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Abstract:- The classical attractors of Lorenz, Rössler, Chua, Chen, and other widely-known attractors are
those excited from unstable equilibria. From computational point of view this allows one to use standard
numerical method, in which after transient process a trajectory, started from a point of unstable manifold
in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of
another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilib-
ria. Study of hidden oscillations and attractors requires the development of new analytical and numerical
methods which will be considered in this paper.
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1 Introduction
In the initial period of development of the theory
of nonlinear oscillations in the first half of last cen-
tury [1, 2, 3, 4], a main attention has been given to
analysis and synthesis of oscillating systems for which
solving the problem of the existence of the oscilla-
tion modes did not present any great difficulties. The
structure of many mechanical, electromechanical and
electronic systems was such that there were oscil-
lation modes in them, the existence of which was
almost obvious — oscillations are excited from un-
stable equilibria. From computational point of view
this allows one to use standard numerical method,
in which after transient process a trajectory, started
from a point of unstable manifold in the neighborhood
of equilibrium, reaches an attractor and identifies it.

Consider corresponding classical examples.

Example 1 Van der Pol oscillator

Consider an oscillations arising in the electrical cir-
cuit — the van der Pol oscillator [5]

ẍ+ µ(x2 − 1)ẋ+ x = 0 (1)

and carry out its simulation for the parameter µ = 2.
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Figure 1: Numerical localization of limit cycle in Van
der Pol oscillator

Example 2 Belousov-Zhabotinsky (BZ) reaction

In 1951 B.P. Belousov first discovered oscillations in
the chemical reactions in liquid phase [6]. Consider
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one of the Belousov-Zhabotinsky dynamic model

εẋ = x(1 − x) +
f(q − x)

q + x
z,

ż = x− z

(2)

and carry out its simulation with standard parame-
ters f = 2/3, q = 8 × 10−4, ε = 4 × 10−2.
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Figure 2: Numerical localization of limit cycle in
Belousov-Zhabotinsky (BZ) reaction

Now consider three-dimensional dynamic models.

Example 3 Lorenz system

Consider Lorenz system [7]

ẋ = σ(y − x),

ẏ = x(ρ− z) − y,

ż = xy − βz

(3)

and carry out its simulation with standard parame-
ters σ = 10, β = 8/3, ρ = 28.

Example 4 Chua system

Consider the behavior of the classical Chua circuit [8].
Consider its dynamic model in dimensionless coordi-
nates

ẋ = α(y − x) − αf(x),

ẏ = x− y + z,

ż = −(βy + γz).

(4)

Here the function

f(x) = m1x+ (m0 −m1)sat(x) (5)
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Figure 3: Numerical localization of chaotic attractor
in Lorenz system

characterizes a nonlinear element, of the system, called
Chuas diode; α, β, γ,m0,m1 — are parameters of the
system. In this system it was discovered the strange
attractors [9] called then Chuas attractors. To date
all known classical Chuas attractors are the attrac-
tors that are excited from unstable equilibria. This
makes it possible to compute different Chuas attrac-
tors with relative easy [10, 11, 12, 13, 14, 15]. Here
we simulate this system with parameters α = 9.35,
β = 14.79, γ = 0.016, m0 = −1.1384, m1 = 0.7225.
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Figure 4: Numerical localization of chaotic attractor
in Chua circuit

Here, in all the above examples, limit cycles and
attractors are those excited from unstable equilibria.
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2 Hidden oscillations and attractors
Further there came to light so called hidden oscilla-
tions - the oscillations, the existence itself of which
is not obvious (which are “small” and, therefore, are
difficult for numerical analysis or are not “connected”
with equilibrium, i.e. the creation of numerical pro-
cedure of integration of trajectories for the passage
from equilibrium to periodic solution is impossible).
In addition, in this case the integration of trajectories
with random initial data is unlikely to furnish the de-
sired result since a basin of attraction can be highly
small and the considered system dimension can be
large.

