
Effective Optimization of the Control System for the Cement Raw Meal 

Mixing Process: I. PID Tuning Based on Loop Shaping  
DIMITRIS TSAMATSOULIS  

Halyps Building Materials S.A., Italcementi Group 

17
th

 Klm Nat. Rd. Athens – Korinth 

GREECE 

d.tsamatsoulis@halyps.gr  http://www.halyps.gr 
 

 

Abstract: - The objective of the present study is to use a reliable model of the raw meal mixing process 

dynamics in raw meal production installations, in order to tune effectively PID controllers, thus regulating the 

product’s quality. The system is described by a TITO process. The M - Constrained Integral Gain 

Optimization (MIGO) loop shaping method is utilized to adjust the controller parameters. Long term actual 

industrial data are used for this purpose while the controller robustness is also investigated. Taking into 

account the maximum sensitivity constraint and the model uncertainty the controller is parameterized and 

implemented to industrial raw meal production units by replacing previous controllers or manual regulation. 

The results indicate remarkable enhancement of the raw meal homogeneity fed to the kiln.  Therefore the 

tuning methodology applied provides effective PID controllers, able to attenuate the disturbances affecting the 

raw meal quality.   
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1   Introduction 
The main factor that primarily affects the cement 

quality is the variability of the clinker activity [1], 

depending on the conditions of the clinker formation 

and the raw meal composition. 

    In Figure 1 a typical flow chart of raw meal 

production is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow chart of raw meal production 

 

    In the closed circuit process demonstrated, the 

raw materials’ feeding is performed via three weight 

feeders, firstly feeding a crusher. The crusher outlet 

goes to the recycle elevator and from there it 

advances to a dynamic separator, the speed and gas 

flow of which controls the product fineness. The 

fine exit stream of the separator is the main part of 

the final product. The coarse separator return is 

directed to the mill, where it is ground and from 

there, via the recycle elevator, it feeds the separator. 

The materials in the mill and classifier are dried and 

de-dusted by hot gas flow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

    This is a standard flow sheet encountered to the 

most of the raw meal dry grinding processes 

performed in ball mills.    

    The raw mix composition stability not only has an 

impact on the clinker composition but it also affects 

the kiln thermal consumption and bricks lining and 

the conditions of the clinker formation. So, keeping 
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the raw meal quality in the kiln feed as much stable 

as possible is of high importance.       

    The variation of this parameter is related to the 

homogeneity of the raw materials in the raw mill 

(RM) inlet, to the mixing efficiency of the 

homogenizing silo and to the regulation 

effectiveness as well. Due to its complexity and 

significance, different automated systems are 

available for sampling and analyzing the raw mix as 

well as for the adjustment of the mill weight feeders 

according to the raw meal chemical modules in the 

RM outlet [2]. The regulation is mainly obtained via 

PID and adaptive controllers. Ozsoy et al. [3] 

developed three different linear multivariable 

stochastic models to describe the dynamics of a raw 

blending system. Kizilaslan et al. [4] performed a 

comparative study on modeling of raw meal 

blending process using conventional and intelligent 

techniques. Kural et al. [5] built on stochastic 

multivariable dynamic models and designed model 

predictive controllers to calculate the optimal feed 

ratios of the raw materials despite disturbances. As 

the authors clearly declare, the disturbances coming 

from the variations in the chemical compositions of 

the raw materials from long-term average 

compositions cause the changes of the system’s 

parameters. Tsamatsoulis [6] built a reliable model 

of the dynamics among the chemical modules in the 

outlet of a raw meal grinding system and the 

proportion of the raw materials. The model 

developed can feed with inputs advanced automatic 

control implementations, in order a robust controller 

to be achieved, able to attenuate the disturbances 

affecting the raw meal quality. As Jing et al. state 

[7], the modeling of the uncertainties or the handling 

of the deterministic complexity is typical problems, 

frequently encountered in the field of systems and 

control engineering. For this and other reasons 

mentioned in [8], special attention is paid to the 

problems of the synthesis of complex systems’ 

dynamical models, to the construction of efficient 

control models, and to the development of 

simulation. As a result, to design a robust controller, 

satisfying a given sensitivity constraint [9, 10] an 

efficient modeling of the process is obligatory. 

