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Abstract: -Two kinds of basic modules are presented to set up the modular robots. One is the cuboid module, 

the other is the cubic module. Four connecting types of cuboid modules and two connecting types of cubic 

modules are analyzed based on their geometric feature. For deriving the transformation matrix of each 

connecting type, the concepts of basic group are proposed. Then, the geometric relationships of each 

connecting type are derived with the group theory. The basic motion of modules is presented. With the rotary 

motion around the neighboring module, the morphing motion from a quadruped to two-leg modular robot is 

shown and the kinematics of modular robots is generated with product of matrix exponentials. Examples of 

kinematics on a quadruped and a two-leg modular robot are given to demonstrate the applicability of the 

proposed methods. 
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1 Introduction 
Modular robots consist of a set of homogeneous 

basic modules that can connect to, disconnect from 

and relocate relative to adjacent modules. It can 

autonomously and dynamically adapt its geometric 

structures and functions to different given tasks and 

unknown or unpredictable environment.  

In early years, two dimensional modular robot 

systems were studied. Fukuda developed a cellular 

robotic system [1], which was the first modular 

robot proposed. Fractum [2] was a homogeneous 

system. Its mechanism was simple so it can only 

achieve motion in the plane.  

Recently, research on three dimensional models 

has made remarkable progress and many kinds of 

robots have been proposed. There are two classes of 

three dimensional systems, a class based on lattice 

systems and a class of linear or string systems. In 

the former class, the shape of a robot is determined 

by the lattice systems, such as a cubic structure [3], 

M-TRAN [4]. The latter class is a linear or string 

system, such as Polybot [5], Conro [6]. Their 

researches were mostly about the structure design, 

motion planning and control. The analysis of 

automatically generating kinematics on modular 

robots is minimum.
 

Kelmar [7] proposed an 

algorithm for automatically generating kinematics 

with the standard D-H method. In their technique, 

only rotary joints were covered and some 

constraints were imposed improperly.  Benhabib [8]
 

improved the above technique. However, their work 

needed to be further extended to consider a more 

general modular structure. Chen [9,10] used the 

cube as the module and 1-DOF joint modules were 

studied on the kinematics. Fei [11,12] used prism as 

the module and analyzed the kinematics.  

In this article, the basic modules are classified 

and the motion on the morphing progress among 

modular robots is analyzed, then their kinematics is 

generated. First, the cuboid modules and cubic 

modules are classified into six connecting types. 

Three coordinate systems are set up on each module. 

Second, the concepts of basic group are proposed. 

Thus, the description of each module can be 

simplified. When the configuration of each modular 

robot is known, the connecting type of each module 

is chosen. Third, the basic motion of modules is 

presented. With the rotary motion around the 
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neighboring module, the morphing motion from a 

quadruped robot to a two-leg modular robot is 

shown. Their kinematic models can be generated 

automatically by using the product of matrix 

exponentials. 

 

 

2 Basic Module Description  
Modular robots consist of a set of homogeneous 

units. The cuboid module and the cubic module are 

general units in modular robots. According to the 

flowing direction of power and information, there 

are two connecting types for cubic modules (Figure 

1). If the module is assumed to be square prism 

whose section is square, the module is classified 

into four connecting types (Figure 2). With the 

group theory, the transformation matrix TLi-j (port j 

relative to port i) of the cuboid module and TCi-j of 

the cubic module can be generated.  

 

           
(a)     (b)  

Figure 1. Cubic module. 

 

 

          
(a)                     (b)        

 

    
                  (c)                                 (d) 

Figure 2. Cuboid module. 

 

 

         
(a) (l-port separation, A- length, w1(=w2)- width)     

 

          
                               (b) (width=w) 

Figure 3. Structures of the cuboid module and the 

cubic module. 

 

                      

2.1 Module Structure 
With the bottom-up manner, the module ports are 

numbered. The input ports are given odd numbers 

and the output ports even numbers (Figure 3).  

