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Abstract: - Time delay systems (TDS), called hereditary or anisochronic as well, can be frequently found in 
many engineering problems and they constitute a widespread family of industrial plants. Modelling, 
identification, stability analysis, stabilization, control, etc. of TDS are challenging and fascinating tasks in 
modern systems and control theory as well as in academic and industrial applications. One of their possible 
linear representations in the form of the Laplace transform yields the transfer function expressed as a fraction of 
quasipolynomials, instead of polynomials, with delay (exponential) terms in denominators. In this contribution, 
detailed root location analysis of a characteristic retarded quasipolynomial of degree one is presented, which 
gives rise to the spectrum of a retarded TDS. The presented analysis represents also a powerful tool for 
controller tuning in pole-placement control algorithms for delayed systems. A simulation example clarifies the 
results obtained vie proven propositions, lemmas and theorems. 
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1 Introduction 
Delay as a generic part of many processes is a 
phenomenon which unambiguously deteriorates the 
quality of a feedback control performance, such as 
stability, periodicity, etc. Modern control theory has 
been dealing with this problem for longer than five 
decades, since the era of the Smith predictor [1]. 
Linear time-invariant time delay systems (LTI-TDS) 
in technological and other processes are sometimes 
assumed to contain delay elements in input-output 
relations only, which results in shifted arguments on 
the right-hand side of differential equations. All the 
system dynamics is hence modelled by point 
accumulations in the form of a set of ordinary 
differential equations (ODEs). The Laplace 
transform thus yields a transfer function expressed 
by a serial combination of a delay-free rational term 
and a delay exponential element. However, this 
conception is somewhat restrictive in effort to 
express the real plant dynamics since inner 
feedbacks can often be of time-distributed or 
delayed nature. 

LTI-TDS in its modern meaning as anisochronic 
or hereditary models, in the contrary, offer a more 
universal dynamics description applying both 
integrators and delay elements on the left-hand side 
of a differential equation, either in a lumped or 
distributed form, yielding functional differential 
equations (FDEs). Using some techniques [2], [3] 

one can reduce possible integrals to a combination 
of shifted-argument output or state variables 
elements (without loosing information), which 
finally gives a transfer function as a ratio of so 
called quasipolynomials [4] with an infinite number 
of poles. For LTI-TDS without distributed delays in 
an input or in an output relation, the denominator 
quasipolynomial decides about its asymptotic 
(exponential) stability. 

Already Volterra [5] (according to [6]) 
formulated differential equations incorporating the 
past states when he was studying predator-pray 
models. The theory of these models was then 
rediscovered and developed e.g. in [6-10], to name 
but a few. Some possibilities and advantages of this 
class of models and controllers for modeling and 
process control are discussed in [11]. 

These models are applied in processes with 
energy or mass transportation phenomena, e.g. in 
chemical processes [12], in heat exchange networks 
[13], [14], in internal combustion engines with 
catalytic converter [15], in models of mass flow in 
sugar factory [16], in metallurgic processes [17], 
etc. 

A huge number of books, conference and journal 
papers were dedicated to (exponential, asymptotic) 
stability analysis of systems with delay elements on 
the left-hand side of FDEs (see e.g. [8], [9], [18]-
[26]); nevertheless, general approaches lacking 
detailed root locus analysis of a particular 
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denominator quasipolynomial prevail. This 
contribution, contrariwise, offers a deep roots 
location analysis of a simple quasipolynomial 
which, as a model transfer function denominator, is 
convenient to represent the dynamics of many 
hereditary as well as delay-free high order systems 
as proven e.g. in [27]-[28]. Moreover, we present 
stability properties depended on a real non-delay 
parameter instead that on a delay value, as usual in 
the literature. The information about a LTI-TDS 
poles location can serve engineers to decide quickly 
about the position of a dominant pole (or a pair of 
poles) location or to place closed-loop poles when 
the studied characteristic quasipolynomial. 

The paper is organized as follows: the general 
description of LTI-TDS models and systems and 
that of quasipolynomials is presented in Section 2. 
TDS and quasipolynomial stability properties are 
introduced in Section 3. The main part of the 
contribution is presented in Section 4 where roots 
location properties of a simple quasipolynomial are 
derived. Finally, Section 5 contains a short 
explicative example demonstrating basic results. 

