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Abstract: - This paper is concerned with the plant modeling for the digital redesign of a continuous-time power 

system stabilizer PSS for the single machine power system using the so-called Plant –Input-Mapping PIM 

method. The traditional approach has been to use the bilinear transform (Tustin’s method), but this gives 

numerical difficulties with large sampling intervals which are now becoming usual with modern control hardware. 

The proposed technique guarantees the stability for any sampling rate and takes the closed-loop characteristics 

into account.  The proposed technique is successfully applied to the discretization of a continuous time PSS for 

single-machine power system. For comparison studies the proposed technique is compared with continuous-time 

PSS and Tustin’s PSS. The simulation results show that the proposed digital redesign technique reflects the 

frequency and dynamic responses of the system more accurately as the continuous-time PSS. Also, they show that 

Tustin’s method falls when sampling interval becomes larger while the proposed PIM method guarantees stability 

even with relatively slow sampling rates. 

 

 Key-Words: - Digital redesign, Discretization, Dynamic stability, Power systems, Sampled-data system. 

    
1 Introduction 

The increasing complexity of power system requires 

the use of digital devices. They are widely spread 

and play an essential task in the operation of power 

systems. Several kinds of digital controlled devices 

are used in practical in power system now days, 

such as digital AVR, digital PID controller and 

digital PSS. 

The use of digitally controlled systems offers a wide 

range of possibilities such as: 

1. Changing a few parameters or  implementing 

a complete new strategy in most cases is just a 

matter of recompiling a software program 

model, which on contrary to analog control 

system that changing components. 

2. Relatively low cost and high computational 

speeds can be provided with almost any size 

process. 

3. The ability to interface readily with other 

computer systems and integration with remote 
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systems. 

4. Easier to implement complicated algorithms. 

5. Greater range of control algorithms can be used 

e.g. adaptive control techniques. 

Digital redesign can be defined as the process of 

converting a previously well-designed continuous 

time controller to a suitable discrete-time controller 

suitable for digital implementation, such that the 

states of the continuous-time and that of the 

discrete-time closed loop systems can match each 

other. The common conventional methods used to 

discretize analog controllers are the sample and hold 

equivalence and bilinear transformation or Tustin’s 

method [1]. These two methods produce satisfactory 

results provided that the sampling rate should be 

sufficiently fast. However, they are open loop based, 

i.e. there is no consideration of closed loop stability 

and performance in the discretization process. 

Furthermore, with such design methods and 

processors, full potential of control algorithms is not 

utilized. It is imperative, therefore, to develop a high 

performance digital control law that can be 

implemented on a slower and low cost processor 

currently available. 

Some other approaches to the solution were 

presented in [2, 3]. Ref. [4] presents the 

asymptotical stability of the digital controls of 

power systems with special emphasis on the digital 

power system stabilizer; this paper treats power 

system with digital controller as nonlinear hybrid 

dynamical systems. In [5] an optimal digital 

redesign of conventional power system stabilizers 

for single machine power system are presented; it is 

based on an optimal matching of the 

continuous-time closed loop step responses of both 

analog and discretized systems. Ref. [6] presents a 

model-matching robustness design procedure based 

on ∞H optimization theory; the method uses a 

control law designed for the nominal operating 

condition and tunes the nominal control law to 

enhance the robustness with respect to the 

off-nominal operating conditions. Other 

optimization based discretization has been found in 

[7, 8]. However, these algorithms are either too 

complicated or state-space based. 

The plant-Input-Mapping (PIM) method 

[9,10,11,12] is a method  of discretization that can 

guarantee, in theory, the stability for virtually any 

sampling rates ( non-pathological sampling rates ) 

and that has good performances even for large 

sampling intervals. Unlike the popular conventional 

method of discretizaton, the PIM method takes the 

closed-loop characteristics into account. This paper 

uses the PIM method to design a digital PSS for the 

power system. The PSS is widely used in power 

system to generate supplementary control signal for 

the excitation system in order to damp the low 

frequency oscillations [13]. Using the proposed PIM 

approach, the stability of the digital control system 

is guaranteed for any non-pathological sampling 

periods, i.e. those sampling periods which do not 

hide unstable natural frequencies, if any, of the plant. 

