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Abstract：- To identify T-S models, this paper presents a so-called “subtractive fuzzy C-means clustering” 
approach, in which the results of subtractive clustering are applied to initialize clustering centers and the 
number of rules in order to perform adaptive clustering. This method not only regulates the division of fuzzy 
inference system input and output space and determines the relative member function parameters, but also 
overcomes the impacts of initial values on clustering performance. Additionally, the orthogonal least square 
algorithm is employed to identify the parameters of consequents and linearize the systems over every sample 
time, ultimately resulting in the entire T-S fuzzy models. With this approach available, a fuzzy model predictive 
control system is established, along with corresponding control algorithms derived, as well as control system 
simulations carried out which explicitly demonstrate the effectiveness of the proposed method. 
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1 Introduction 
Conventional control strategies usually demand well 
structured process models and explicit model 
parameters. However, practical processes considered 
are becoming more complicated due to lack of 
formal knowledge, strong nonlinearity and 
involvement of diverse sources of uncertainty. In the 
sense of a process which is unable to be described by 
precise mathematical terms, fuzzy models become 
potentially very useful. 

Tskagi-Sugeno (T-S) fuzzy model [1] has been 
one of the most popular fuzzy types circulated in the 
literature ever since. Consisting of a number of local 
input-output linear regression models in each 
subspace, a T-S model can be built by means of 

fuzzy rule based descriptions of input-output 
measurements of the continuous plants. Existing 
researches show that fuzzy C-means clustering (FCM) 
is an effective way to establish fuzzy inference rules 
[2-5]. However, due to multiple iterations employed 
and a large number of eigen vectors computed, the 
algorithm suffers heavy computational burdens, 
becoming very time-consuming. Additionally, it is 
strongly sensitive to the initialization treatment, 
which usually requires a priori knowledge of the 
cluster numbers to form the initial cluster centers. To 
our disappointment, inappropriate initial values 
readily lead to an undesired local minimum or 
suboptimal solution. 

Previously, some alternative approaches have 
been made to avoid these limitations. Taking 
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advantage of global searching, Lucio Ippolite [6] 
proposed a fuzzy clustering approach combined 
genetic algorithm (GA) with FCM, which can 
effectively avoid local optimum and reduce 
computational effort. Li Wang, et al. [7] involved 
Particle Swarm Optimization (PSO) algorithms into 
FCM, where the gradient descent iterations are 
replaced by PSO operations, enabling FCM a strong 
global searching ability as well as avoiding local 
convergence. Aiming at resolving the problem that 
FCM algorithms strongly depend on initialization, 
Emani et al. [8] developed an agglomerative 
hierarchical clustering scheme as an introductory 
procedure to find properly identified hard-clusters as 
the initial locations of the cluster prototype in the 
fuzzy c-means algorithm. 

It is conceivable that the aforementioned 
approaches can help avoid local suboptimal solutions 
at the expense of increasing computations. However, 
they become more dependent on the initial 
assignments of cluster number and clustering centers 
due to the attempts of accelerating the convergence 
speeds. Subtractive clustering (SC) is recognized as a 
fast clustering algorithm [9]. It can be utilized to 
estimate the number of clusters and clustering 
centers, designed for high dimension problem with a 
moderate number of data points. Inspired by this idea, 
Liu et al [10] suggested an approach to merge SC 
and FCM, in which, however, assignments of initial 
associated membership functions were scarcely 
mentioned, let alone its applications.  

Motivated by effective identification of T-S 
models, an improved subtractive fuzzy C-means 
clustering (SFCM) technique is introduced in this 
paper. The key idea behind this approach is that the 
results of subtractive clustering are designated as the 
initial values of FCM parameters, which leads to a 
high clustering speed as well as avoids local 
suboptimal solutions. Moreover, the proper number 
of clusters is automatically generated according to 
the impacts of system values on the clustering 
centers, greatly reducing the computational 
complexity. Inspired by these observations, the 

proposed method can surely achieve higher accuracy 
than traditional FCM to deal with T-S model 
identification. In what follows, the SFCM will be 
explicitly introduced along with numerical examples. 
To demonstrate the power of the contributions, the 
approach is applied to fuzzy predictive control 
systems where fuzzy predictive control algorithms 
are derived and identified T-S models are employed, 
resulting in satisfactory control performances.. 