 

 

2.2 Mathematical Description  
We take the connecting type of Figure 1(a) and 

Figure 2(a) as an example. Three coordinate frames 

(the center coordinate system (x y z), the input port 

(connecting port) coordinate system (xi yi zi) and the 

output port (connecting port) coordinate system (xo 

yo zo)) can be set up (Figure 4).The i-th z axis is 

defined to be along the direction of the axis in the i-

th connecting port, which points to the i-th module. 

 

     
（a） 
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   (b) 

Figure 4. One of the module’connecting types. 

 

 

Definition 1. The module is based on a quadrivalent 

circular, whose twist angle is 
4

2 . The basic cycle 
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Definition 2. Basic Group (G): In G, each set is a 

single cell base which forms other similar models 

with a relative basic cycle group.  

Definition 3. Twist equivalence: After the 

configuration C1 is transformed by T (the 

transformation matrix), the configuration C2  can be 

obtained. C1T= C2, thus C1 and C2 are in twist 

equivalence. 

For example, for the cuboid module, there are 

four kinds of connecting types, G={{TL2-1}, {TL10-

1},{TL2-9},{TL10-9}}. See Figure 2, TLj-i stands for the 

transformation matrix of the port j relative to the 

port i. {TL2-1} is a single cell base. Other 

transformation matrixes TL4-1, TL6-1, TL8-1can be 

formed with the basic cycle group, such as TL4-1 

=TL2-1
1)

4

2
(


 , TL6-1=TL2-1
2)

4

2
(


 , TL8-1=TL2-1 

3)
4

2
(


 ，…. TL2-1, TL4-1, TL6-1 and TL8-1 are in 

twist equivalence. According to the above definition 

and relation, the transformation matrix of other 

connecting types can also be obtained. So we only 

need to study the basic expressions about modular 

robots. Other connecting types’ expressions can be 

obtained with the group theory.  
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With the basic cycle group, the following 

equation can be obtained.  
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3 Kinematics 
3.1   POE  Method 
According to the above analysis, when the serial 

configuration of the modular robot is determined, 

the modules are also determined and the 

transformation matrix TL are also obtained. For the 

linear modular robot with several modules, our 

approach is the use of POE (product of matrix 

exponentials) to represent modular robots’ forward 

kinematics 
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Thus, the kinematic model can be generated 

automatically.                                        

T(0) is the transformation matrix of the 1-th 

module’s input port relative to the given coordinates. 

TLi is the transformation matrix of one connecting 

type. i is the rotary angle between two neighboring 

modules， i
i
ie
̂

is the rotary transformation matrix 

of two neighboring modules. 
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According to the structure of the modular robot, 

for the cuboid modules, the connecting types of 

Figure 2 (b) and Figure 2 (d) are chosen to be the 

end-modules.  
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For the cubic modules, each connecting type can be 

chosen as the end-modules.  
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Where 
cuboid

LcT 1 or 
cubic

LcT 1  is the transformation 

matrix of port 1 relative to the module’s center for 

the cuboid module or the cubic module.  

 

 

3.2 Kinematics of a Quadruped 
A quadruped is composed of eight identical cuboid 

modules and one center module (Figure 5 (a)). The 

coordinate system （oxyz）is set up at the center 

module (Figure 5). The graph representation of the 

quadruped is shown in Figure 5 (b). The line stands 

for the module and the small circle stands for the 

rotary joint. 
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(a) 

 

                     
(b) 

 

Figure 5. A quadruped composed of eight identical 

cuboid modules and one center module. 

 

 

The forward kinematics of its back-left leg is 

generated automatically with the above method. 
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With the basic cycle group, the following 

equations can be obtained.  
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Thus, the kinematics of the quadruped’s back-

left leg can be obtained. 
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The dimensions of each module are given as 

follows:
1 1

2 1 15A A cm  , 0 20l cm  (the center 

module), 
1 1

2 1 10l l cm  , 
1 1

2 1 5w w cm  , 

t1

1 rad, 
1

2 t  rad. The space trajectory of its 

back-left leg is shown in Figure 6. 

 

 
 

Figure 6. The space trajectory of a quadruped’s 

back-left leg in the oxz plane. 

