objective of the application 

of the proposed fuzzy tracking control method that 

are the cart can track a sinusoidal reference signal, 

and H∞ performance is achieved for a prescribed ρ2
. 

The state equations of the pendulum-cart system 

including external disturbances are given by [11] 
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where ))/((2
pc mmJla ++= , )( pc mml +=µ , x1 

denotes the cart position (m), x2 denotes the angle of 

the pendulum from the vertical (rad), x3 is the cart 

velocity (m/s), and x4 is the pendulum angular 

velocity (rad/s), g = 9.8 m/s
2 

is the gravity constant, 

mp is the mass of the pendulum (kg), mc is the mass 

of the cart (kg), l is the distance from the axis of 

rotation to the centre of mass of the pendulum-cart 

system, J is the moment of inertia of the pendulum-

cart system with respect to the centre of mass, F is 

the force applied to the cart (N), Tc is the friction 

force, and fp is the pendulum friction constant 

(kg·m
2
/s), w1(t) and w2(t) are the bounded external 

disturbances.  

The pendulum-cart system parameters used for 

simulation and experiment are mc=1.12 kg, mp= 0.12 

kg, J= 0.0135735 kg⋅m2
, l = 0.01679 m, and 

fp=0.000107 kg·m/s [11]. All pendulum frictions are 

considered to be negligible. 

The T-S fuzzy model for the nonlinear system in 

(34) is given by the following three-rule fuzzy 

model: 
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txF  

]30/)([80 20.1

0.1
π+−+

⋅
tx

e
 









+
−=

−−− ]30/))15/()([(8022
20.1

0.1
0.1))(( ππtx

e
txF  

]30/))15/()([(80 20.1

0.1
ππ +−−+

⋅
tx

e
 

]30/))5.7/()([(8023
20.1

0.1
))(( ππ +−−+
=

tx
e

txF . 

The external disturbances in (35) are w1(t) = w2(t) = 

0.01 sin(0.4πt), and w3(t) = w4(t) = 0. 

The reference model is given as 

)()()( trBtxAtx rrrr +=ɺ  

where 



















−−

−−
=

5600

1000

0056

0010

rA ; 



















−
=

2.4

0

1.3

0

rB  

and the reference signal r(t) = 0.1 sin(0.2πt).  

Select Q = 10
-5

 diag (50, 50, 50, 50). The optimal 

ρ2
 = 0.75 is found after several iterations using the 

LMI optimization toolbox in Matlab [12]. In this 

case, we obtain the solution for (33) as follows: 



















−−

−−

−−

−−

=

0040.00040.00155.00033.0

0040.00042.00156.00036.0

0155.00156.00621.00131.0

0033.00036.00131.00041.0

~
11P  
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

















=

1367.89439.46842.104900.6

9439.48523.674987.66012.89

6842.104987.64529.147187.8

4900.66012.897187.87562.120

~
22P  

and  

]1678.796191.694392.3102760.55[1 −−=K  

]3040.795844.697216.3101650.55[2 −−=K  

]1144.798104.682168.3092518.54[3 −−=K . 

Therefore, we obtain the control law 

∑
=

−=
3

1

2 ))()(())(()(
j

rjj txtxKtxhtu . 

For comparison, the simulations are made with 

the fuzzy tracking controller using stabilizing 

compensator structure (FTC) [13]. We apply the 

fuzzy tracking control systems to the original 

system (34). The simulation program is realized by 

Matlab/Simulink.  

Simulations results are depicted in Figs. 1 and 2. 

The results indicate that the output (cart position) of 

the tracking control system can follow the reference 

signal r(t)=0.1 sin(0.2πt). The system can also 

stabilize the pendulum in the upright position. The 

time response of the cart required to follow the 

reference signal for the system with the proposed 

fuzzy tracking controller (H-infinity) is shorter than 

that of the FTC. The settling time of the response of 

pendulum angle converging back to the equilibrium 

for the system with the proposed fuzzy tracking 

controller is faster than that of the FTC. It can be 

concluded that the proposed fuzzy tracking 

controller has better tracking performance than that 

of the FTC. 
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Fig.1. Simulation responses of the cart position of 

the pendulum-cart system. 
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Fig.2. Simulation responses of the pendulum angle 

of the pendulum-cart system. 

 

A real-time experiment on the pendulum-cart 

system from The Feedback Instrument Ltd. is 

conducted to verify the performance of the proposed 

fuzzy tracking control system using the 

experimental setup depicted in Fig. 3. The control 

system is performed using Matlab/Simulink with 

Real-Time Workshop on a personal computer with 

the 16-bit AD/DA converter. Two differentiators 

with 100 s
-1

 cutoff frequency are used for the cart 

velocity and the pendulum angular velocity 

calculations. All external disturbances in (34) are 

removed. 