    Several adaptive controllers of varying degrees of 

complexity have been also developed [11, 12]. 

Banyasz at al. [12] presented the control algorithm 

in a technology-independent manner. Duan et al. 

[13] presented a case study on the practical 

implementation of a hybrid expert system for a raw 

materials blending process.  Additionally to the 

previous attempts and realizations and due to the 

complexity and high degree of uncertainty fuzzy 

controllers are also developed [14, 15]. However, it 

has been mentioned by Astrom et al. [16] that, in the 

industrial process control, more than 95% of the 

control loops are of PID type. Moreover, only a 

small portion of them operates properly as Ender 

[17] points out. Frequently, also, the controller 

parameters are tuned with trial and error [18], 

because of the lack of a model or of a high model 

uncertainty. Tsamatsoulis [19] tuned a classical PID 

controller among chemical modules in the RM 

output and raw materials proportion in the mill feed, 

using the minimum standard deviation of these 

modules in the kiln feed as an optimization criterion. 

He concluded that the application of the stability 

criteria is necessary. He, also, proved that the 

variance of the kiln feed composition not only 

depends on the raw materials variations and the 

mixing capacity of the silos, but it is also strongly 

related with the effectiveness of the regulating 

action. As it was clearly stated by Astrom [20], 

model uncertainty and robustness have been a 

central theme in the development of the field of 

automatic control. A widely applied methodology to 

derive robust and efficient controllers is the loop 

shaping technique [21, 22, 23], the so-called H∞ 

theory [25, 26, 27, 28, 29, 30]. An extremely 

efficient loop shaping technique to tune PID 

controllers is called MIGO (M- constrained integral 

gain optimization) [31, 32, 33, 34]. The design 

approach is to maximize integral gain subject to a 

constraint on the maximum sensitivity.     

    The aim of the present study is to tune a classical 

PID controller, regulating the LSF and SM modules 

in the raw mill (RM) outlet using the feeders’ 

dosages as control variables. The dynamical model 

developed and described in [6] is utilized. All the 

main components of the process are expressed with 

the respective transfer functions. The model mean 

parameters and their uncertainty are evaluated using 

actual process data of Halyps’ cement plant. The 

MIGO method is implemented using as robustness 

criterion the maximum sensitivity Ms. The 

interaction of the two loops under the actual 

operating conditions and raw materials is also 

investigated. Using the error propagation technique, 

the uncertainty of the closed loop properties is 

expressed as a function of the model parameters’ 

variance and the results are being analyzed. The 

implementation of the mentioned tuning technique 

to the PID regulating the Halyps raw meal is also 

demonstrated and compared with previous data of 

automatic operation. Due to the general 

characteristics of the methodology and its extremely 

positive results of industrial application, this type of 

tuning is already applied to a significant number of 

other raw mills. 
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2   Process Model  

 
2.1 Proportioning Moduli Definition 
The proportioning moduli are used to indicate the 

quality of the raw materials and raw meal and the 

clinker activity too. For the main oxides, the 

following abbreviations are commonly used in the 

cement industry: C=CaO, S=SiO2, A=Al2O3, 

F=Fe2O3. The main moduli characterizing the raw 

meal and the corresponding clinker are as follow 

[1]: 

 

𝐿𝑖𝑚𝑒 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟   

𝐿𝑆𝐹 =
100 ∙ 𝐶

2.8 ∙ 𝑆 + 1.18 ∙ 𝐴 + 0.65 ∙ 𝐹
                       (1) 

 

𝑆𝑖𝑙𝑖𝑐𝑎 𝑀𝑜𝑑𝑢𝑙𝑢𝑠   𝑆𝑀 =
𝑆

𝐴 + 𝐹
                                (2) 

 

𝐴𝑙𝑢𝑚𝑖𝑛𝑎 𝑀𝑜𝑑𝑢𝑙𝑢𝑠  𝐴𝑀 =
𝐴

𝐹
                                   (3) 

    The regulation of some or all of the indicators (1) 

to (3) contributes drastically to the achievement of a 

stable clinker quality.  

 

2.2 Block Diagram 
The block diagram is presented and analyzed in [6] 

and repeated here for elucidation reasons. The block 

diagram is illustrated in Figure 2, where the 

controller block also appears. 

