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Abstract: The paper is aimed to the design of linear continuous controllers for unstable single input – output 
systems. The controller design is studied in the ring of (Hurwitz) stable and proper rational functions RPS. All 
stabilizing feedback controllers are given by a general solution of a Diophantine equation in RPS. Then 
asymptotic tracking and disturbance attenuation is obtained through the divisibility conditions in this ring. The 
attention of the paper is focused on a class of unstable systems. Both, one and two degree of freedom (1DOF, 
2DOF) control structures are considered. Control loops with a feedforward part significantly reduce overshoots 
in control responses. The methodology brings a scalar parameter for tuning and influencing of controller 
parameters. As a result, a class of PI, PID controllers are developed but the approach generates also complex 
controllers. Simulations and verification are performed in the Matlab+Simulink environment. 
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1 Introduction 
The dynamics of many technological plants exhibit 
unstable behavior. Probably, the reason can be seen 
in nonlinearity of many industrial processes and 
plants. Such nonlinear systems exhibit multiple 
steady states and some of them may be unstable. The 
situation where linear systems have unstable poles 
may occur e.g. in a continuous-time stirred 
exothermic tank reactor, in distillation columns,  in 
polymerization processes or in a class of biochemical 
processes where the processes must operate at an 
unstable steady state. Moreover, a time delay can be 
also an inherent part of many technological plants. 

The most frequent tool for feedback industrial 
control has been still PID controller. It is believed 
that more than 90 % feedback loops are equipped 
with this controller. Also, a great amount for PID 
assessing and tuning rules has been developed. The 
traditional engineering design approach of PID like 
controllers was performed either in the frequency 
domain or in polynomial representation (see e.g. [1], 
[2], [3]). Most of them are scheduled for stable 
systems without or with time delay, see e.g. [1], 
[2].The unstable cases are studied e.g. in [4], [5].  

In this contribution, a general technique for a 
class of unstable systems is proposed. The control 
design is performed in the ring of proper and 
Hurwitz stable rational functions RPS.  All stabilizing 
controllers are given by all solutions of Diophantine 
equation in this ring and asymptotic tracking and 
disturbance attenuation is then formulated by 
additional conditions of divisibility. This fractional 
approach proposed in [6], [10], [17] enables a deeper 
insight into control tuning and a more elegant 

derivation of all suitable controllers. The situation 
and details for stable and time-delay free systems can 
be found in [12] - [16] for various control problems. 
This technique introduces a scalar parameter m > 0 
which influences a control responses and also robust 
behaviour. The RPS ring also enables to utilize the H∞ 
norm as a tool for perturbation evaluation.  
 

2 Descriptions over Rings 
Linear continuous-time dynamic systems have been 
traditionally described by the Laplace transform. So 
polynomials became a basic tool for the stability 
analysis and controller design. Since the 
characteristic feedback polynomial has two known 
(plant) and two unknown (controller) polynomials, 
the Diophantine equations began to penetrate into 
synthesis method, see e.g. [10]. However, the ring of 
polynomials induces some drawbacks with solutions 
of Diophantine equations. Almost all from the 
infinite number of solutions cannot be used for 
controller transfer functions because they are not 
proper, see e.g. [11], [15]. These problems were 
overcome by introducing of the different ring of 
proper and stable rational functions. The pioneering 
work in the so called fractional approach is the work 
[18], further extension can be found in [11], [15]. 
Simply speaking, a ratio of polynomials is replaced 
by a ratio of two Hurwitz stable and proper rational 
functions. In this paper, the following ring RPS(m)  is 
utilized.   