It should be emphasized that no other existing 

digital redesign method can guarantee the stability if 

the sampling period is not sufficiently small. 

This paper is organized as follows. In section 2, for 

SISO linear time invariant system, a design 

procedure for the three controller blocks PIM digital 

redesign method is considered. Section 3 consists of 

three subsections which are drive a power system 

model; explain the power system stabilizer PSS 

model used in the study and finally the application 

of the PIM method to a single-machine power 

system. The conclusions are given in section 4. 
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2 The Three Controller Blocks PIM 

Digital Redesign Method 

Consider the SISO system shown in Fig.(1), which 

consists of plant with a strictly proper transfer 

function Gc(s) and three analog controllers with 

rational, proper transfer functions RC(s), CC(s) and 

FC(s). 

 

Fig.1 Three controllers of linear and time-invariant 

analog control system 

The Transfer function Mu, c(s) is defined as the 

transfer function from the reference input yref(s) =L 

{yref (t)} to the plant input uc(s) =L {uc(t)} of the 

analog system, where L denotes Laplace transform. 

For simplicity, this is called the continuous-time 

plant-input transfer function CT-PITF. 

(s)(s)u(s)G(s)CF(s)(s)R(s)Cy(s)u
ccccccrefc

−=   (1) 

By rearranging Eq. (1), it can be written in the 

following form 

)s(G)s(C)s(F1

)s(C)s(R

)s(y

)s(u
)s(M

ccc

cc

ref

c

c,u +
==          

(2) 

The overall transfer function Tc(s) is defined 

)s(M)s(G)s(T
c,ucc

=                            

(3) 

since Tc(s) is stable by assumption, Mu, c(s) is stable. 

Furthermore, a condition required for closed-loop 

stability can be related to the condition on the PITF 

in the following manner [10]. 

The transfer function of the plant Gc(s) is given by 

)s(d

)s(n
)s(G

c

c

c
=            

(4) 

where ∂ [ )s(d c = n ≥ ∂ [nc(s)]] and ∂  denotes 

the degree of its argument variable. It is assumed 

that the polynomials nc(s) and )s(d c  are coprime. 

This transfer function can be expressed in the 

coprime fractional form as [14].  

c
c

c

N (s)
G (s)

D (s)
=              

(5) where  

Nc(s) =nc(s) 1 (s) M− ∞λ ∈ , 

Dc(s) =dc(s) 1 (s) M− ∞λ ∈             

(6) 

λ (s) is an arbitrary but stable polynomial 

[ ∂ λ (s) n≤ ]. The symbol M∞  denotes the space 

of real, rational, and stable transfer function [14]. 

The CT-PITF Mu,c(s) M∞∈  if and only if there 

exist a W(s) M∞∈ such that 

Hu,c(s) =Dc(s) W(s)             

(7) 

Eq. (7) implies that, since W(s) = )s(D 1

c

−  Mu, c(s), all 

poles of the plant that need to be controlled, must 

appear as the zeros of the CT-PITF and disappear 

from W(s) for closed loop stability [15]. 

The plant transfer function Gc(s) is now descretized 

using the step invariant-model SIM, which is a 

combination of the zero-order-hold (ZOH), the plant 

and the sampler, synchronized with a non 

-pathological sampling period T as shown in Fig.(2). 

The transfer function of the SIM is given by [10] 









+ε
ε

=ε
S

)s(G
D

1T
)T,(G c

T                 

(8) 

Rc(s) Cc(s) Gc(s) 

Fc(s) 

Mu,c(s) 

uc(s) 

- 

yref(s) yc(s) 
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Fig. 2 Step invariant model SIM of the plant 

The ε  in the numerator is always cancelled 

out by the D transform of the S in the denominator. 