 
Figure 2. Flow chart of the grinding and blending 

process. 

 

    Each block represents one or more transfer 

function: Gc symbolizes the transfer function of the 

controller. With Gmill, the RM transfer function is 

indicated, composed from three separate functions. 

During the sampling period, a sampling device 

accumulates an average sample. The integrating 

action of the sampler during the time interval 

between two consecutive samples is denoted by the 

function Gs. The delay caused by the sample 

analysis is shown by the function GM.  

    The homogenization is performed in overflow 

homogenizing silo with transfer function GH. Then 

the raw meal before to enter to the kiln, is stocked to 

a stock silo with transfer function Gsilo. 

    %Lim, %Add, %Clay = the percentages of the 

limestone, additive and clay in the three weight 

feeders. LSFMill, SMMill = the spot values of LSF and 

SM in the RM outlet, while LSFS, SMS, LSFM, SMM 

= the modules of the average sample and the 

measured one. Finally LSFH, SMH, LSFKF, SMKF = 

the corresponding modules in the homo silo outlet 

and in the kiln feed. The LSF and SM set points are 

indicated by LSFSP and SMSP respectively, while 

e_LSF and e_SM stand for the error between set 

point and respective measured module. 

 

 
Figure 3. Transfer functions of the RM block. 

     

    The transfer function of the raw meal mixing in 

the RM is analyzed in more detail in Figure 3.The 

functions between the modules and the respecting 

percentages  of the raw materials are indicated by  

GLSF,Lim, GSM,Clay, GSM,Add. The constant denoted by 

the subscript ―0‖ will be explained in the next 

section. This configuration includes some 

simplifications and assumptions which are proved as 

valid in connection with the current raw materials 

analysis: 

- There is not effect of the additive on the LSF as 

its percentage is very low, less than 3%. 

- The materials humidity is neglected, to simplify 

the calculations. 

- As to the clay, the function %Clay=100-%Lim-

%Add is taken into account. 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Dimitris Tsamatsoulis

ISSN: 1991-8763 241 Issue 7, Volume 6, July 2011



2.3 Process Transfer Functions 
For the existing RM circuit, the objective of the 

analysis is to model the transfer function between 

the raw meal modules in the RM outlet and the 

proportions of the raw materials in the feeders. To 

model also the transfer function of the homo and 

stock silo in order to be possible to optimize the 

controllers using process simulations. Consequently 

for the functions Gmill, Gs, GM, GH, GSilo analytical 

equations in the Laplace domain are needed. The GM 

represents a pure delay, therefore is given by 

equation (4): 

 

𝐺𝑀 = 𝑒−𝑡𝑀∙𝑠                                                                    (4) 
 

    The delay tM is composed by the time intervals of 

sample transferring, preparation, analysis and 

computation of the new settings of the three feeders 

and finally transfers of those ones to the weight 

scales. For the given circuit the average tM = 25 min 

= 0.42 h. By the application of the mean value 

theorem and the respective Laplace transform, the 

function Gs is calculated by the formula (5): 

 

𝐺𝑠 =
1

𝑇𝑠 ∙ 𝑠
 1 − 𝑒−𝑇𝑠∙𝑠                                                 (5) 

 

    The sampling period Ts is equal to 1 h. Based on 

the step response results of [19], performed in the 

same RM a second order with time delay (SOTD) 

model is chosen for each of the functions GLSF,Lim, 

GSM,Clay, GSM,Add described by the equation (6): 

 

𝐺𝑥 =
𝑘𝑔,𝑥

 1 + 𝑇0,𝑥 ∙ 𝑠 
2 ∙ 𝑒

−𝑡𝑑,𝑥∙𝑠                                     (6) 

 

    Where x = Lim, Clay or Add. The constant kg, T0, 

td symbolize the gain, the time constant and the time 

delay respectively. The values of these nine 

variables shall be estimated. As measured inputs and 

outputs of the process are considered the %Lim and 

%Add as well as LSFM and SMM. In the time 

domain the functions (6) are expressed by the 

equations (7) and (8):  

 

𝐿𝑆𝐹 − 𝐿𝑆𝐹0 = 𝑘𝑔,𝐿𝑖𝑚 ∙ (1 − exp −
𝑡 − 𝑡𝑑,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
 − 

𝑡 − 𝑡𝑑,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
∙ exp −

𝑡 − 𝑡𝑑,𝐿𝑖𝑚

𝑇0,𝐿𝑖𝑚
 ) ∙  𝐿𝑖𝑚 − 𝐿𝑖𝑚0  (7) 

 

      

    The Lim0 and LSF0 parameters stand for the 

steady state values of the input and output variables. 