Transfer functions of linear single input – single 
output dynamic systems have been traditionally 
expressed as a ratio of two polynomials. The set of 
polynomials (for continuous-time systems in the 
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Laplace transform with the indeterminate s) is a ring 
[11], [15], [18]. However, there are various rings for 
studying specific features [11], [18]. The ring RPS(m) 
denotes the set of rational functions having no poles 
in the plane Re(s)≥-m. It means that this set includes 
all Hurwitz stable and proper rational functions in 
this region. The transcription of a transfer function is 
very simple, numerator and denominator is divided 
by the same stable polynomial of the appropriate 
degree.  Generally, polynomial transfer functions in 
the ring RPS(m) take the form: 

 

( )
( ) ( )

( ) ;
( )( )

( )

max(deg , deg )

n

n

b s

b s s m
G s

a sa s

s m

n a b

+
= =

+

=

 (1) 

 
where m> 0. Also, signals in control systems can be 
expressed similarly. The stepwise reference signal w 
and harmonic disturbance v are in the rational 
description given by ratios: 
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The load disturbance n is supposed also in the 

form of (2), (3). The divisibility of elements in Rps is 
defined through the all unstable zeros (including 
infinity) of the rational functions, see [18] for details.  

 
Fig.1. General closed loop system 

 
The basic control problem is then formulated as 
follows within the context of Fig.1: Consider the 
known transfer function (1), the reference and 
disturbance (2), (3). The task is to design a proper 
transfer function C(s) so that the closed loop system 

is asymptotic stable and the tracking error 
( ) ( ) ( )e t w t y t= − tends to zero. Moreover, a step-

wise disturbance n(t) has to be eliminated without a 
non-zero steady-state error (disturbance attenuation).  
Naturally, many other syntheses can be found in 
literature.  A handbook for general utilization of PI, 
PID controllers is [22]. Integrating time delay 
systems are studied in [19], [21], [23]. Robust 
control is referred in [20] while general stabilization 
is analyzed in [24]. Experimental verification of 
PI/PID controllers is analyzed in [25] and control 
with time-varying delay is studied in [27].      

 
 

3 Control and Disturbance Rejection 

Design in RPS 
 
Suppose a general closed loop control system 
depicted in Fig.1. The controller C(s) generates the 
control variable u according the equation: 
 
 Pu Rw Q y n= − +  (4) 
 
where n is a load disturbance. Note that a traditional 
one degree-of-freedom (1DOF) feedback controller 
operating on the tracking error is obtained for Q = R. 
This structure is shown in Fig. 2 while the 2DOF 
structure (without load disturbance) is depicted in 
Fig.3.  
 
Basic relations following from the 2DOF 
configuration are 
 

 ny
P

Q
w

P
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A
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and w, v, n  are independent external inputs into the 
closed loop system. 
Further, the following equations hold: 
 

w v n

w v n

G G GBR AP BP
y

AP BQ F AP BQ F AP BQ F
= + +

+ + +
 (6) 

 
The 1DOF (FB) structure is obtained for R=Q 

(depicted in Fig.2) and the last relation gives the 
controlled error e= w-y: 
 

w v n

w v n

G G GAP AP BP
e

AP BQ F AP BQ F AP BQ F
= + +

+ + +
 (7) 
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Fig.2. Structure 1DOF (FB) of the close loop system 

 
The first step of the control design is to stabilize 

the system by a proper feedback loop. It can be 
formulated in an elegant way in RPS by the 
Diophantine equation: 

 
 1AP BQ+ =  (8) 
 
with a general solution for SISO systems P=P0+BT, 
Q=Q0 - AT; where T is free in RPS and P0, Q0 is a pair 
of particular solutions (Youla – Kučera 
parameterization of all stabilizing controllers). 
Details and proofs can be found e.g.[10], [15], [16], 
[18]. Then control error for the 2DOF structure: 
 

 ( )1 w v n

w v n

G G G
e BR AP BP

F F F
= − + +  (9) 

Now, it is necessary to solve both structures 1DOF 
and 2DOF separately. For asymptotic tracking and 
the 2DOF (FBFW) structure, the second Diophantine 
equation gets the form: 
 
 1wF Z BR+ =  (10) 

where Z ∈ RPS is not used in the control law. 
 