Since the D transform of Gc(s) usually contains 

1T +ε in its numerator, the 1T +ε term in the 

denominator is cancelled out, giving the DT model 

whose order is the same as CT system. The 

descretize SIM plant model has no unstable 

pole-zero cancellation for any nonpathological 

sampling interval. 

The order of system after discretization is ∂ [DT 

( T,ε )] =n n≤ . As in the case, introducing an n
th
 

degree, arbitrary but stable polynomial )T,(ελ , the 

SIM of the plant can be written in the following 

coprime fractional form: 

)T,(D)T,(N)T,(G 1

TTT
εε=ε −                    

(9) 

where  

NT ( T,ε ) M∞∈  , DT ( T,ε ) M∞∈  

The overall transfer function is given by  

)T,(M)T,(G)T,(T
T,uTT

εε=ε                   

(10) 

where )T,(M
T,u

ε  is the DT-PITF which used later 

in designing the PIM model and ∞∈ε M)T,(M
T,u

 

For digital controller that will be replaced analog 

controller the zeros of the DT-PITF should be 

mapped in the same manner as the poles of the plant. 

This can be achieved by using any of the matched 

pole zero MPZ discretization schemes [10]. In this 

case )T,(M c,u ε  denotes a MPZ model of Mu, c(s), 

and written as 

)T,(d

)T,(m)T,(D
)T,(M

M

T

T,u ε

εε
=ε                  

(11) 

where DT( T,ε ) is the denominator transfer function 

of the SIM plant model. Since T is nonpathological, 

the coprimeness of NT( T,ε ) and DT( T,ε ) are 

preserved in the DT plant model, and there are exist 

transfer functions ∞∈εα M)T,( and ∞∈εβ M)T,(  

such that the following Diophantine equation holds 

)T,(d)T,(N)T,()T,(D)T,( MTT ε=εεβ+εεα   (12) 

Eq. (12) can be solved to find the unknown terms 

)T,(εα  and )T,(εβ . Fig. (3) shows the block 

diagram of the PIM model. 

 

Fig. 3 PIM design method for a plant 

 

The three controller blocks )(A ε , )(C ε  and )(B ε  

are polynomials inε  and can be selected as 

A )(ε =
)T,(

)T,(m

ελ
ε  

C )(ε =
)T,(

)T,(

εα
ελ            

(13) 

B )(ε =
)T,(

)T,(

ελ
εβ

 

where m( ,T)ε  is a stable polynomial and 

calculated from Eq. (11) by dividing the numerator 

of 
u ,T

M ( ,T)ε  by denominator of SIM of the plant.  

For stable plant the DT-PITF must be satisfy the 

following equation 

A( ε ) C( ε ) 

 

SIM 

GT( ε

B( ε ) 

 

- 

uc(ε ) y( ε

  Plant 

yref( ε ) 

 Plant 

Gc(ε ) 

Sampler Hold 
u( ε ) y( ε ) 
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)T,(B)T,(G)T,(1

)T,(C)T,(A
)T,(M

T

T,u εεε+
εε

=ε           

(14) 

The PIM design guarantees the internal stability for 

any nonpathological sampling interval and that the 

performance of the resulting control system 

approaches that of the analog control system as 

T 0→ . 

 

 

3 Applications to a Single-Machine 

Power System 

3.1 Power System Model 

The power system considered in this study is the 

fourth order linearized one-machine and infinite-bus 

system described in [16]. Fig.4 shows a block 

diagram of transfer functions describing the 

different subsystems of the one machine infinite bus 

power system, where the blocks are 

1- Excitation system 

e

e

ST1

K

+
                                           

(15) 

where Ke and Te are voltage regulator gain and time 

constant respectively. 

2- Field flux decay 

'
0d3

3

TSK1

K

+
                                       

(16) 

where 
'

0dT  is the d-axis transient open circuit time 

constant. 

3-Machine mechanical dynamics loop 

DHS2

1

+
                                         

(17) 

Where H  is the inertia constant. 