The rest of the paper is organized as follows. 
Section 2 briefly describes the T-S model 
identification based on FCM. In section 3, SFCM 
algorithm is introduced and simulation investigations 
are carried out. This is followed in section 4 by 
applications to model predictive control system, in 
which the fuzzy model predictive control algorithm 
is accordingly derived and the simulation work is 
performed. Finally, the concluding remarks are given 
in section 5. 

 
 

2 FCM based T-S model Identification 
Consider a nonlinear MISO system with p inputs: 

pu U R∈ ⊂ , and 1 output, y Y R∈ ⊂ . The 

corresponding T-S fuzzy models is expressed as n 
rules, in which, the ith fuzzy rule for kth time instant 
data is described as follows [11] : 

1: , , ... ,1 2 2

( ) ...0 1 1 2 2

1, 2, ...,0 1

i i i iR if x is A x is A x is Am m
i i i i ithen y k p p x p x p xm m

mi ip p x i nj jj

= + + + +

= + =∑
=

(1) 

where i
jA  is the fuzzy set of the jth input variable 

of the antecedent of the ith fuzzy rule; 

1 2( ) [ , ,..., ]mx k x x x=  is the vector of the input 

variables; iy  is the output variable of ith rule; i
jp  

are the consequent parameters. 
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The final output of T-S model can be expressed 
by a weighted mean defuzzification at kth time as 
follows: 

        /
1 1

n ni i iy y
i i

µ µ= ∑ ∑
= =

      (2) 

where n  corresponds to the number of fuzzy rules, 

iy  is the output variable of ith rule; iµ  represents 

the firing strength of the ith rule, which is defined as: 

             ( ) ( )
1

mi ix A xj jj
µ = ∏

=
          (3) 

where ∏ is the fuzzy operator, usually performing 

minimizing or product operation; ( )i
j jA x is the 

grade of membership function. 

Note      /
1

ni i
i i

β µ µ∑
=

              (4)                                      

The current estimated output may be expressed 
generally as follows: 

/
1 1

( ) 1, 2, ...,0 1 11 1

n ni i iy y
i i

n ni i i iy p p x p x i nm mi ii i

µ µ

β β

= ∑ ∑
= =

= = + + + =∑ ∑
= =

…
(5) 

Regarding T-S models, both the clusters (fuzzy 
regions) and the linear sub-models’ parameters valid are 
requested. By premise structure identification, we mean 
to determine the specific input variables and partition 
the input space properly. The clusters can be identified 
using clustering algorithms such as fuzzy C-means. 

The objective function of the FCM is defined 
by: 

 
2

1 1
( , ) ( )

c N
m

b ik k i
i k

J U Z x zµ
= =

= −∑ ∑    (6) 

Where xk signifies the point in data space, 

1, 2,...,k N= ; N  signifies the number of data 

points; iz  stands for the final cluster center, 

1, 2,...,i c= ; c  corresponds to the number of fuzzy 

rules; [0,1]ikµ ∈  is the fuzzy membership degree 

of the kth data pair pertaining to the ith fuzzy subset. 

It is assumed that ikµ  is constrained with following 

equation: 

1
1, 1, 2,...,

c

ik
i

k Nµ
=

= =∑          (7)                            

The C-means algorithm for clustering in n 
dimensions produces C-means vectors that present c 
classes of data. The problem of finding the fuzzy 
clusters in the data set is now solved as a constrained 
optimization problem using FCM algorithm, 
considering the minimization of the function in Eq.(6) 
over the domain data set and taking into account the 
constrains in Eq.(7). The results of FCM imply the 
clustering centers together with the corresponding 
membership degrees. The main steps for identifying 
the T-S fuzzy model based on FCM are given as 
follows: 
Step 1 Given c, m, and the initial clustering centers 

for all 1, 2,...,k N=  and 1, 2,...,i c= . Set an 

initial fuzzy c-partition matrix [ ]ikU µ=  to 

indicate the membership value for the ith cluster 
representatives.  
Step 2 Calculate the following equation: 

1

1

( )
i =1,2,...,c

( )

N
m

k ik
k

i N
m

ik
k

z
z

µ

µ

=

=

=
∑

∑
        (8) 

Step 3 Update U to adjust 
 

2
11

1
[ ( ) ]  i=1,2,...,c    k=1,2,...N

c
k i m

ik
j k j

x z
x z

µ −−

=

−
=

−∑   (9) 

Step 4 Check for termination. If 
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             1k kU U ε−− <           (10)                  

stop; otherwise, let 1k k= +  and return to step 2. 
Step 5 Identify the consequent parameters using 
orthogonal least-squares (OLS) method [12]. Rewrite 
Eq. (5) in a vector form:  

           y φθ=                   (11) 

where

1 1 1 1 1[ ,..., , ,..., ,..., ,... ]n n m n mx x x xφ β β β β β β= , 

1 1 2 2
0 0 0[ ,..., , ,..., , ,..., ]n n T

m m mp p p p p pθ = signifies the 

consequent parameters.  
In regard to the least squares solutions,  

    1( )T T yθ φ φ φ−= ,              (12) 

we convert [ ]Tφ φ  into an orthogonal matrix[ ]TW W . 