The Clay0, Add0 and SM0 parameters correspond to 

the steady state values. Clay0 is not an independent 

variable but given from the difference 100- Lim0-

Add0. The LSF and SM variables of the functions 

(7),(8) represent the RM outlet LSF and SM that 

also corresponds to the homo inlet LSFH,In, SMH,In.   

 

𝑆𝑀 − 𝑆𝑀0 = 𝑘𝑔,𝐶𝑙𝑎𝑦

∙

 

 
 

1 − exp −
𝑡 − 𝑡𝑑,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
 

−
𝑡 − 𝑡𝑑,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
∙ exp −

𝑡 − 𝑡𝑑,𝐶𝑙𝑎𝑦

𝑇0,𝐶𝑙𝑎𝑦
 
 

 
 

∙  𝐶𝑙𝑎𝑦 − 𝐶𝑙𝑎𝑦0 + 𝑘𝑔,𝐴𝑑𝑑

∙

 

 
 

1 − exp −
𝑡 − 𝑡𝑑,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑
 −

𝑡 − 𝑡𝑑,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑

∙ exp  −
𝑡 − 𝑡𝑑,𝐴𝑑𝑑

𝑇0,𝐴𝑑𝑑
 

 

 
 

 

∙  𝐴𝑑𝑑0 − 𝐴𝑑𝑑                            (8) 

 

    To avoid elevated degrees of freedom the 

following equalities are considered: 

 

𝑇0,𝐶𝑙𝑎𝑦 = 𝑇0,𝐴𝑑𝑑    𝑡𝑑,𝐶𝑙𝑎𝑦 = 𝑡𝑑,𝐴𝑑𝑑                           (9)   

  

    The homo and stock silo transfer functions are 

given by the first order equations (10) and (11) 

respectively: 

 

𝐺𝐻 =
𝑦𝐻
𝑦𝐻,𝐼𝑛

=
1

1 + 𝑇𝐻 ∙ 𝑠
                                         (10) 

 

𝐺𝑆𝑖𝑙𝑜 =
𝑦𝐾𝐹
𝑦𝐻

=
1

1 + 𝑇𝑆𝑖𝑙𝑜 ∙ 𝑠
                                    (11) 

 

    Where yH=LSFH or SMH, yH,In=LSFH,In or SMH,In, 

yKF=LSFKF or SMKF. TH and TSilo represent the homo 

and stock silo first order time constants. 

 

2.4 Parameters Estimation Procedure 
The procedure to estimate the mean parameters of 

the raw mill dynamics and their uncertainty as well 

is analytically described in [6]. To evaluate the RM 

model parameters, data of feeders’ percentages and 

proportioning modules for the first seven months of 

2010 are accessed. Afterwards using the specific 

software presented in [6]:  

(i) Continuous RM operation time intervals are 

found. 

(ii) For each set of M continuous data a subset 

of N=14 consecutive samples is taken using a 

moving window technique. 
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(iii) For each subset and using a non linear 

regression technique the optimum model 

parameters are computed as well as the regression 

coefficient, R.    

(iv) A threshold of RMin≥0.7 is chosen and the 

results are screened. 

(v) The average and standard deviation of these 

results are determined.  

(vi) The total number of subsets was 739. As to 

LSF dynamics a 53% of them presented R≥ RMin. 

The corresponding value for the SM dynamics was 

73%.The results are depicted in Table 1. 

 

Table 1. Average and standard deviation of the 

model parameters  

      Average    Standard Dev. 