K1……...K6 are the constant of linearized model of 

synchronous machine. 

From the block diagram shown in Fig.(4), and using 

Eqs. (15)-(17) the following fourth order linearized 

one machine infinite bus system can be derived as 

described in [16] and is given in state variable form 

as follows: 

DuCxy

BuAxx

+=

+=
•

            

(18) 

where 
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The state variables comprise the generator are speed 

deviation ω∆ , rotor angle deviation δ∆ , transient 

internal voltage deviation
'

qE∆ , and field voltage 

deviation fdE∆ , respectively. The deviation of the 

angular velocity ω∆  is assumed to be measured as 

the output of the system. The constants of the 

generation system and connected power system used 

for study are 

Generator parameters:  

H=4.63, D=4.4, 
'

0dT =7.67, Bω =377.0, Xd=0.973 

pu, '
dx =0.19 pu , Xq=0.55 pu 

Exciter parameters: 

Ke=50.0, Te=0.05.  

The K’s: K1=0.5758, K2=0.9738, K3=0.6584, 

K4=0.5266, K5=-0.0494, K6=0.8450.  

WSEAS TRANSACTIONS on SYSTEMS and CONTROL G. Shabib

ISSN: 1991-8763 258 Issue 7, Volume 6, July 2011



PSS parameters:  

K=20.0, T1=10, T2=.15, T3=.05, T4=0.05, T5=0.15  

Transmission line:  

Re=0.0, Xe=0.997 pu. 

Operating point: 

Qe0=0.015 pu, Vt0=1.05 pu, Pe0=0.75 pu. 

The damping coefficient D is included in the swing 

equation. The eigenvalues of the matrix A should lie 

in LHP in the S-plane for the system to be stable. It 

is to be noted that the elements of matrix A are 

depended on the operating condition. The values of 

K1…..K6 in the matrix A are to be selected 

according to the operating conditions of the 

generation system and connected power system [17]. 

Details of these constants are given in appendix I. 

Using the data given above, the transfer function of 

the power system Gc(s) given by Fig. (4) and the 

state space equations given by Eq. (18) can be 

calculated using the MATLAB function SS2F in the 

signal processing toolbox and are given by: 

2843S2.519S145S63.20S

10183.3S18.12S181.2S108.0
)s(G

234

1223

c
++++

×+++
=

−

(19) 

The power system contains double complex poles at 

S= 516.3J22.10 ±−  and at S= 9329.4J0938.0 ±−  

and contains a zeros at S= 2923.3J0979.10 ±−  and at 

S=0.0 

 

 

3.2 Continuous Time Power System 

Stabilizer       PSS Model 

The continuous time PSS type is widely used in the 

power system to improve the damping oscillations 

of the power system; sometime it is called the 

damping controller. Because the power system is 

very oscillatory, the objective of the PSS is to 

enhance the damping force and necessarily to 

improve the dynamical stability of the power 

system. 

The PSS is considered as comprising two cascade 

connected blocks, commonly lead-lag structure [18]. 

The transfer function of a continuous-time, lead-lag 

type, power system stabilizer is given by 















+

+















+

+















+
=

4
ST1

5
ST1

2
ST1

3
ST1

1
ST1

KS
PSS(s)       (20) 

 

The gains K is chosen by trial and error method and 

the wash out time constant T1 is chosen in between 0 

to 20. The wash-out stage is used to prevent a steady
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Fig. 4 Block diagram of one machine infinite bus system 

 

-state voltage shift; T2, T3, T4 and T5 are time 

constants of the two phase-lead stages. 

Fig. 5 shows the block diagram of the PSS. The 

parameters of PSS is tuned by using trail and error 

method, so as to achieve the desired damping ratio 

of the electromechanical mode and compensate for 

the phase shift between the control signal and the 

resulting electrical power deviation. 