By implementing iteration and conversion algorithms, 

the ( 1)*m n+ coupled equations become mutually 

independent, thereby calculating the consequent 
parametersθ . 
 
 

3 SFCM based T-S Model 

Identification 

 
 
3.1 Subtractive Clustering 
Subtractive clustering (SC) is an effective method 
that searches for the number of clusters and cluster 
centers, which starts off with generating a number of 
clusters in the dimensional input space. The aim of 
the clustering approach is to group data by using a 
similarity measurement which assumes each data 
point is a potential clustering center and calculates a 
measure of the likelihood that each data point would 
define the clustering center based on the density of 
surrounding data points. Each point of the input 

vector 1 2[ , ,..., ]Nx x x  is considered as a potential 

clustering center. The density measurement at a data 

point ix  is calculated by: 

         

2

exp( )21 ( / 2)

N x xi j
Di j ra

−
= −∑

=
       (13)                            

where N  is the total number of data points; 

1 2[ , ,..., ]Nx x x  are data points; [0, )ar ∈ ∞  is the 

neighborhood range of the cluster implying the 
radius of hypercube cluster in data space. Thus, the 
potential associated with each cluster depends on its 
distance to all points, leading to clusters with high 
potential where neighborhood is dense. The density 
value of ith data point will be larger one if it has 
many neighboring data points and the distance 
between the data points and its location is small. The 

first clustering center is defined as 1cx  which has 

the largest density value 1Dc . For the second and 

other cluster centers, the effect of the first cluster 
centering is updated in determination of the new 
density values, as follow: 

    

2
1exp( )1 21 ( / 2)

N x xi cD D Di i c j rb

−
= − −∑

=
      (14) 

where [0, )br ∈ ∞  has measurable reduction in 

density measurement. Typically, 1.5r rab = .  

According to Eq.(13), the data points which are near 

the first cluster center 1cx  will have reduced the 

density measurement strongly, and the probability for 
those points to be chosen as the next cluster is lower. 
This procedure selecting centers and reducing their 
potential is carried out iteratively until the stop 
criterion is satisfied. Additionally two threshold 
levels are defined. If the one is greater than a higher 
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threshold, then the ith data is selected for a clustering 
center. If the one is below the lower threshold, the 
point is rejected. 
 
 
3.2 SFCM Algorithms 
Step 1 According to the specific system, the number 
of data points, the radius of neighborhood and the 
error should be given. 
Step 2 Calculate the density of every data point, and 

the highest density of the point is chosen as 1cx   

Step 3 According to Eq.(14), the density of all data 

points are updated. The data point 2cx  which 

corresponding to the larger density value is chosen as 
the second cluster center. The selection is carried out 
iteratively, until the stopping criteria achieved. The 
results of the clustering are clustering number and 
cluster centers, all of which are adaptive formulated 
according to the effect of the cluster centers in each 
dimension. 
Step 4 The results of aforementioned including the 
clustering number and cluster centers are chosen as 
the FCM initial values. The initial fuzzy partition 

matrix (0)U  is also set contemporaneously as 

follows: 

2
1

1

1(0)   i=1,2,...,c    k=1,2,...N
( )

ik c
ik m

j jk

D
D

µ
−

=

=

∑
 (15) 

where jkD , which is calculated firstly, signifies the 

distances between k th data point and j th initial 

cluster center.  
Step 5 Calculate the center values according to 
Eq.(8); 
Step 6 Update the fuzzy partition matrix U(k) 
according to Eq.(9); 
Step 7 If Eq.(10) is satisfied, then stop; otherwise, 

1k k= + , return to step (5)； 

Step 8 The consequent parameters are identified 
using orthogonal least-square method (OLS), 
eventually resulting in the T-S models.  
 