Kg,Lim          2.96           0.82 

T0,Lim(h)          0.19           0.15 

td,Lim(h)          0.41           0.13 

Kg,Clay          0.036           0.030 

Kg,Αdd          0.437           0.291 

T0,Clay(h)          0.33           0.18 

td,Clay(h)          0.33           0.18 

 

    To have a verification of the estimated gains 

using the seven months operating data, the average 

analysis of the raw materials of the same year are 

also utilized. By implementing mix design 

software to compute the raw meal composition for 

given feeders’ composition, the static gains 

between inputs and outputs are determined, e.g. the 

increase or decrease of the modules is found for 

1% increase of each compound. The gain between 

LSF and %additive is also found. The results are 

shown in table 2. 

 

Table 2. Static gain between feeders’ dosage and 

chemical modules  

Kg,Lim                        2.64 

Kg,Clay                       0.01 

Kg,Add                       0.388 

KLSF,Add                       0.05 

 

    The procedure of the feeders’ changes is the 

following: When the limestone or the additive 

feeders are increasing by 1%, then the clay feeder 

is decreasing by 1%. An increase of the additive by 

1% results in a decrease of SM by Kg,Add=0.354 

and of LSF by KLSF,,Add=0.05. For the two other 

cases, an increase of the feeder results in an 

increase of the module. The combination of the 

slight changes of the additive with the small value 

of KLSF,Add in comparison with Kg,Lim causes a 

negligible effect of the additive changes to LSF 

value. Therefore the assumption made is section 

2.2 is verified. All the static gains calculated from 

the mix design balances are found within the range 

of the gains shown in Table 2 taking into account 

their mean values and standard deviations.  

    The estimation of the homo and stock silos time 

constants cannot be achieved via the inlet and 

outlet LSF or SM. The  reason is that these two 

modules are already regulated well enough using a 

PID controller tuned according to the method 

presented in [6] and any significant dynamics is 

not possible to be detected for a long period. For 

this reason the AM is chosen in the homo inlet and 

stock silo outlet and one full year data are accessed 

via the plant data base. The mill outlet and kiln 

feed flow rates are also considered. As the homo 

silo operates with overflow, it is always considered 

to be full. As to the stock silo, the empty meters 

during the operation are also taken into account. 

The processing of one full year data provided the 

following results: 

 

𝑇𝐻 = 3.0 ± 0.6 𝑕 
 

𝑇𝑆𝑖𝑙𝑜 = 16.3 ∙ 𝐻𝐸
−0.6  ± 1.3 𝑕                                (12) 

 

    Where HE= the empty meters of the stock silo. 

To notice that each meter of the stock contains 330 

tons of raw meal. 

 

2.5 Loops’ Interaction 
The process described constitutes a two inputs two 

outputs system (TITO). Therefore a search shall be 

made for probable interactions between the loops to 

be controlled. The investigation is based to Bristol 

Relative Gain Array – RGA- [35] having the ability 

to detect interactions for low frequency signals. In 

spite of the low gain the transfer function from 

%additive to LSF is also considered. The following 

variables are defined: 

 

𝑦1 = 𝐿𝑆𝐹 𝑠 − 𝐿𝑆𝐹0 ,   𝑦2 = 𝑆𝑀 𝑠 − 𝑆𝑀0       (13) 

𝑢1 = 𝐿𝑖𝑚 𝑠 − 𝐿𝑖𝑚0 , 𝑢2 = 𝐴𝑑𝑑 𝑠 − 𝐴𝑑𝑑0   (14) 

 

    The TITO system is described by the following 

equations: 

 

𝑦1 = 𝐺𝐿𝑆𝐹,𝐿𝑖𝑚 ∙ 𝑢1 − 𝐺𝐿𝑆𝐹,𝐴𝑑𝑑 ∙ 𝑢2                        (15) 

 

𝑦2 = 𝐺𝑆𝑀,𝐶𝑙𝑎𝑦 ∙  −𝑢1 − 𝑢2 − 𝐺𝑆𝑀,𝐴𝑑𝑑 ∙ 𝑢2   

 

𝑦2 = −𝐺𝑆𝑀,𝐶𝑙𝑎𝑦 ∙ 𝑢1 − (𝐺𝑆𝑀,𝐶𝑙𝑎𝑦 + 𝐺𝑆𝑀,𝐴𝑑𝑑 ) ∙ 𝑢2    

                                                                      (16)  
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    The RGA is defined from the formulae: 

 