 
2 LTI-TDS Model 
Anisochronic, hereditary or TDS linear time-
invariant models in general can be described by 
state and output FDEs in the form 
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where Ñ∈x n  is a vector of state variables, ∈u Ñm 
stands for a vector of inputs, Ñ∈y l represents a 
vector of outputs, Ai, A(τ), BBi, B(τ), C, Hi are real 
matrices of compatible dimensions, Li ≤≤η0  
stand for lumped delays and convolution integrals 
express distributed delays. If for any i = 
1,2,...N

0H ≠i

H, model (1) is called neutral; on the other 
hand, if for every i = 1,2,...N0H =i H, so-called 
retarded model is obtained. It should be noted that 

the state of model (1) is given not only by a vector 
of state variables in the current time, but also by a 
segment of the last model history of state and input 
variables 
 
 ( ) ( ) [ 0,,, Ltt − ]∈++ τττ ux  (2) 
 

Model (1) can also be expressed in more 
consistent functional form using Riemann-Stieltjes 
integrals so that both lumped and distributed delays 
are under one convolution 

 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )tt

tt

t
t

t
t

LL

N

i

i
i

H

Cxy

uBxA

xHx

=

−+−+

−
=

∫∫

∑
=

00

1

dd

d
d

d
d

ττττ

η

  (3) 

 
see details in [2]. 
Integrals in (1) can be rewritten into sums using 

the Laplace transform, which is suitable for model 
implementation in computers and for simulations, 
using either exact transformation [2], [3] or via a 
standard numerical approximation methods. 
However, the latter approaches can destabilize even 
a stable model in some cases; see e.g. [19] and 
references herein. The transform correspondence is 
the following 
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where {}⋅L  denotes the Laplace transform operation. 
Subsequent utilization of the reverse Laplace 
transform yields the state equation in the form 
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where L

BA NN == ++ 11 ηη . 
Notice that authors’ interest is in retarded models 

and systems due to their higher practical usability 
[14]-[17]; moreover, retarded systems have also 
some grateful features, for instance, the number of 
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poles in the right-half plane is the finite [5]. 
Considering, hence, a model of retarded type and 
zero initial conditions, the following input-output 
description and the transfer matrix using the Laplace 
transform from (5) is obtained 
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The main advantage of the anisochronic system 

description in the form of the transfer function rests 
in its practical usability when system analysis and 
control design. 

All transfer functions in  have identical 
denominator in the form 

( )sG
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which arises from the calculation of all permutations 
in the determinant; since, the upper bound of  
equals the number of all combinations with 
repetitions of N

ih

A+1 elements choose (n-i). 
Thenceforward, a simple-input simple-output 

system is considered, which gives rise to the transfer 
function (6) in the form of a ratio of 
quasipolynomials instead of transfer function 
matrix. 

 
 
3 Asymptotic Stability 
Formula (7) expresses the characteristic 
quasipolynomial of retarded type of system (1). If 
there are no distributed delays in the model or they 
are approximated by a numerical method, the 
quasipolynomial determines the system poles, σi, by 
solution of . However, in the case of 
distributed delays, the quasipolynomial zeros do not 
agree with the systems spectrum, since some 

transfer function denominator roots are those of the 
numerator, and thus they do not affect the system 
dynamics. Due to the transcendental character of 
model (1) caused by exponential terms, the number 
of poles is infinite in general and anisochronic 
models are regarded as infinite-dimensional. The 
role of zeros is the same as for delay-free systems 
and the number of zeros depends on the structure of 
numerators in (6). 

( ) 0=sm

 The system asymptotic stability is formulated in 
the same way as for delay-free systems; hence, it is 
determined by system poles. LTI-TDS is stable iff 

 
( ) ( ){ } 00:Resup: <== ii m σσσ   (9) 

 
i.e. all system poles are located in the open left half 
complex plane, see, e.g. [15], [16]. 

Both types of systems, retarded and neutral ones, 
embody diverse spectral properties w.r.t. poles 
locations and their changes depended on changes of 
quasipolynomials parameters. Whereas retarded 
systems always own finite number of unstable poles, 
unstable neutral systems have infinite number of 
these poles which constitute vertically bounded strips 
[5], [25]. Another important feature is that poles 
locations of the retarded type is continuously 
depended on delays iη , while  small changes in 
delays for neutral systems can cause abrupt changes 
in the spectrum. Hence, condition (9) is deficient in 
order to express the “whole” asymptotic stability of 
neutral LTI-TDS which bought the concept of so 
called strong stability [23]. 