 
 
Fig.3. Structure 2DOF (FBFW) of the close loop 

system 
 
The tracking error e tends to zero if 
 
a) Fw divides AP for 1DOF (11) 

 
b) Fw divides 1-BR  for 2DOF (12) 

 

Another control problem of practical importance 
is disturbance rejection and disturbance attenuation. 
In both cases, the effect of disturbances v and n 
should be asymptotically eliminated from the plant 
output. Since the both disturbances are external 
inputs into the feedback part of the system, the effect 
must be processed by a feedback controller. It means 
that the second and third parts in (11) and (12) are 
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They must belong to RPS(s), i.e. all AP+BQ, Fv, Fn 
should cancel. In other words, a multiple Fv, Fn must 
divide P. More precisely Fv, must divide the multiple 
AP and Fn the multiple BP. When define relatively 
prime elements A0, Fv0 and B0, Fn0 in RPS(s) 

 0 0

0 0

,
v v n n

A BA B

F F F F
= =  (15) 

Then the problem of disturbance rejection and 
attenuation is solvable if and only if the pairs Fv, B 
and Fn, B are relatively prime and the feedback 
controller is given by 

 
1 0 0

b

v n

Q Q
C

P PF F
= =  (16) 

where P1, Q is any  solution of the equation 
 
 0 0 1 1v nAF F P BQ+ =  (17) 
 
 

4 Simple controllers for unstable 

systems 
The fractional approach performed in the ring Rps 
enables a control design in a very elegant way. 
Probably, the simplest unstable system is an 
integrator with the transfer function: 
 

 0( )
b
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The basic stabilizing equation (8) takes the form 
 

 0
0 0 1

,

bs
p q

s m s m
+ =

+ +
 (19) 

 
and all solutions can be expressed by 
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with T free in Rps. For the integrator, the condition of 
divisibility between stepwise Fw and A is generically 
fulfilled because they are the same rational function 
(as well as polynomial) in the form (2). Then the 
simplest  1DOF controller is proportional with the 
gain m/b0. The influence of tuning parameter m is 
shown in Fig.4 where responses for three various 
parameters are depicted (b0=1). Naturally, this 
controller is not able to compensate any load 
disturbance. The simulation in Fig.4 represents the 
reference (stepwise) change in time t=15 and the 
load disturbance (also stepwise) is injected in t=20. 
In this case, the 2DOF structure does not bring any 
improvement. The steady-state error is inversely 
proportional to the gain of the controller, so the 
tuning parameter m>0.The steady-state error 
decreases with increasing parameter m>0. 
 

 
Fig.4. Simple integrator with P controller with 1DOF 

control structure 
 
 
Now, it is necessary to find such a free parameter T 

in (20) so that controller b

Q
C

P
=  ensures asymptotic 

tracking for a stepwise load disturbance (2). So, the 

condition (11) is achieved for 0
0

m
t

b
= −  and the 

1DOF controller takes the form of PI one: 
 

2
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b bQ
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+
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It is clear that tuning parameter m is incorporated 
into controller parameters in a nonlinear way. The 
influence for control behaviour is then demonstrated 
in Fig. 5 (also for b0=1).  Typical PI (1DOF) 
response exhibit a small overshoots. 

The feedforward part of the 2DOF structure for 
integrator (18) is given by (10) with the general 
solution for R: 
 

0

m s
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which for 0
0

m
t

b
= −  gives  

2
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m

b
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+
. The final 

control law (4) for 2DOF structure takes the relation 
2

0 00

2
( ) ( ( )) ( )

t
m m

u t w y d y t
b b

τ τ= − +∫   (23) 

 
The control law (23) is a generalized PI controller 
propose by Aström in [1], [3] as a tool against 
overshooting.  Fig. 6 shows the control responses for 
the same values of m>0. Vanishing of overshoots 
confirm this fact. 