 
3.3 Experimental Discussion 
We applied both FCM and SFCM to deal with 100 
data points which are generated randomly within [0, 
1] by in two-dimensional space. The radius of SFCM 
was specified as 0.5; the weighting exponent m=2; a 
termination criterion min_impro=0.00001. The 
clustering number of FCM was initiated to 4, which 
means 4 rules are available. SFCM automatically 
generates appropriate clustering numbers according 
to the impacts of each dimension of data on cluster 
centers, rather than demands the number of clusters 
ahead. On the contrary, inappropriate initial 
clustering number of FCM can lead to undesired 
results. Fig.1 and Fig.2 reveal that the data points are 
more intensive and obvious in the boundaries of 
SFCM. 

  
Fig.1 Clustering results of SFCM 

 
Fig.2 Clustering results of FCM 
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The objective function evolutions associated with 
the two methods are shown in Fig.3, which indicates 
that SFCM method not only performs less iteration, but 
also achieves smaller value of objective function, 
implying that SFCM conducts faster convergence and 
higher accuracy. 

Assign the first and the second dimension data to 
the outputs and inputs of the system, respectively, and 
then the T-S models can be built. Fig.4 shows the 5 
membership functions associated with SFCM. The 
consequent parameters of the T-S model are obtained as 

follows: 

0.041 0.855 0.566 0.348
0.929 0.004 0.215 0.309
0.067 0.125 0.078 0.095
0.193 0.085 0.077 0.726
0.386 0.48 0.036 0.188

θ

− −

− −

= − − − −

− −

 
 
 
 
 
 
 

, 

which implies the following T-S modes: 
1

1 1 1

2
2 2 2

3
3

: ( 1) ( 2) ( 1)
( ) 0.041 0.855 ( 1) 0.566 ( 2) 0.348 ( 1)

: ( 1) ( 2) ( 1)
( ) 0.929 0.004 ( 1) 0.215 ( 2) 0.309 ( 1)

: ( 1) (

R if y k is A and y k B and u k is C
th en y k y k y k u k

R if y k is A and y k B and u k is C
th en y k y k y k u k

R if y k is A and y k

− − −
= − + − − − + −

− − −
= − − − − + −

− 3 3

4
4 4 4

5
5 5 5

2) ( 1)
( ) 0.067 0.125 ( 1) 0.078 ( 2) 0.095 ( 1)

: ( 1) ( 2) ( 1)
( ) 0.193 0.085 ( 1) 0.077 ( 2) 0.726 ( 1)

: ( 1) ( 2) ( 1)

B and u k is C
th en y k y k y k u k

R if y k is A and y k B and u k is C
th en y k y k y k u k

R if y k is A and y k B and u k is C
the

− −
= − − − − − − −

− − −
= + − + − + −

− − −
( ) 0.386 0.48 ( 1) 0.036 ( 2) 0.188 ( 1)n y k y k y k u k= + − − − − −

   Here, Root Mean Square Error (RMSE) is 
employed to evaluate the accuracy of the model 
identification. It reveals that RMSE of SFCM is 0.0752 
and RMSE of FCM goes to 0.1033., which 
demonstrates the benefits of SFCM obviously. 

 
Fig.3 Objective function profiles of the two methods 

 
          Fig.4 Membership functions of SFCM 
 
 

4 Applications to Fuzzy Predictive 

Control 
 
 
4.1 Control Algorithms 
Linear model based predictive control (MPC) has 
increasing popularity in applications. However, most 
industrial processes are nonlinear, time-variant and 
uncertain. It is an effective way to solve these 
problems by combining fuzzy models with the MPC 
strategies [13,14]. It is acknowledged that the T-S 
fuzzy models can approximate nonlinear systems 
with arbitrary precision. Taking advantage of local 
dynamic linearization of nonlinear systems process, 
the generalized predictive control (GPC) algorithms 
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can be implemented.  
The design of fuzzy predictive control is 

characterized by fuzzy modeling and predictive 
control, where the off-line identified T-S models 
serve as the predictive models of GPC. Fig.5 shows 
the basic scheme of the control system. 