𝑅𝐺𝐴 =  
𝜆 1 − 𝜆

1 − 𝜆 𝜆
                                           (17)         

     

𝜆 =
𝑝11 0 𝑝22 0 

𝑝11 0 𝑝22 0 − 𝑝12 0 𝑝21 0 
                      (18) 

 

    Where: 

𝑝11 = 𝐺𝐿𝑆𝐹,𝐿𝑖𝑚 ,   𝑝12 = −𝐺𝐿𝑆𝐹,𝐴𝑑𝑑  

𝑝21 =  −𝐺𝑆𝑀,𝐶𝑙𝑎𝑦 , 𝑝22 = −(𝐺𝑆𝑀,𝐶𝑙𝑎𝑦 + 𝐺𝑆𝑀,𝐴𝑑𝑑 )  
                                                                       (19) 

 

    Therefore the parameter λ is computed from 

formula (20): 

𝜆 =
−𝐾𝑔,𝐿𝑖𝑚 ∙  𝐾𝑔,𝐶𝑙𝑎𝑦 + 𝐾𝑔,𝐴𝑑𝑑  

−𝐾𝑔,𝐿𝑖𝑚 ∙  𝐾𝑔,𝐶𝑙𝑎𝑦 + 𝐾𝑔,𝐴𝑑𝑑  − 𝐾𝐿𝑆𝐹,𝐴𝑑𝑑 ∙ 𝐾𝑔,𝐶𝑙𝑎𝑦

 

                                                                         (20) 

 

    By substituting the gains with the values of table 

2, a λ=0.9987 is computed. Subsequently for the low 

frequencies there is not interaction between the two 

loops. This conclusion has the following 

consequence. The controller regulating the loop 

between LSF and limestone can be tuned by using 

only the transfer function GLSF,Lim. For the tuning 

also of the controller regulating the SM by acting on 

additive feeder, the function GSM,Clay+GSM,Add shall 

be used. The two terms of this transfer function have 

the same time constant and delay time. So the gain is 

equal to the sum of the two gains. Because 

Kg,Clay<<Kg,Add, then GSM,Clay+GSM,Add≈ GSM,Add. So 

for the tuning of the SM controller at low 

frequencies, only the transfer function from 

%additive to SM shall be considered. 

 

 

3   PID Controller Design 
The LSF and SM controllers are implemented using 

the typical form according to Anstrom and 

Hagglund [16]. The transfer function is described by 

equation (21). The variables kp, ki, kd represent the 

proportional, integral and differential gains of the 

controller: 

 
𝑢

𝑒
= 𝑘𝑝 +

𝑘𝑖
𝑠

+ 𝑘𝑑𝑠                                                    (21) 

 

    Where e = LSFSP-LSFM or SMSP-SMM, u = %Lim 

or %Add, (kp,ki,kd) = (kpLSF, kiLSF, kdLSF) or 

(kpSM,kiSM,kdSM). This equation is expressed by 

equation (22) in discrete time domain, where as time 

interval, the sampling period is considered. 

 

𝑢𝑛 = 𝑢𝑛−1 + 𝑘𝑝 ∙  𝑒𝑛 − 𝑒𝑛−1 + Ts ∙ 𝑘𝑖 ∙ 𝑒𝑛  

+𝑘𝑑 ∙
1

Ts
∙  𝑒𝑛 + 𝑒𝑛−2 − 2 ∙ 𝑒𝑛−1                   (22) 

 
    As performance criterion the sensitivity function 

is defined, determined by the Laplace equation (22): 

 

𝑆 =
1

1 + 𝐺𝐶𝐺𝑝
                                                            (22) 

 

    The S function tells us how the closed loop 

properties are influenced by small variations in the 

process [20]. As robustness measure the maximum 

sensitivity represented by the equation (23) is 

utilized: 

 

𝑀𝑠 = 𝑀𝑎𝑥  𝑆 𝑖𝜔                                                    (23) 
 

    As it can be observed in Figure 4, the variable 

1/Ms can be understood as the shortest distance 

between the open loop GcGp Nyquist curve and the 

critical point (-1,0). In the same figure other 

properties also characterizing the system stability 

are depicted as well: 

- the gain margin, gm 

- the gain crossover frequency, ωgc 

- the phase margin, φm 

- the sensitivity crossover frequency, ωsc 

- the maximum sensitivity crossover frequency, 

ωmc. 