 
Fig.5. Simple integrator with PI controller  

(1DOF structure) 
 

 
Fig.6. Simple Integrator with PI controller  

(2DOF control structure) 
 

A bit more complex situation occurs for 
disturbance rejection with harmonic signal (3). Then 
the parameterization (20) leads to the expression: 
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It is necessary to find parameters t0, t1 satisfying the 
identity in (22). Equating of coefficients in (22), the 
following linear equations for t0, t1 are: 
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The resulting feedback controller ( )
Q

C s
P

=  has no 

more of the PI or PID structure but it takes the form: 
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The control responses for three different values of 
m>0 are depicted in Fig.7.  
 

 
Fig.7. Simple integrator with harmonic disturbance 

compensation with 1DOF control structure 
 
The feedforward part of the 2DOF control law is 
derived in similar way like in (22). The second 
Diophantine equation has the form 

 

 0 1
bs

Z R
s m s m

+ =
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 (28) 

 
with the same solution (22). The resulting 
feedforward transfer function has the form 
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where 0
0

m
r

b
= . 

The control responses are shown in Fig.8. Here (also 
in Fig.7), the depicted harmonic signal represents an 
injected disturbance v in the sense of Fig. 1, Fig. 2. 
The influence of the feedforward part is similar as in 
PI reference tracking. The feedforward part reduces 
overshoots while parameter m>0 influences the 
dynamics (speed) of control responses.   
Two remarkable facts can be seen in Fig.5 - Fig.8. 
The first one is that increasing value of the tuning 
parameter m lessens overshoot of the control 
response. The second one is that the divisibility 
condition enables to compensate the stepwise load 
disturbance which is injected in the time t=20. 

 

 
Fig.8. Integrator with harmonic disturbance 
compensation with 2DOF control structure 

 
 
A second set of controllers for unstable systems 

can be derived for system governed by the transfer 
function: 

0

0

( )
b

G s
s a

=
−

   (30) 

with a0>0. The stabilization feedback equation (8) 
takes the form 

 0 0
0 0 1

s a b
p q

s m s m

−
+ =

+ +
 (31) 

with all parameterization solutions 
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In this case (for the stepwise reference) the 
divisibility condition Fw\ AP is not generically 

fulfilled and it is achieved for 0
0

0

p m
T t

b
= = − . The 

final feedback part is again in the form of PI 
controllers: 

 1 0q s qQ

P s

+
=  (33) 

where  

  
2

0
1 0

0 0

2
;

m a m
q q

b b

+
= =  (34) 

Simulations for three values m (0.6, 1.0, 2.5) for the 
particular case b0=2, a0=0.5 are shown in Fig.9. 
 

 
Fig.9. Unstable system (30) with 1DOF control 

structure 
 

 
Fig.10. Unstable system (30) with 2DOF control 

structure 
 
Another question is a total rejection of overshoot. 

It can be achieved by utilizing of control structure 
2DOF and equation (10) which has the same form 
and general solution (22). The final control law has 
also the form of a generalized PI controller. In 

contrast to (23) plant parameter a0 is immersed into 
control law: 
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The control responses for three value of m (1.0, 

1.5, 2.0) are depicted in Fig.10. Generally, the 2DOF 
structure always reduces overshoots after step 
changes of input signals (reference, load 
disturbance). 
 
Also the harmonic disturbance attenuation can be 
overcome similarly as in the case of a simple 
integrator. In the general solution of stabilizing 
controller in (32) the following divisibility condition 
has to be fulfilled:  
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Condition (36) can be achieved by the choice  

  
2

2 1 0
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After some algebraic manipulations a bit more 
complex than in (25) – (27) the final feedback 
transfer function is in the form 
 

 
3 2

3 2 1 0
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The explicit expressions for controller parameters are 
quite complex, see [16] for details. 
The control responses for the 1DOF structure are 
shown in Fig. 11. The feedforward part of the 2DOF 
structure follows from the second Diophantine 
equation (10) which has the identical general 
solution (22).  The final  
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 where 0
0

m
r

b
= . The control responses for the same 

values and conditions are shown in Fig. 12. The last 
two figures again confirm the fact that the 2DOF 
structure reduces overshoots also in the presence of 
harmonic disturbances. The load disturbance 
attenuation and disturbance can be achieved 
simultaneously as it is shown in Fig. 15 – Fig. 20 for 
the next second order system. 
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Fig.11. Unstable system (30) with harmonic 
disturbance compensation with 1DOF control 

structure 
 

 
 