For the first time the problem of finding hidden
oscillations had been stated by D. Hilbert in 1900
(Hilbert’s 16th problem) for two-dimensional polyno-
mial systems. For a more than century history, in
the framework of the solution of this problem the
numerous theoretical and numerical results were ob-
tained. However the problem is still far from being re-
solved even for the simple class of quadratic systems.
In 40-50s of the 20th century A.N. Kolmogorov be-
came the initiator of a few hundreds of computational
experiments [16], in the result of which the limit
cycles in two-dimensional quadratic systems would
been found. The result was absolutely unexpected:
in not a single experiment a limit cycle was found,
though it is known that quadratic systems with limit
cycles form open domains in the space of coefficients
and, therefore, for a random choice of polynomial
coefficients, the probability of hitting in these sets
is positive. It should be noted also that small and
nested cycles [17,18,16,19,20,21] are difficult to nu-
merical analysis.

Example 5 Four limit cycles in quadratic system

Consider the following quadratic system

dx

dt
= x2 + xy + y,

dy

dt
= a2x

2 + b2xy + c2y
2 + α2x+ β2y.

(6)

Application of special analytical methods [18,22] al-
low us to visualize in this system four limit cycle. In
Fig. 5 for set of the coefficients b2 = 2.7, c2 = 0.4,
a2 = −10, α2 = −437.5, β2 = 0.003 three “large”

Figure 5: Visualization of 4 limit cycles in quadratic
system

limit cycles around zero point and 1 “large” limit cy-
cle to the left of straight line x = −1 can be ob-
served [23].

Further the problem of analysis of hidden oscil-
lations arose in applied problems of automatic con-
trol. In the process of investigation, connected with
Aizerman’s (1949) and Kalman’s (1957) conjectures,
it was stated that the differential equations of sys-
tems of automatic control, which satisfy generalized
Routh-Hurwitz stability criterion, can also have hid-
den periodic regimes [24].

2.1 Analytical-numerical method for
finding hidden oscillations of multi-
dimensional dynamical systems
Consider a system with one scalar1 nonlinearity

1vector nonlinearity can be considered similarly [25]
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dx

dt
= Px + qψ(r∗x), x ∈ R

n. (7)

Here P is a constant (n×n)-matrix, q, r are constant
n-dimensional vectors, ∗ is a transposition operation,
ψ(σ) is a continuous piecewise-differentiable2 scalar
function, and ψ(0) = 0. Define a coefficient of har-
monic linearization k in such a way that the matrix

P0 = P + kqr∗ (8)

has a pair of purely imaginary eigenvalues ±iω0 (ω0 >
0) and the rest of its eigenvalues have negative real
parts. We assume that such k exists. Rewrite system
(7) as

dx

dt
= P0x + qϕ(r∗x), (9)

where ϕ(σ) = ψ(σ) − kσ.
Introduce a finite sequence of functions ϕ0(σ),

ϕ1(σ), . . . , ϕm(σ) such that the graphs of neighboring
functions ϕj(σ) and ϕj+1(σ) slightly differ from one
another, the function ϕ0(σ) is small, and ϕm(σ) =
ϕ(σ). Using a smallness of function ϕ0(σ), we can
apply and mathematically strictly justify [26, 27, 28,
?, 25, 29] the method of harmonic linearization (de-
scribing function method) for the system

dx

dt
= P0x + qϕ0(r∗x) (10)

and determine a stable nontrivial periodic solution
x0(t). For the localization of oscillating solution (or
attractor) of original system (9), we shall follow nu-
merically the transformation of this periodic solution
(a starting oscillating attractor — an attractor, not
including equilibria, denoted further by A0) with in-
creasing j. Here two cases are possible: all the points
of A0 are in an attraction domain of attractor A1, be-
ing an oscillating attractor of the system

dx

dt
= P0x + qϕj(r∗x) (11)

with j = 1, or in the change from system (10) to
system (11) with j = 1 it is observed a loss of sta-
bility (bifurcation) and the vanishing of A0. In the
first case the solution x1(t) can be determined nu-
merically by starting a trajectory of system (11) with