 

Fig. 5 Block diagram of the PSS 

Utilizing the data of the PSS given, the transfer 

function of the PSS described by Eq.(20) can be 

calculated as follows 

110.2S22.007S30.075S

200S240S31.5S
PSS(s)

+++

++
=       

(21) 

The PSS has three poles at S=-20, S=-6.667 and 

S=-0.1, respectively, and has a three zeros at S=0.0, 

S=-20 and at S=-6.667. 

For steady-state stability study and power system 

stabilizer design, 
m

P∆ and 
ref

V∆ are assumed to be 

equal zero. Fig. (4) can therefore redrawn as in Fig. 

(6), where Gc(s) is the transfer function of the block 

diagram given by Fig. (4), a block with transfer 

function -1 is introduced in order to form a negative 

feedback system. The PSS is now acting as a 

dynamic feedback controller for SISO control 

system [17].  

 

Fig. 6 Single-Input Single-Output feedback system 

 

 

3.3 Application of PIM Digital Redesign 

Method to Power System Model 

To apply the design technique presented in section 2, 

the transfer function Gc(s) for the power system 

given by Eq. (19) and the transfer function PSS(s) 

for the power system stabilizer given by Eq. (21) are 

used in the design procedure with the blocks Rc(s) 

and Cc(s) equal to 1. 

Simulations responses of the power system based on 

the linear model given by Eq. (18) are presented. 

The power system is subject to a step change in the 

mechanical torque denoted by mP∆ . The signal to be 

controlled is the rotor speed denoted by ∆ω . The 

analog PSS is placed on the block Fc(s) of Fig. (1) of 

the three block controllers PIM digital redesign 

method. For comparison, results of the analog PSS 

and the digital PSS obtained by the bilinear 

transformation (Tustin’s method) are investigated. 

The CT-PITF is found to be 

)93.23S273.2S)(8.117S51.20S)(1.0S)(667.6S)(20S(

)34.24S187.0S)(8.116S44.20S)(1.0S)(667.6S)(20S(
)s(M

22

22

c,u
+++++++

+++++++
=

It is clear that all power system poles and PSS poles 

are appear in the numerator of the CT-PITF ( Eq. 7). 

Vt(t) 

Gc(s) -1 
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ω∆  - 

+ 
- 

Vref(t) 

ω∆  

1
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+

 

2
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Wash-out Lead-Lag networks 
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The MPZ model of the ZOH type with its DC gain 

adjusted is used for discretizing the CT-PITF and is 

given as 

 

)6.21807.3)(47.5444.14)(1005.0)(167.5)(976.9(

)85.230944.2)(15.544.14)(0996.0)(976.9)(167.5(91895.0
)(M

22

22

T,u
+ε+ε+ε+ε+ε+ε+ε

+ε+ε+ε+ε+ε+ε+ε
=ε  

 

The SIM model of the power system is given by 

)85.23094.2)(15.544.14(

)74.5224.14(10351.0
)(G

22

2

T
+ε+ε+ε+ε

+ε+εε
=ε   

The sampling interval selected for digital control is 

0.08sec, (any sampling interval T>0 is 

nonpathological) which is reasonable compared 

with the dynamic of the system.  

The polynomial )T,(ελ  is selected as 

( )2
( ,T) 1/ 2Tλ ε = ε +  

The polynomial m( ,T)ε  is obtained from the 

numerator of 
u ,T

M ( ,T)ε  which is 

718.47547.480072.149189.0)T,(m 23 +ε+ε+ε=ε  

It is clear that the numerator of 
u ,T

M ( ,T)ε includes 

the poles of the SIM of the power system and the 

polynomial m( ,T)ε . 