Reference 
Trajectory

Controlled 
System

T-S Model 

Feedback 
Correction 

On-line

Optimization 
Calculation

dy

( )cy k i+

( )ry k i+

( )u k

( )my k i+

Control Input+

−

( )y k Output

Model 
Correction

Fig.5 Schematic diagram of fuzzy GPC systems  

T-S fuzzy predictive model is described by: 

( 1) ( ) ( 1) ( ) ( 1)
1 1

nna b
y k a k y k l b k u k l el ll l

+ = − + + − + +∑ ∑
= =

(16)          

Where  
,

1
( ) ( )

n

l i i l
i

a k k aβ
=

=∑  and 
,

1
( ) ( )

n

l i i l
i

b k k bβ
=

=∑ , 

ila  is first an  columns about the ith row in the 

whole consequent parameters matrix iθ ; whereas, 

ilb  is the other columns about the same row; e 

means the error. Because of the consequent 

parameters depend on the time-varying coefficient iβ , 

the T-S model a state-space linear time-varying (LTV) 

model. The sub-model consequent parameters iθ  

according to the ith rule are determined, so the T-S 
model is divided into some linear time-invariant (LTI) 
models. 

The multi-steps predictive outputs of global T-S 
model are defined by: 

( ) ( ) ( ) Remy k j Px k Su k+ = + +             (17)                      

where 

( ) [ ( 1), ( 2), ..., ( )]Ty k j y k y k y k Nm m m m y+ = + + +  

with yN  indicating predictive steps; 

( ) [ ( ), ..., ( 1), ( 1), ..., ( 1)]Tx k y k y k n u k u k na b= − + − − + ;  

( ) [ ( ), ..., ( 1)]Tu k u k u k Nu= + − ;  

[ , ..., ]1
TR r rj= ; 

11 1( 1)

1 ( 1)
* 1

p p n na b
P

p pNN n nyy a b j n na b

+ −

=

+ −
+ +

 
 
 
 
 
 



 



; 

0 0 011
0 021 22

S=
1 2 3

1 2 3 *

s

s s

s s s sN NN N N u uu u u

s s s sN NN N N y uy y y N Ny u

 
 
 
 
 
 
 
 
 
 





   



   



; 

( )my k j+  denotes the model predictions based on 

the linearized model over the prediction horizon and 

( )u k is a vector of future controller outputs.  

T-S models are used to predict the future 
behavior of the process output signal over a certain 
finite horizon and to evaluate control actions to 
minimize a certain cost function. The considered 
predictive control law is in general obtained by 
minimizing of the following criterion: 

2 2[ [ ( ) ( )] [ ( 1)] ]
11

Np u
J E q y k j y k j u k jc rj jP j N j

λ= + − + + ∆ + −∑ ∑
= =

(18)  

where ( ) ( ) ( )y k j y k j e k hc m+ = + + + , ( )y k jc + , ( )y k jm +  

and ( )e k h+  stand for the on-line correction of 
j-step-ahead prediction of the process output signal, 
process output signal and the model predictive error, 

respectively; jq >0, jλ >0 determine the relative 
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importance of the different terms in the cost function. 

1N , P , uN  are the minimum, maximum 

prediction and control horizon. Note that in addition 
to the standard terms, this cost function also includes 
the variation in the predicted output and the deviation 
of the control input from an input reference.  

( )ry k j+  is the reference output trajectory, 

Note   

( ) ( 1) (1 ) ( 1, 2, ...)

( ) ( )

i iy k j y k j jr r r r
y k y kr

α α ω+ = + − + − =

=





(19) 

where 

( ) [ ( ), ( ), . . . ,( )],,1 ,2
Ty k j y k h y k h y k hr r nr r+ = + + + ; 

( 1) [ ( ), ( ), ..., ( )],1 ,2 ,3
Ty k j y k y k y kr r r r+ − = ; 

It ensures that the reference output tracks a constant 

reference signal ω . , ( )r iy k h+  denotes the ith 

value of output reference trajectory at the k+h times. 

, ( )r iy k  means the output measurement value. rα  

determines the velocity of convergence in the 

reference trajectory and 
0T

r e τα
−

= , 0<α <1. 0T  

and τ  stands for sample time and respond time of 
the output trajectory respectively. 