2This condition can be weakened if a piecewise-continuous
function being Lipschitz on closed continuity intervals is con-
sidered [?]

j = 1 from the initial point x0(0). If in the process of
computation the solution x1(t) has not fallen to an
equilibrium and it is not increased indefinitely (here a
sufficiently large computational interval [0, T ] should
always be considered), then this solution reaches an
attractor A1. Then it is possible to proceed to system
(11) with j = 2 and to perform a similar procedure
of computation of A2, by starting a trajectory of sys-
tem (11) with j = 2 from the initial point x1(T ) and
computing the trajectory x2(t).

Proceeding this procedure and sequentially in-
creasing j and computing xj(t) (being a trajectory
of system (11) with initial data xj−1(T )) we either
arrive at the computation of Am (being an attractor
of system (11) with j = m, i.e. original system (9)),
either, at a certain step, observe a loss of stability
(bifurcation) and the vanishing of attractor.

To determine the initial data x0(0) of starting pe-
riodic solution, system (10) with nonlinearity ϕ0(σ)
is transformed by linear nonsingular transformation
S to the form

ẏ1 = −ω0y2 + b1ϕ
0(y1 + c∗3y3),

ẏ2 = ω0y1 + b2ϕ
0(y1 + c∗3y3),

ẏ3 = A3y3 + b3ϕ
0(y1 + c∗3y3).

(12)

Here y1, y2 are scalar values, y3 is (n−2)-dimensional
vector; b3 and c3 are (n−2)-dimensional vectors, b1
and b2 are real numbers; A3 is an ((n−2)× (n−2))-
matrix, all eigenvalues of which have negative real
parts. Without loss of generality, it can be assumed
that for the matrix A3 there exists a positive number
d > 0 such that

y∗

3(A3 + A∗

3)y3 ≤ −2d|y3|
2, ∀y3 ∈ R

n−2. (13)

Introduce the describing function

Φ(a) =

2π/ω0
∫

0

ϕ
(

cos(ω0t)a
)

cos(ω0t)dt.

In practice, to determine k and ω0 it is used the
transfer function W (p) of system (7):

W (p) = r∗(P − pI)−1q,

where p is a complex variable. The number ω0 is
determined from the equation ImW (iω0) = 0 and k
is computed then by formula k = −(ReW (iω0))

−1.
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In 1957 R.E. Kalman formulated the following
conjecture [30]: Suppose that for all k ∈ (µ1, µ2) a
zero solution of system (9) with ϕ(σ) = kσ is asymp-
totically stable in the large (i.e., a zero solution is
Lyapunov stable and any solution of system (9) tends
to zero as t → ∞. In other words, a zero solution is
a global attractor of system (9) with ϕ(σ) = kσ).

If at the points of differentiability of ϕ(σ) the con-
dition

µ1 < ϕ′(σ) < µ2 (14)

is satisfied, then system (9) is stable in the large?
Consider a method for counterexamples construc-

tion Kalman’s conjecture. Let us assume first that
µ1 = 0, µ2 > 0 and consider system (12) with nonlin-
earity ϕ0(σ) of special form

ϕ0(σ) =

{

µσ, ∀|σ| ≤ ε;

sign(σ)Mε3, ∀|σ| > ε.
(15)

Here µ < µ2 and M are certain positive numbers,
ε is a small positive parameter.

Then the following result is valid.

Theorem 1 [31] If the inequalities

b1 < 0,

0 < µb2ω0(c3
∗b3 + b1) + b1ω

2
0

are satisfied, then for small enough ε system (12) with
nonlinearity (15) has orbitally stable periodic solu-
tion, satisfying the following relations

y1(t) = − sin(ω0t)x2(0) +O(ε),

y2(t) = cos(ω0t)x2(0) +O(ε),

y3(t) = On−2(ε),

y1(0) = O(ε2),

y2(0) = −

√

µ(µb2ω0(c
∗b+ b1) + b1ω

2
0)

−3ω2
0Mb1

+O(ε),

y3(0) = On−2(ε
2).