Besides analytic tools for searching spectra of 
delayed systems via the knowledge of characteristic 
quasipolynomials, powerful numeric approaches 
were also investigated. The solved task can be 
reduced to computing roots of a general analytic 
function. Weyl’s algorithm [22] and 
Quasipolynomial Mapping Based Rootfinder 
(QPMR) [23, 24] can be named as examples of such 
algorithms. 

It is hence possible to investigate the LTI-TDS 
asymptotic stability via root location analysis of the 
characteristic quasipolynomial, in the case of lumped 
delays. 

 
 

4 Retarded Quasipolynomial Root 
Locus 
The main goal of this contribution is to study 
spectral properties of a simple retarded 
quasipolynomial given by 
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 ( ) ( )sqssm τ−+= exp  (10) 
 
where ∈s Â, Ñ, ∈q ∈τ Ñ+, with respect to the non-
delay real parameter q while τ  is fixed. It was 
demonstrated [27], [28] that models of dynamics 
described by this quasipolynomial as a transfer 
function denominator, can be successfully used for 
the description of a real plant dynamics of 
conventional (delay-free) high order systems. 
Stability properties of quasipolynomial (10) have 
been already studied in [9]. In [28] the roots location 
of (10) using QPMR was investigated; however, a 
deeper analysis was not made. 

First, we investigate the case when the roots 
cross the imaginary axis. 
 Lemma 1. Quasipolynomial (10) has a root, a real 
or a complex conjugate pair, on the imaginary axis 
(i.e. on the asymptotic stability border) iff  
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τ
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Moreover it holds that 
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where ω  is the imaginary part of the root. ■ 
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the imaginary axis, σ = 0, first. Thus, it must hold 
thatt 
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 Second, if complex conjugate roots with non-
zero imaginary parts are taken into 
account, 0,j >±= ωωασ , condition  ( ) 0=σm  can 
also be expressed as 
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Taking a pair of roots purely on the imaginary 
axis, 0,j >±= ωωσ , conditions (14) are reduced 
into 
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The former condition gives 
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Whereas condition 0=q , inserting into the latter 
relation in (15), gives a real root only, the latter 
equality in (16) yields 
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hence from (15) we have 
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which agrees with the lemma statement (=>). 
 Sufficiency (<=) can be easily proved in a 
similar way by inserting q into (14). ü 
 Lemma 1 gives no information about other roots 
positions so that we can not decide about the rest of 
the quasipolynomial spectrum. The following 
lemmas clarify positions of other roots of (10) when 
(11) holds. To prove the lemmas, a significant 
theorem formulated e.g. in [29] has to be presented.  
 Theorem 1 (Root continuity). Let  and the 
sequence 

( )sf
( ){ } 1≥nn sf  be analytic function on an 

(open) domain Ã Â. Suppose that ⊆ ( ){ } 1≥nn sf  
converges uniformly to  on the disc ( )sf

{ }⊆≤−= rssD 0: σ Ã for some r > 0 and that on 
this disc 0σ  is the only zero of ( )sf  with 
multiplicity k. Then there exists a natural number N 
such that Nn ≥∀ , ( )sf  has exactly k zeros 1,nσ , ..., 

kn,σ  in D and { kjjnn ,...,1,lim 0, ∈∀=∞→ }σσ . ■ 
 For a proof of Theorem 1, see [29]. 
 Theorem 1 implies another important fact that 
retarded quasipolynomial  has roots continuous 
w.r.t. changes of q. That is, a limit sequence of 
quasipolynomials (with infinitesimal changes of q) 
results in a corresponding limit sequence of roots of 

( )sm

( )sm . 
 Lemma 2. For q = 0, there is no root in the open 
right half complex plane. ■ 
 Proof. We will show a contradiction. Take q = 0 
and suppose that there it exists a positive (unstable) 
real root of (10), 0>=ασ . Videlicet, 
 
 ( ) 00exp0 =⇒=−+ αταα  (19) 
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Similarly, assume a complex conjugate root with a 
positive real part, i.e. 0,j >±= αωασ . Equations 
(14) give rise to 
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Thus we have a contradiction again. ü 
 Note that further (in Proposition 5) we will show 
that there are infinity many roots with a real part 

−∞=α  for q = 0. 
 Lemma 3 (Roots shift tendency). Define two sets 

 of q as 21,ΣΣ
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and two corresponding spectra of  ( )sm
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Then the following statements hold: 
 1) If  where   for arbitrarily 
small , then the spectrum of  have one 
root (real or complex conjugate pair) in the open 
right half complex plane more in comparison with 

. 