Fig.12. Unstable system (30) with harmonic 
disturbance compensation with 2DOF control 

structure 
 

The third class of controllers is derived for a 
frequent case of unstable systems with the integrator 
in the form 

0

0

( )
( )

b
G s

s s a
=

−
  (40) 

The divisibility condition for a step-wise reference 

with w

s
F

s m
=

+
 is fulfilled, so the stabilizing 

equation (8) also ensures asymptotic tracking. This 
equation in this case takes the form 
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It is easy to express parameters pi, qi and the 
particular controller has the transfer function 

 1 0
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where    
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2 3
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1; 3 ;

3
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p p m a
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b b

= = +
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Simulations for the case b0=1 and a0=0.5 and three 
parameters are shown in Fig.13 with the 1DOF 
structure. 
 

 
 

Fig.13. Unstable system (40) with 1DOF control 
structure 

 
 

 
Fig.14. Unstable system (40) with 2DOF control 

structure 
 

The 2DOF control synthesis is derived in a very 
similar way like in (28), (29). The simulation 
responses for (40) are depicted in Fig. 14. Naturally, 
it is possible to derive a controller for harmonic 
disturbance rejection.  
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Fig.15. Unstable system (40) with harmonic 

disturbance compensation (frequency=1, 
amplitude=1) with 1DOF control structure 

 

 
Fig.16. Unstable system (40) with harmonic 

disturbance compensation (frequency=1, 
amplitude=1) with 2DOF control structure 

 

 
Fig.17. Unstable system (40) with harmonic 

disturbance compensation (frequency=3, 
amplitude=1) with 1DOF control structure 

 
Fig.18. Unstable system (40) with harmonic 

disturbance compensation (frequency=3, 
amplitude=1) with 2DOF control structure 

 

 
Fig.19. Unstable system (40) with harmonic 

disturbance compensation (frequency=2, 
amplitude=1) with 1DOF control structure 

 
Fig.20. Unstable system (40) with harmonic 

disturbance compensation (frequency=2, 
amplitude=1) with 2DOF control structure 
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The synthesis is based on equation (17) for the 
1DOF structure and on equation (10) for the 2DOF 
structure. The final explicit expressions are not 
simple and can be found in [16], [19]. The 
simulation responses are shown in Fig. 15 
– Fig. 20. All simulations represent simultaneous 
disturbance rejection and load disturbance 
attenuation for various frequency of the harmonic 
disturbance. Simulations confirm the fact that the 
2DOF structure lessens the overshoots after step 
changes of the reference. However, the increasing 
frequency of the harmonic disturbance implicate the 
increasing overshoots (undershoots) after the load 
disturbance injection. It is obvious from Fig. 15, 17, 
19 for the 1DOF structure as well  as Fig. 16, 18, 20 
for the 2DOF structure.  

 

5 Conclusions 
The task of simultaneous regulation and disturbance 
attenuation for a class of unstable systems is 
considered. A controller design methodology is 
based on the fractional representation in the ring of 
proper and stable rational functions. Resulting 
control laws in 1 DOF structure give a class of PI or  
PID controllers. It is important from application 
point of view. The a bit more complex structure 2 
DOF gives more sophisticated controllers which 
have no more the PID structure but the benefit is in 
control responses. The proposed methodology brings 
a scalar parameter m>0 which enables to tune and 
influence the robustness and control behaviour. The 
tuning parameter can be chosen arbitrarily or it can 
be a result of some optimization or calculation. Also 
problems of disturbance attenuation are analysed. 
The methodology is applied for three most frequent 
cases of unstable systems of the first and second 
order. All simulations were simulated and verified in 
the Matlab + Simulink environment. 
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