(16)

The methods for the proof of this theorem are
developed in [31,16,32,33].

Based on this theorem, it is possible to apply de-
scribed above multi-step procedure for the localiza-
tion of hidden oscillations: initial data obtained in

this theorem allow to step aside from stable zero equi-
librium and to start numerical localization of possible
oscillations.

For that we consider a finite sequence of piecewise-
linear functions

ϕj(σ) =

{

µσ, ∀|σ| ≤ εj ;

sign(σ)Mε3j , ∀|σ| > εj .
, εj = j

m

√

µ
M

j = 1, . . . ,m.
(17)

Here function ϕm(σ) is monotone continuous piecewise-
linear function sat(σ) (“saturation”). We choosem in
such a way that the graphs of functions ϕj and ϕj+1

are slightly distinct from each other outside small
neighborhoods of points of discontinuity.

Suppose that the periodic solution xm(t) of sys-
tem (9) with monotone and continuous function ϕm(σ)
(“saturation”) is computed. In this case we organize
a similar computational procedure for the sequence
of systems

dx

dt
= Px+ qψi(r∗x). (18)

Here i = 0, . . . , h, ψ0(σ) = ϕm(σ) and

ψi(σ) = ϕm(σ) +

{

0, ∀|σ| ≤ εm;

i(σ − sign(σ)εm)N, ∀|σ| > εm,

where N is a certain positive parameter such that
hN < µ2 (using the technique of small changes, it is
also possible to approach other continuous monotonic
increasing functions [25]).

The finding of periodic solutions xi(t) of system
(18) gives a certain counterexample to Kalman’s con-
jecture for each i = 1, . . . , h.

Consider a system

ẋ1 = −x2 − 10ϕ(x1 − 10.1x3 − 0.1x4),

ẋ2 = x1 − 10.1ϕ(x1 − 10.1x3 − 0.1x4),

ẋ3 = x4,

ẋ4 = −x3 − x4 + ϕ(x1 − 10.1x3 − 0.1x4).

(19)

Here for ϕ(σ) = kσ linear system (19) is stable for
k ∈ (0, 9.9) and by the above-mentioned theorem for
piecewise-continuous nonlinearity ϕ(σ) = ϕ0(σ) with
sufficiently small ε there exists periodic solution.

Here for ϕ(σ) = kσ linear system (19) is stable for
k ∈ (0, 9.9) and by the above-mentioned theorem for
piecewise-continuous nonlinearity ϕ(σ) = ϕ0(σ) with
sufficiently small ε there exists periodic solution.
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Now we make use of the algorithm of construct-
ing of periodic solutions. Suppose µ = M = 1,
ε1 = 0.1, ε2 = 0.2, ..., ε10 = 1. For j = 1, ..., 10,
we construct sequentially solutions of system (19),
assuming that by (17) the nonlinearity ϕ(σ) is equal
to ϕj(σ). Here for all εj , j = 1, ..., 10 there exists
periodic solution.

At the first step for j = 0 by the theorem the ini-
tial data of stable periodic oscillation take the form:

x1(0) = O(ε), x3(0) = O(ε), x4(0) = O(ε),
x2(0) = −1.7513 +O(ε).

Therefore for j = 1 a trajectory starts from the point
x1(0) = x3(0) = x4(0) = 0, x2(0) = −1.7513. The
projection of this trajectory on the plane (x1, x2) and
the output of system r∗x(t) = x1(t) − 10.1x3(t) −
0.1x4(t) are shown in Fig. 6.