Δ+= rq 1Σ∈r
0>Δ ( )sm

1Θ
 2) If  where Δ+= rq 2Σ∈r  for arbitrarily small 

, then the spectrum of  have one root 
(real or complex conjugate pair) in the open left half 
complex plane more in comparison with . ■ 

0>Δ ( )sm

2Θ
 Proof. Lemma 1 certifies that  with ( )sm 1Σ∈q  
or  has a root 2Σ∈q σ  (real or a conjugate pair of 
roots) located exactly on the imaginary axis 
where qjj ±=±= ωσ . Theorem 1 says that an 
arbitrary small change of q results in small shifting 
in roots locations.  Hence, if  or 1Σ∈q 2Σ∈q  is 
increased byΔ , a root on the imaginary axis moves 
to a new position close to the imaginary axis. The 
question is whether the root moves to the right 

(unstable) half complex plane or to the left (stable) 
one. 
 To solve the problem, we calculate the sensitivity 
function ( )qsS ,  defined as 
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at a point 21,ΣΣ∈q , qs j±= . 
 The sensitivity function (23) determines the 
tendency (direction) of roots of  to shift in the 
complex plane while a small changing of . The 
aim is to decide whether the root on the imaginary 
axis moves to the right or to the left, i.e. it is 
sufficient to take the real part of  only, which 
for 

( )sm
q

( qsS , )
ωα j±=s  reads 
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Hence 
1) for 1Σ∈q , qs j±=  
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2) for }0{\2Σ∈q , qs j±=  
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3) for q = 0, s = 0 
 
 ( ) 1,Re

0
0 −=

=
=

s
qqsS  (27) 

 
 Expression (25) implies that for , the root 
on imaginary axis tends to shift to the right half 
complex plane if q is increased by Δ.  Contrariwise 

1Σ∈q
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from (26) and (27), whenever  is increased by 
Δ, the root moves to the stable, left half complex 
plane. ü 

2Σ∈q

 Notice that  is non-positive, thus we can 
generalize the finding such that if 

2Σ∈q
q  (where 

) is increased, the root on the imaginary 
axis moves to the right (unstable) half complex 
plane. Moreover, whereas the shifting in the 
imaginary axis is non-zero for , the zero root 
shifts only in the real axis (not analyzed here – this 
can be done by calculating imaginary parts of the 
sensitivity function). The situation is illustrated in 
Fig. 1. 

21,ΣΣ∈q

0≠q

 Theorem 2. (Quasipolynomial stability). 
Quasipolynomial (10) has all roots in the open left 
half complex plane iff 
 

 ⎟
⎠
⎞

⎜
⎝
⎛∈

τ
π
2

,0q  (28) 

  ■ 
 Proof. (Necessity) Consider first and apply 
Lemma 2 and Lemma 3. According to Lemma 2, 
there is no unstable root for  and Lemma 3 
declares that the root  shifts to the right half 
complex plane for 

0<q

0=q
0=q
Δ−=q  (recall that Δ  is 

arbitrarily small positive real number). Hence, 0<q  
results in an unstable quasipolynomial m(s). 

 Second, let 
τ
π
2

>q . Lemma 2 declares that the 

root on the imaginary axis for 
τ
π
2

=q , i.e. 

τ
πσ
2

j2,1 ±= , tends to shift to the right for 

Δ+=
τ
π
2

q , see Fig. 1. We have a contradiction 

again. 
 The result of Theorem 2 has already been 
presented in [9]. 
 Proposition 1. There exists a double real root 

τ
σ 1

−=  in the spectrum of m(s) iff ( )1exp
1

τ
=q . ■ 

 Proof. (Necessity) Take 
τ

σ 1
−=  and set 

( ) 0=σm . This equation gives ( )1exp
1

τ
=q . 