 

 

4 Morphing Motion 

 
4.1 Basic Motion 
During the morphing process of the modular robot, 

the basic constraints are shown: 1) the connectivity 

of the whole system should be maintained; 2) the 

fixed base must always link to at least one module; 

3) each module must always remain linked to the 

side of at least one other module; 4) the moving 

module do not collide with other modules, 

environment and obstacle. 

 

 
(a) 

       
           (b)                                  (c)   

 

 
(d) 

 

 
                                              (e)            

Figure 7. Basic motions. 

 

According to the analysis, the possible motion 

of two modules (Figure7. a) are shown as follows: 

1) The module M2 connects to/disconnects from 

the module M1. 

2) The module M2 rotates  n
2


 about the axes 

of two neighboring modules M1 and M2 (Figure 

7. b). 

3) Two modules M1 、 M2 have same motion 

direction. There are two kinds: 2.1) horizontal 

plane motion, two connecting modules M1 and 

M2 rotate together about the axes of M1 and 

another module, Figure 7.c; 2.2) vertical plane 

motion, two connecting modules rotate in the 

same vertical plane about the axis of M1, Figure 

7. d, e. 

With the rotations of the modules (Figure7 d, e), the 

movement (translation) of the robot system can be 

obtained. For example, a system consists of two 

connecting modules M1 and M2. They rotate about 

the axis of M1 (Figure 8 a). The system moves 

forward. Then, they rotate about the axis of M2 

(Figure 8 b). At last, the system moves forward 4A-

4w (Figure 8 c). Where A is the length of a module, 

w is the width of a module (in Figure 3.). 
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Figure 8. Movement (translation) of the modules 

 

 

4.2 Morphing Analysis of a Two-leg Modular 

Robot 
With the rotary motion around the neighboring 

module, the above quadruped (Figure 5.a) can 

morph from a quadruped (Figure 9.a) to a two-leg 

modular robot (Figure 9. h) by connecting to or 

disconnecting from the adjacent modules. The 

morphing motion is shown in Figure 9 (the top view 

of the two-leg modular robot). The front module 1 

connects to the front module 2, and they rotate 

around the center module (Figure 9 b，c). The back 

module 2 rotates around the back module 1 (Figure 

9 d，e). The front module 2 connects to the back 

module 2, the front module 1 disconnect from the 

center module (Figure 9 f). The front module 1, 

module 2 and the back module 2 rotate around the 

back module 1(Figure 9 g，h). The front module 1 

and the front module 2 rotate around the back 

module 2 (Figure 9 i). Then the configuration of a 

two-leg modular robot is determined (Figure 9 i). 

The graph representation of the top view of the two-

leg modular robot is shown in Figure 9 j. The 

forward kinematics of the left leg can be generated 

with the POE method. 

 

             
a                                b 

 

                     
    c                                         d 

 

                     
  e                                   f 
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g                                 h 

 

 
i 

 

 
    j 

Figure 9.  Morphing motion from a quadruped to a 

two-leg modular robot. 
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The two-leg modular robot consists of one center 

module and eight identical cuboid modules. The 

kinematics of the left leg can be obtained, too. 
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With the same dimensions, the space trajectory of 

its left leg is shown in Figure 10.                 

 

 
Figure 10. The space trajectory of a two-leg 

modular robot’s left leg. 

 

 

5 Conclusion 
In the paper, due to having a more general 

configuration, a cuboid module and a cubic module 

of modular robots are described. According to the 

flow direction of power or information, six kinds of 

connecting types are identified, four types are the 

cuboid module and two types are the cubic module. 

Basic group is proposed to derive the geometric 

relationships and the transformation matrix TL of 

each type of modules iteratively and simply. For the 

purpose of automatic generation of the forward 

kinematics, an approach has been adopted by a 

series of elemental matrix multiplication with 

product of matrix exponentials. Then, the basic 

motion of modules is presented. With the rotary 

motion around the neighboring module, the 

morphing motion from a quadruped to a two-leg 

modular robot is presented. Examples of the 

kinematics for a quadruped and a two-leg modular 

robot, which consist of eight same cuboid modules 

and one center module, are given to demonstrate the 

effectiveness of the proposed methods. 
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