Figure 6: ε = 0.1: trajectory projection on the plane
(x1, x2)

From the figure it follows that after transient pro-
cess stable periodic solution is reached. At the first
step the computational procedure is ended at the
point x1(T ) = 0.7945, x2(T ) = 1.7846, x3(T ) =
0.0018, x4(T ) = −0.0002, where T = 1000π.

Further, for j = 2 we take the following initial
data: x1(0) = 0.7945, x2(0) = 1.7846, x3(0) =
0.0018, x4(0) = −0.0002, and obtain next periodic
solutions.

Proceeding this procedure for j = 3, ...10, we se-
quentially approximate (Fig. 8-14) a periodic solution
of system (19) (Fig. 15).

Note that for εj = 1 the nonlinearity ϕj(σ) is
monotone. The computational process is ended at
the point x1(T ) = 1.6193, x2(T ) = −29.7162, x3(T ) =
−0.2529, x4(T ) = 1.2179, where T = 1000π.

Figure 7: ε = 0.2: trajectory projection on the plane
(x1, x2)

Figure 8: ε = 0.3: trajectory projection on the plane
(x1, x2)

Figure 9: ε = 0.4: trajectory projection on the plane
(x1, x2)

We also remark that here if instead of sequential
increasing of εj , we compute a solution with initial
data according to (16) for ε = 1, then the solution
will “falls down” to zero.

Change the nonlinearity ϕ(σ) to the strictly in-
creasing function ψi(σ), where µ = 1, εm = 1, N =
0.01, for i=1,...,5, and, continue the sequential con-
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Figure 10: ε = 0.5: trajectory projection on the
plane (x1, x2)

Figure 11: ε = 0.6: trajectory projection on the
plane (x1, x2)

Figure 12: ε = 0.7: trajectory projection on the
plane (x1, x2)

struction of periodic solutions for system (19). The
graph of such nonlinearity is shown in Fig. 16.

The periodic solutions obtained are shown in Fig. 17–
21.

In the case of the computation of solution for

Figure 13: ε = 0.8: trajectory projection on the
plane (x1, x2)

Figure 14: ε = 0.9: trajectory projection on the
plane (x1, x2)

Figure 15: ε = 1: trajectory projection on the plane
(x1, x2)

i = 6 there occurs the vanishing of periodic solution
(Fig. 22).

For system (19) with smooth strictly increasing
nonlinearity

ϕ(σ) = tanh(σ) =
eσ − e−σ

eσ + e−σ
(20)
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Figure 16: The graph of ψi(σ) for i=5 and stability
sector

Figure 17: ı = 1: trajectory projection on the plane
(x1, x2)

Figure 18: ı = 2: trajectory projection on the plane
(x1, x2)

there exists a periodic solution (Fig. 23). Here

0 <
d

dσ
tanh(σ) ≤ 1, ∀σ.

Figure 19: ı = 3: trajectory projection on the plane
(x1, x2)

Figure 20: ı = 4: trajectory projection on the plane
(x1, x2)

Figure 21: ı = 5: trajectory projection on the plane
(x1, x2)

Here on the first step it is possible to apply described
above method to reach saturation function; on the
second — “slightly” by small steps transform satura-
tion to tanh.

Further, the issues analysis of hidden oscillations
arose in the study of dynamical phase locked loops
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Figure 22: ı = 6: trajectory projection on the plane
(x1, x2)

Figure 23: The projection of trajectory with the
initial data x1(0) = x3(0) = x4(0) = 0, x2(0) = −20
of system (20) on the plane (x1, x2)

[34,35,36]. In 1961 semi-stable limit cycle were founded
in two-dimensional model of PLL [37] (which also can
not be detected by numerical simulations).

Example 6 Hidden attractor in Chua’s circuit

Similar situation arises in attractors localization.
The classical attractors of Lorenz, Rossler, Chua,
Chen, and other widely-known attractors are those
excited from unstable equilibria. However there are
attractors of another type [38]: hidden attractors, a
basin of attraction of which does not contain neigh-
borhoods of equilibria. Numerical localization, com-
putation, and analytical investigation of such attrac-
tors are much more difficult problems.