(Sufficiency) Taking ( )1exp
1

τ
=q  it is satisfied 

( ) 01 =− −τm . 

 

 
 Fig. 1. Root shifting tendency for 21,ΣΣ∈q  on 
the imaginary axis 
 

It must be proved that 
τ

σ 1
−=  is a double root.  

Calculate 
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One can easily prove that ( ) 01 =′ −=τs

sm and 

( ) 01 ≠′′ −=τs
sm which verifies that the real root is 

double. ü 
 
 Let us now derive and display a figure that 
clarifies the further statements. By omitting q in 
(15) the inevitable relation between real and 
imaginary parts of the roots is 
 
 ( )τωωα cot=−  (31) 
 
Denote a real part of a root as 
 

 ∈−= 0
0 , k

k
τ

α Ñ (32) 

 
which is a multiple of the “critical” root from 
Proposition 1. Hence 
 

 ( ) ( )τωτω tan1

0

=
k

 (33) 
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Take the substitution 
 
 τωξ =  (34) 
 
Final relation 
 

 ( )ξξ tan1

0

=
k

 (35) 

 
has a nice graphical interpretation, see Fig. 2.  
 The figure indicates the imaginary parts of roots 
depending on 0, kτ . For example, if 10 =k , i.e. 

τ
α 1

−= , there is no intersection near the zero point. 

If one moves the real part of the root to the right, 

i.e. 0,1
>

−
−= δ

τ
δα , an intersection near the zero 

point appears, which means that the real root has 
become a complex conjugate pair. The following 
three propositions formalize i.a. this fact. 

 Proposition 2. If ( )1exp
1

τ
=q , there is no root 

(real or complex conjugate) with ⎟
⎠
⎞

⎜
⎝
⎛−∈ 0,1

τ
α , i.e. 

with . ■ ( )1,00 ∈k

 Proof. Take ( )1exp
1

τ
=q  and suppose that there 

exists a real root ⎟
⎠
⎞

⎜
⎝
⎛−∈ 0,1

τ
α , i.e. 

( )1,0, 0
0 ∈−= kk
τ

α  satisfying 

 

 ( ) 0exp
1exp

1 00 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−+−

τ
τ

ττ
kk

 (36)

  
Simple calculation on above expression yields 
 
  (37) ( 1exp 00 −= kk )
 
This equation has the only real solution 10 =k  and 
thus we have a contradiction. 
 Consider the existence of a complex conjugate 

pair of poles ωασ j±= , 0≠ω , 
τ

α 0k
−= , 

  for which condition (15) gives rise to ( 1,00 ∈k )
 

 ( ) ( ) 0expsin
1exp

1 0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−−

τ
ττω

τ
ω

k
 (38) 

 

 
 Fig. 2. Graphs of functions ξ

0

1
k

 and ( )ξtan  

 
 Hence 
 
 ( ) ( )01expsin k−=τωτω  (39) 
 
 There exists a non-zero positive solution x of 

( ) bxx =sin  if 11 <<− b . In this case τω=x , 
( )01exp kb −= . However, if ( )1,00 ∈k  then 
( ) ( )( )1exp,11exp 0 ∈−= kb , thus the only solution of 

(39) is 0==τωx  and we have a contradiction. ü 

 Proposition 3. If ( ) Δ+=
1exp

1
τ

q , for arbitrarily 

small 0>Δ , the double real root 
τ

σ 1
−=  

bifurcates into a complex conjugate pair of roots 

ωασ j±=  with 
τ

α 1
−< . ■ 

 Proof. Theorem 1 (continuity) implies that an 

infinitesimal change of  in the point q ( )1exp
1

τ
=q  

moves the double real root 
τ

σ 1
−=  in a new 

position either as a double real root, or as a pair of 
real roots, or as a complex conjugate pair of roots.  
 For the proposition, it is thus sufficient to prove 

that for ( ) Δ+=
1exp

1
τ

q , , there is no real root 

of quasipolynomial (10). 

0>Δ

 Suppose that it exists Ñ such that ∈0k
τ

σ 0k
−=  

is a real root which has to satisfy 
 

 ( ) 0exp
1exp

1 00 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ++

τ
τ

ττ
kk

 (40) 

 
Simple calculations on the equation above yield 
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 ( )( ) ( 1exp1exp1 00 )−Δ+= kk τ  (41) 
 
Since ( )( 11exp1 >Δ+ )τ  one can easily prove that 
there is no real  as a solution (13) and thus there 
is no real root. 