Differentiate Eq. (18) and let 0
( )

PJ
u k
∂

=
∂

, 

leading to the following optimal solutions: 

1( ) ( ) [ ( 1) ( ) Re]T Tu k S QS S Q Y k Px krλ −∆ = + + − − (20) 

 
 
4.2 Experimental Discussions 
The following example is taken from Narendra and 
Parthasarathy [15] in which the plant to be identified 
is given by the second-order highly nonlinear 
difference equation 

( 1) ( 2)[ ( 1) 2.5]
( ) ( 1)2 21 ( 1) ( 2)

y k y k y k
y k u k

y k y k

− − − −
= + −

+ − + −
   (21)              

(1) Case 1: 
To estimate the T-S models, a sinusoidal input 
signal, ( 1) 5sin( * ( 1) /100)u k kπ− = − , is designated in 
the presence of white noise disturbances over (0,1). 
Triangle membership functions together with 4 
clustering centers are initially selected for FCM, 
while SFCM does not demand prior knowledge of 
the membership functions and rule number. The 
parameters associated with GPC were specified as 
that the predictive step was 8; the control step was 3; 
the weight of the output error was 1; the weight of 
the control increment was 0.1; gentle factor was 0.3 
and the reference trajectory was square. 

Fig.6 shows the comparison between the 
outputs of T-S models identified by SCFM and FCM, 
along with the system; Fig.7 and Fig.8 indicate the 
model predictive outputs; the corresponding 
controller’s outputs were given in Fig.9 and Fig.10; 
Fig.11 and 12 present the updated membership 
functions of the predictive models. Obviously, better 
performances are achieved by SFCM. 

 
Fig.6 Modeling performances of the two identification methods 

 
 Fig.7 Output profile of the FCM based control systems 
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  Fig.8 Output profile of the SFCM based control systems 

  

Fig.9 Controller’s output of the FCM based control systems 

 
Fig.10 Controller’s output of the SFCM based control systems 

 
Fig.11 Membership functions of the FCM based predictive 

models 

 
Fig.12 Membership functions of the SFCM based predictive 

models 
 
 
(2) Case 2 

A random signal ( )u k  uniformly distributed over 

[-1, 1] together with 500 data points were selected as 
the input to identify the T-S models. In regard to 
FCM, the initial the clustering center vector was 
selected as [-4 -3 -2 -1 0 1], together with 6 rules. 
Eventually, the identified cluster center vector was 
updated to [-3.52,-2.643,-1.848,-0.871,-0.029,0.862] 
together with the corresponding consequent 

parameters 

10.303 0.254 0.088 0.144
0.01 0.058 1.672 0.584
0.708 0.777 0.032 0.963
1.635 0.369 0.307 0.154
0.172 0.118 1.251 1.011
0.986 0.924 1.036 0.986

θ

−

−
=

−

 
 
 
 
 
 
  
 

 

In comparison, the input was partitioned into 3 
parts by the SFCM and the cluster centers were 
located at [-0.016 -0.724 0.669]. The output consists 
of 3 groups whose cluster centers were [-0.938 
-2.431 0.448]. As the rule number of the fuzzy 
models was 3*3=9, the consequent parameters were 

given by 

1.531 0.407 0.339 0.608
0.721 0.533 0.142 0.182

0.053 2.295 1.277 0.992
0.558 1.056 0.65 0.727
0.759 1.398 2.064 0.596
0.261 0.091 0.967 0.902
0.268 0.177 0.086 1.305
0.914 1.009 1.25 1.109
0.767 0.529 0.922 0.899

θ

− −

−

− −

− −

=

− −

−























 
  


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Fig.13 and Fig.14 imply that SFCM adaptively 
generated the membership functions based on 
input-output data. With a sinusoidal reference 
trajectory available, the outputs of corresponding 
predictive control systems were shown in Fig.15 and 
16. In this regard, a conclusion similar to that of the 
former case is obtained. 

 

Fig.13 Membership functions of the predictive model outputs 

   
Fig.14 Membership functions of the predictive model inputs 

 
Fig.15 Output profile of the FCM based control systems 

 
Fig.16 Output profile of the SFCM based control systems 

 
 

5 Conclusions 
A so-called “subtractive fuzzy C-means clustering” 
method was proposed, where the results of 
subtractive clustering are applied to initialize 
clustering centers and the number of rules in order to 
perform adaptive clustering. Particularly, a detailed 
coverage of how to set the initial membership 
functions is provided to meet the needs of T-S model 
identification. This method can avoid the problems 
of blindly and randomly assigning the membership 
functions of the fuzzy inference systems. In order to 
reduce the calculation, Orthogonal Least Squares 
method is employed to identify the consequent 
parameters of T-S models. Additionally, 
well-established T-S models are applied to fuzzy 
model predictive control systems, thereby developing 
compatible fuzzy predictive control algorithms. As 
shown with experimental results, the approaches are 
able to achieve more satisfied control performances. 
Currently, close attention is being paid to more 
practical problems such as fuzzy predictive control 
with constraints. 
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