Recently such hidden attractors were discovered
[38,39] in classical Chua’s circuit.

Here we consider system (10) with ϕ0(σ) = εϕ(σ)
were ε is a small positive parameter and introduce

class of functions ϕj : ϕ1 = ε1ϕ(σ), . . ., ϕm−1 =
εm−1ϕ(σ), ϕm = εmϕ(σ), where εj = j/m, j =
1, . . . ,m.

For such class on nonlinearities ϕj the following
theorem was proved in [16]

Theorem 2 If it can be found a positive a0 such that

Φ(a0) = 0, (21)

then for the initial data of periodic solution x0(0) =
S(y1(0), y2(0),y3(0))

∗ at the first step of algorithm
we have

y1(0) = a0 +O(ε), y2(0) = 0, y3(0) = On−2(ε),
(22)

where On−2(ε) is an (n−2)-dimensional vector such
that all its components are O(ε).

For the stability of x0(t) (if the stability is re-
garded in the sense that for all solutions with the
initial data sufficiently close to x0(0) the modulus of
their difference with x0(t) is uniformly bounded for
all t > 0), it is sufficient to require the satisfaction of
the following condition

b1
dΦ(a)

da

∣

∣

∣

∣

a=a0

< 0.

Consider Chua system (4) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052,

m0 = −0.1768, m1 = −1.1468.
(23)

Note that for the considered values of parameters
there are three equilibria in the system: a locally
stable zero equilibrium and two saddle equilibria.

Modeling of this system was carried out in 10
steps increasing parameter εj from the start value
ε1 = 0.1 to the finish value ε10 = 1 with step 0.1.
Projections of trajectories of the system into (x, y)
plane at the each step of the multistage numerical
procedure described above are shown in Figs. 24—
33.

Here application of special analytical-numerical
algorithm described above [25] allow us to find hidden
attractor — Ahidden (see Fig. 34).
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Figure 24: Projections of trajectory into (x, y) plane
for ε1 = 0.1
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Figure 25: ε2 = 0.2
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Figure 26: ε3 = 0.3
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Figure 27: ε4 = 0.4
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Figure 28: ε5 = 0.5
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Figure 29: ε6 = 0.6
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Figure 30: ε7 = 0.7
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Figure 31: ε8 = 0.8
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Figure 32: ε9 = 0.9
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Figure 33: Projections of trajectory into (x, y) plane
for ε10 = 1

It should be noted that the decreasing of inte-
gration step, the increasing of integration time, and
the computation of different trajectories of original
system with initial data from a small neighborhood
of Ahidden lead to the localization of the same set
Ahidden (all the computed trajectories densely trace
the set Ahidden). Note also that for the computed
trajectories it is observed Zhukovsky instability and
the positiveness of Lyapunov exponent [40,41].
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Figure 34: Equilibrium, stable manifolds of saddles,
and localization of hidden attractor.

The behavior of system trajectories in the neigh-
borhood of equilibria is shown in Fig. 34. Here Munst

1,2

are unstable manifolds, M st
1,2 are stable manifolds.

Thus, in a phase space of system there are stable
separating manifolds of saddles.

The above and the remark on the existence, in
system, of locally stable zero equilibrium F0 attracted
the stable manifolds M st

1,2 of two symmetric saddles
S1 and S2 led to the conclusion that in Ahidden there
is computed a hidden strange attractor.

3 Conclusion
Study of hidden oscillations and attractors requires
the development of new analytical and numerical meth-
ods. At this invited lecture there are discussed the
new analytic-numerical approaches to investigation
of hidden oscillations in dynamical systems, based
on the development of numerical methods, comput-
ers, and applied bifurcation theory, which suggests
revisiting and revising early ideas on the application
of the small parameter method and the harmonic lin-
earization [16,25,29,38].
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