0k

 Now we use Figure 2 as a solution map of (31) 
and (33) which clearly indicates that there is a 
complex conjugate root with ω  near zero, 

then , i.e. 10 0 << k 01
<<− α

τ
. ü 

 Proposition 4. If ( ) Δ−=
1exp

1
τ

q , for arbitrarily 

small , then the double real root 0>Δ
τ

σ 1
−=  

becomes two (different) real roots 21, σσ  with 

τ
σ 1

1 −<  and 
τ

σ 1
2 −> , respectively. ■ 

 Proof. W.r.t. Theorem 1, it ought to be shown 

that for ( ) Δ−=
1exp

1
τ

q , 0>Δ , quasipolynomial 

(10) has two different real roots. In other words,  

δ
τ

σ +=−= 1, 01
01

1 kk , 0>δ  and  
τ

σ 02
2

k
−= , 

δ−=102k , 0>δ  respectively, must satisfy 
 

 
( )

( ) 0exp
1exp

1

0exp
1exp

1

0202

0101

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ−+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ−+

τ
τ

ττ

τ
τ

ττ

kk

kk

 (42) 

 
The latter gives 
 

 ( )
( )1exp

1exp
+
−−

=Δ
δτ
δδ  (43) 

 
whereas the former yields 
 

 ( )
( )1exp

1exp
+−
−+−

=Δ
δτ
δδ  (44) 

 
 Now it is sufficient to show that for an 
infinitesimal positiveδ , it can be found arbitrarily 
“small” positive . Indeed, since Δ
 

  (45) 
( )( )

( ) 1exp
1explim 0

>−

=−+→

δδ

δδδ

 

and 
 

 
( )( )

( ) 1exp
1explim 0

>+−

=+−+→

δδ

δδδ  (46) 

 

for ( ) Δ−=
1exp

1
τ

q , 21, σσ  are roots of the 

quasipolynomial (10). ü 
 At this moment, it is partially possible to map the 
location of quasipolynomial roots with respect to 

parameter q. For ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
∈

1exp
1,0

τ
q , two real stable 

roots move to each other and they collapse into a 

double real one for =q ( )1exp
1

τ
. This double root 

then splits into a complex conjugate pair of stable 

roots for ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∈

τ
π

τ 2
,

1exp
1q , the real part of which 

decreases until it reaches zero for  
τ
π
2

=q . Unstable 

roots appear when ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ∞−∪∞−∈ ,

2
0,

τ
πq , 

according to Lemma 3 and Theorem 2. Lemma 1 
and Lemma 3 also indicate  for which roots cross 
the imaginary axis. The question is how the 
trajectories of these roots are. Let us solve the 
problem for some limit cases at least, using Fig. 2. 

sq

 Proposition 5. Define two sets 2,1, , ∞−∞− ΣΣ of ω  
as 
 

( )

⎭
⎬
⎫

⎩
⎨
⎧ ====Σ

⎭
⎬
⎫

⎩
⎨
⎧ =+==Σ

+

+

→∞−

→∞−

,...2,1,2limor0::

,...2,1,0,12lim::

2,

1,

kxk

kxk

x

x

τ
ωωω

τ
ωω

π

π

 

  (47) 
 
 If there exists a root (or a complex conjugate pair 
of roots) of quasipolynomial (10), ωασ j±= , with 

−∞→α , then the imaginary part of the root lies 
either in the set 1,∞−Σ  or in the set . 2,∞−Σ

 Moreover, if 1,∞−Σ∈ω , then , i.e. it 
asymptotically moves to zero from the right. If 

−= 0q

2,∞−Σ∈ω , then , i.e. it asymptotically moves 
to zero from the left. ■ 

+= 0q

 Proof. Take (30), i.e. the relation between real 
and imaginary parts of roots of (10), and find the 
solution of this equation for −∞→α . This is 
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equivalent to  according to (35), hence 
angular coefficient in Figure 2 is (it goes to zero 
from the left) and the solution of (31) is 

. 