Using the numerator and denominator of the SIM of 

power system the eliminant matrix can be 

constructed as follows 

E=

































00005.1291000

5.50007.4565.129100

5.15.5001.1087.4565.12910

1.05.15.505.161.1087.4565.1291

01.05.15.50.15.161.1087.456

001.05.100.15.161.108

0001.0000.15.16

00000000.1

 

Solving Eq. (12) with the aid of the eliminant matrix 

given above, the polynomial )T,(εα  and )T,(εβ  

are obtained and equal to 

718.48022.521081.15)T,( 23 +ε+ε+ε=εα  

442.9563123.629562.243238.18)T,( 23 −ε+ε+ε=εβ  

For ease of relating discrete-time systems to 

continuous-time counterparts, the following 

operator is used  

T

1z
ε

−
=  

where T is the sampling interval and z the usual zee 

operator. The three controller blocks A (z) , C (z)  

and B (z)  are calculated using the results obtained 

above and are given below; 

)z(A  = 
)T,z(

)T,z(m

λ
= 

125.0z75.0z5.1z

108.0z8277.0z636.1z919.0
23

23

−+−

−+−
 

)z(B  = 
)T,z(

)T,z(

α
λ

= 
1269.0z9204.0z791.1z

125.0z75.0z5.1z
23

23

−+−

−+−
 

)z(C  = 
)T,z(

)T,z(

λ
β

= 
125.0z75.0z5.1z

3268z71.19z11.35z17.18
23

23

−+−

−+−
 

Referring to Figs. (7)- (9) it is clear that, at high 

sampling rates the rotor speed deviation responses 

ω∆ of all PSS’s are matches, The performances of 

Tustin's and the PIM PSS's are almost the same as 

that of the analog PSS at the control rate 12.5Hz. 

Since the PIM and the Tustin's PSS realize the same 

PITF, their plant inputs and behaviors are always 

identical to each other in ideal simulations. At 5Hz 

control rate, the Tustin's response produces a larger 

overshoot than the analog case, while the PIM 

designs yield the response that is identical to the 

analog one. At 2.12 Hz control rate, Tustin's 

response oscillates to such an extent that it is not 

acceptable. Although the PIM PSS yields transient 

responses that is different from analog case, their 

performance is very good. The settling time is in 
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fact faster than the analog PSS, which is not 

intended. As a summery, almost identical 

characteristics are obtained for the PIM method and 

the continuous-time model which confirm the 

accuracy of the proposed PIM method in low and 

high sampling rates. 

The pole-zero location of the overall transfer 

function considering sampling interval of 0.08 sec is 

shown in Table 1 for the case of continuous-time 

PSS, and Table 2 for the case of PIM PSS.  

 

Table 1 Case of continuous-time PSS 

poles zeros 

-20.0 -20.0 

-10.22±J3.5491 -0.0938±J4.9329 

-0.0938±J4.9239 -10.0979±J3.2923 

- 6.6667  - 6.6667  

- 0.1009  - 0.100  

 

Table 2 Case of PIM PSS 

poles zeros 

-9.976 -9.976 

-7.24±J1.6194 -7.22±J1.6098 

-1.92±J4.2301 -1.0665±J4.7626 

-5.167 - 0.0992  

-0.1005  - 0.000    
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Fig. 7 Dynamic responses to step change in the 

mechanical torque (sampling interval 0.08 sec) 
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Fig. 8 Dynamic responses to step change in the 

mechanical torque (sampling interval 0.2 sec)  
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Fig. 9 Dynamic responses to step change in the 

mechanical torque (sampling interval 0.47 sec)  

4 Conclusions 

In this paper, a systematic methodology for design 

of PIM digital redesign scheme was presented, and 

then we apply it to discretize a continuous-time PSS 

for single-machine infinite-bus power system. The 

results observed by simulations showed that states 

via the proposed PIM digital redesign method match 

more closely with those of the original 

continuous-time system. Because digital PIM 

method are designed based on matching 

continuous-time ones, it is important to have a 
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well-designed continuous-time PSS to start with. 

Tustin’s method fall when sampling interval 

becomes larger while the proposed PIM method 

guarantee stability even with relatively slow 

sampling rates which satisfy the hardware 

requirements. 

The proposed method can be extended to be 

applicable to use nonlinear model for the power 

system, which will be presented at the next 

opportunity. 
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Appendix I 

The constants k1…... k6 are evaluated with 

transmission line resistance re=0 and are given as 

fellows: 
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