Figs. 4 and 5 show the experiment results using 

the initial condition x(0) = (0, about 0.3 rad, 0, 0). 

These results are almost a replica of the simulation 

results. It can be concluded that the responses of the 

proposed control system met the designed criteria, 

i.e. the cart can follow the sinusoidal reference 

signal and the pendulum is stable in upright 

position, and H∞ performance is achieved for a 

prescribed ρ2
. However, the control signal of the 

proposed tracking controller is larger than that of the 

FTC (Fig. 5). This is an issue of the implementation 

of the proposed method that should be considered. 

 

 

Fig.3. Experimental setup for the pendulum-cart 

system. 
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Fig.4. Experiment responses of the cart position of 

the pendulum-cart system. 
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Fig.5. Experiment responses of the pendulum angle 

of the pendulum-cart system. 
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Fig.6. Experiment responses of the control signal of 

the pendulum-cart system. 

 

In order to indicate the robustness of the control 

system designed, a disturbance, parameter variation, 

and measurement noise are applied to the system. 

To avoid the component failure of the control 

system, the magnitude of a disturbance on the 

control input, the standard deviation of the 

measurement noise, and the variation of system 

parameter must be applied with awareness.  

A disturbance d(t) (see Fig. 7) is used in the 

experiment. Figs. 8-9 show that the pendulum-cart 

system with control signal in Fig. 10 is robust to the 

disturbance with only a little deviation for the 

pendulum in a short period. It can be seen that the 

cart can not track the reference signal during the 

disturbance is applied.   
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Fig.7. Disturbance d(t). 
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Fig.8. The response of the cart position of the 

system when d(t) is included. 
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Fig.9. The response of the pendulum angle of the 

system when d(t) is included. 
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Fig.10. The control signal of the system when 

disturbance is included. 

 

The cart mass is changed to be mc = 1.34 kg, 

which is +20% variation of the nominal cart mass. 

Figs. 11-13 show the experiment results. The 

reference signal is tracked by the cart with only a 
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little shift. It observed that the tracking controller 

can balance the pendulum in the upright position. 

The control signal is almost the same magnitude as 

the control signal of the system without additional 

mass (Fig. 6). 

A noise on the cart position measurement, v1, is 

assumed to be zero-mean white noise with standard 

deviation equals 0.1%. Figs. 14-16 show the 

response of the cart position, the pendulum angle, 

and the control signal. The cart can follow the 

reference signal with a slight shift, and a slight 

deviation on the steady state response of the 

pendulum angle is also observed. These good 

performances must be compensated with large 

control signal (Fig. 16). 
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Fig.11. The cart position response when the cart 

mass varied from its nominal value.  
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Fig.12. The pendulum angle response when the cart 

mass varied from its nominal value.  
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Fig.13. The control signal when the cart mass varied 

from its nominal value. 
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Fig.14. The cart position of the control system with 

measurement noise v1. 
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Fig.15. The pendulum angle of the control system 

with measurement noise v1. 
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Fig.16. The control signal of the control system with 

measurement noise v1. 

 

Figs. 17-19 show the responses of the tracking 

control system when a white noise (zero-mean, 

0.25% of standard deviation) v2 is applied to the 

pendulum measurement. It can be observed that the 

performance of the control system meet the design 

objectives, i.e. the cart can track the reference signal 

and the pendulum stabilize in the upright position. 

However, the control signal is too large. It might 

damage the actuator in the system. 

From the robustness test of the proposed fuzzy 

tracking control, we can conclude that the 

performance of the system still satisfy the design 

objective with slight performance degradation.    
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Fig.16. The cart position of the control system with 

measurement noise v2. 
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Fig.18. The cart position of the control system with 

measurement noise v2. 
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Fig.19. The control signal of the control system with 

measurement noise v2. 

 

 

5 Conclusion 
In this paper we have presented a systematic design 

method of fuzzy tracking control system based on 

H∞ tracking performance for nonlinear systems. 

Based on the T-S fuzzy model, the control system is 

developed to make the system output able to track a 

reference signal by minimizing the attenuation level 

ρ2
. The stability of the closed-loop nonlinear 

systems is also discussed in this paper. By 

employing the H∞ attenuation technique, the 

performance of the fuzzy tracking control design for 

nonlinear systems can be improved.  

The fuzzy tracking control problem is 

parameterized in terms of a LMIP. The LMIP can be 

solved efficiently by LMI optimization toolbox in 

Matlab. An application on the pendulum-cart system 

is given to illustrate the design procedures. 

Simulation and experiment results show that the 

desired performance for nonlinear systems can be 

achieved via the proposed tracking control method. 
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