∞→0k
+0

2,1, ∞−∞− Σ∪Σ

If 1,∞−Σ∈ω , then q is uniquely determined by (15) 
as 
 

 ( ) ( ) −

Σ∈
−∞→ =

−
=

∞−

0exp
cos

lim
1,ω

α τα
τω
αq  (48) 

 
whereas for 2,∞−Σ∈ω , one can prove that 
 

 ( ) ( ) +

Σ∈
−∞→ =

−
=

∞−

0exp
cos

lim
2,ω

α τα
τω
αq  (49)

   
 
because of these two limits 
 
  (50) ( ) ( ) +

=+→ −=+ 1coslim 0,1,2,...,12 xkkx π

  (51) ( ) −
=→ =+ 1coslim 1,2,...,2 xkkx π

  ü 
According to Preposition 5, it is obvious that if 

 reaches zero from the right, there exist roots of 
(10) with real parts in negative infinity and 
imaginary parts from , and if q approaches 
zero from the left, there are roots again in negative 
infinity, the imaginary parts of which lie in 

q

1,∞−Σ

2,∞−Σ . 
This fact explains i.a. the position where it moves 
the real root which appears by splitting the double 

real root 
τ

σ 1
−=  when ( ) Δ−=

1exp
1

τ
q  (i.e. 1σ  

from Proposition 4). 
 Proposition 6. Define two sets of 2,1, , ∞∞ ΣΣ ω  as 
 

( )

⎭
⎬
⎫

⎩
⎨
⎧ ====Σ

⎭
⎬
⎫

⎩
⎨
⎧ =+==Σ

−

−

→∞

→∞

,..2,1,2limor0::

,..2,1,0,12lim::

2,

1,

kxk

kxk

x

x

τ
ωωω

τ
ωω

π

π

  

  (52) 
 
 If there exists a root (or a complex conjugate pair 
of roots) of quasipolynomial (10), ωασ j±= , with 

∞→α , the  imaginary part of the root is either in 
the set  or in the set . 1,∞Σ 2,∞Σ

Moreover, if 1,∞Σ∈ω , then . If ∞→q 2,∞Σ∈ω , 
then . ■ −∞→q

Proof. If ∞→α , i.e. , angular 
coefficient in Figure 2 is (it goes to zero from the 
right) and thus then solution of (31) is 

−∞→0k
−0

2,1, ∞∞ Σ∪Σ . 
If 1,∞Σ∈ω , then relation (15) gives 
 

( ) ( ) ∞=
−

=
∞Σ∈

∞→

1,

exp
cos

lim
ω

α τα
τω
αq  (53) 

 
whereas for 2,∞Σ∈ω , it is obtained 

 

( ) ( ) −∞=
−

=
∞Σ∈

∞→

2,

exp
cos

lim
ω

α τα
τω
αq  (54) 

 
since 

 

( ) ( ) +
=+→ −=− 1coslim 0,1,2,...,12 xkkx π  (55) 

( ) −
=→ =− 1coslim 1,2,...,2 xkkx π  (56) 

 ü 
 

 Proposition 6 gives rise to the fact that for 
∞→q , roots approach infinity in the real axis and 

their imaginary parts are from . Finally, when 1,∞Σ
−∞→q , real parts of roots go to infinity; however, 

their imaginary parts are from . 2,∞Σ
 Thus, we can imagine the existence of tangential 
“strips” of roots running from the positive to 
negative infinity and vice-versa, depending on the 
range of values on the imaginary axis. To elucidate 
it, two demonstrative cases follow. 
 Case 1. Take 0=q  and make its infinitesimal 
increment. Proposition 5 verifies that there is a 

complex conjugate pair of roots 
τ
πσ

+

±−∞=
2 . By 

increasing , the pair “runs” towards the imaginary 

axis which is crossed in 

q

τ
πω

2
5

±=  for 
τ
π

2
5

=q , 

according to Lemma 1 and Lemma 3, and finally 

approaches 
τ
πσ

−

±∞=
3 for , as reveals 

from Proposition 6. 

∞→q

 Case 2. Consider  and make its 
infinitesimal decrement. According to Proposition 5, 
there exists a complex conjugate pair of roots in 

negative infinity 

0=q

τ
πσ

+

±−∞= . When q is 

successively decreased, the pair crosses the 
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imaginary axis in 
τ
πω

2
3

±=  for 
τ
π

2
3

−=q  and from 

Proposition 6, it reaches 
τ
πσ

−

±∞=
2 for −∞→q . 

 The following numerical example demonstrates 
the positions of roots of (10) for some options of , 
so that  one can imagine the trajectories of the roots. 

q

 Example. Consider equation (33), the solution of 
which determines the imaginary parts of the roots 
for the particular choice of k0 - it corresponds with 
the real parts according to (32). Take these values of 
k0: , , 0, 0.5, 1, 2, ∞ which give rise to ∞− 5.0− α : 

∞, τ/5.0 , 0, τ/5.0− , τ/1− , τ/5.0− , ∞− , and 
calculate ω  from (33) and, consequently, q from 
(14). The numerically obtained values are in Table 
1. Positions of the roots presented in the table are 
graphically displayed in Fig. 3 and labeled by the 
corresponding values of q. 
 From the figure, one can imagine the “strips” of 
roots when changing q. These numerical results 
verify lemmas, propositions and theorems presented 
in this contribution. 
 

 
 
Table 1. Some numerically found positions of roots of quasipolynomial (10) and the corresponding values of q. 
 

ω  q α  

 0 ∞ ∞−  

 
τ
π −

 ∞  

 
τ
π −2  ∞−  

 
τ
π −3  ∞  

τ
5.0  0  

e
2408.28244.0
ττ

−=−  

 
τ
π

τ 2
1692.18366.1

=  
τ
π

ττ 2
9978.1

e
5305.81382.3

==  

 
τ
π

τ 2
30219.18158.4

=  
τ
π

ττ 2
36943.1

e
7028.21984.7

−=−=−  

 
τ
π

τ 2
5008.19171.7

=  
τ
π

ττ 2
56653.1

e
5524.35079.13

==  

0  0 0 

 
τ
π
2

 
τ
π
2

 

 
τ
π

2
3

 
τ
π

2
3

−  

 
τ
π

2
5

 
τ
π

2
5
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τ
5.0

−  0  
e

0.82433033.0
ττ

=  

 
τ
π

τ 2
742.01656.1

=  
2

4897.0
e

091.27692.0 π
ττ

==  

 
τ
π

τ 2
3977.06042.4

=  
τ
π

ττ 2
35961.0

e
6357.7809.2

−=−=−  

 
τ
π

τ 2
59918.078988.7

=  
τ
π

ττ 2
56028.0

e
8692.12734.4

==  

τ
1

−  0  
e
13679.0
ττ

=  

 
τ
π

τ 2
39535.04934.4

=  
τ
π

ττ 2
33594.0

e
604.46935.1

−=−=−  

 
τ
π

τ 2
59836.07254.7

=  
τ
π

ττ 2
53649.0

e
79.78657.2

==  

 
τ
π

τ 2
79918.09041.10

=  
τ
π

ττ 2
73663.0

e
95.100282.4

−=−=−  

τ
2

−  0  2e
22707.0
ττ

=  

 
τ
π

τ 2
39071.02748.4

=  
τ
π

ττ 2
31355.0

e
7362.16387.0

−=−=−  

 
τ
π

τ 2
59672.05966.7

=  
τ
π

ττ 2
51354.0

e
8898.20631.1

==  

 
τ
π

τ 2
79834.08127.10

=  
τ
π

ττ 2
71353.0

e
0453.44882.1

−=−=−  

∞−  0 −0  

 
τ
π +

 +0  

 
τ
π +2  −0  

 
τ
π +3  +0  
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Fig. 3. Numerically found positions of some roots of (10) and corresponding values of q 

 

5 Conclusion 
Stability analysis of the first order retarded 
quasipolynomial by analytical means has been 
presented. The studied quasipolynomial can 
represent the denominator of an internally delayed 
(anisochronic) system transfer function or the 
characteristic quasipolynomial of the closed loop 
when control systems with time delays. 
Anisochronic models proved to be a suitable form 
for description of dynamic properties of high order 
even undelayed systems as well. 
 Information about the spectrum features derived 
in this contribution can afford engineers a potential 
tool for internally delayed systems analysis and also 
in an effort to place dominant closed loop poles of a 
feedback control system. In contrast to other general 
stability criteria, this particular result can be 
utilizable promptly without additional work-
intensive calculations. 
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