 

 
Figure 4. Maximum sensitivity, phase margin and 

crossover frequencies 

 

3.1 Implementation of the MIGO Method 
One of the big advantages of the M- constrained 

Integral Gain Optimization design method is the 

guaranteed robustness. As shown in [16] the 

robustness conditions can be expressed in terms of 
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circles that are prohibited areas for the Nyquist plot 

of the open loop transfer function. The low 

frequency disturbances are attenuated from the 

integral gain of the PID controller. Therefore the 

maximization of the ki part of the controller, by 

respecting the robustness conditions, contributes 

considerably to the rejection of the disturbances. 

The steps and the equations of the implementation 

of this technique in the specific application of the 

regulation of the raw meal quality are analyzed by 

demonstrating initially the system transfer function 

in the frequency domain: 

From feeder X to module Y transfer function: 

 

𝐺𝑌,𝑋 𝑖𝜔 =
𝐾𝑔 ∙ 𝑒

−𝑡𝑑𝑖𝜔

 1 + 𝑖𝑇0𝜔 
2

                       (24) 

 

    Where X = %Limestone, %Clay, %Additive and 

Y=LSF, SM. 

    Product of integrator and measurement transfer 

functions: 

 

𝐺𝑠 𝑖𝜔 𝐺𝑀 𝑖𝜔 =
1

𝑇𝑠 ∙ 𝑖𝜔
 1 − 𝑒−𝑇𝑠∙𝑖𝜔   ∙ 𝑒−𝑡𝑀𝑖𝜔 

                                                                       (25) 

    Process transfer function 

𝐺𝑃 𝑖𝜔 = 𝐺𝑌,𝑋 𝑖𝜔 𝐺𝑠 𝑖𝜔 𝐺𝑀 𝑖𝜔                        (26)  

 

    The real and imaginary part of the process 

transfer function is given by the equations (27), (28). 

𝑅𝑒𝐺𝑝 𝜔 =
𝐾𝑔

𝑇𝑠 ∙ 𝜔 ∙  1 + 𝜔2𝑇0
2 2

∙ 

 
−2𝜔𝑇0 ∙  cos 𝜔 𝑡𝑀 + 𝑡𝑑  ∙  1 − 𝑐𝑜𝑠𝜔𝑇𝑠 + sin 𝜔 𝑡𝑀 + 𝑡𝑑  𝑠𝑖𝑛𝜔𝑇𝑠 +

 1 − 𝜔2𝑇0
2 ∙  cos 𝜔 𝑡𝑀 + 𝑡𝑑  𝑠𝑖𝑛𝜔𝑇𝑠 + sin 𝜔 𝑡𝑀 + 𝑡𝑑  ∙  1 − 𝑐𝑜𝑠𝜔𝑇𝑠  

  

 

                                                                          (27)    

𝐼𝑚𝐺𝑝 𝜔 =
𝐾𝑔

𝑇𝑠 ∙ 𝜔 ∙  1 + 𝜔2𝑇0
2 2

∙ 

 
−2𝜔𝑇0 ∙  cos 𝜔 𝑡𝑀 + 𝑡𝑑  𝑠𝑖𝑛𝜔𝑇𝑠 + sin 𝜔 𝑡𝑀 + 𝑡𝑑  ∙  1 − 𝑐𝑜𝑠𝜔𝑇𝑠  +

 1 − 𝜔2𝑇0
2 ∙  cos 𝜔 𝑡𝑀 + 𝑡𝑑  ∙  1 − 𝑐𝑜𝑠𝜔𝑇𝑠 + sin 𝜔 𝑡𝑀 + 𝑡𝑑  𝑠𝑖𝑛𝜔𝑇𝑠 

  

                                                                       (28) 

 

    The argument and the phase of the Gp(iω) is 

described by (29), (30) 

𝜌𝑝 𝜔 =  𝑅𝑒𝐺𝑝 𝜔 
2 + 𝐼𝑚𝐺𝑝 𝜔 

2 
1

2     (29) 

 

𝜑𝑝 𝜔 = 𝜋 + 𝑠𝑖𝑛−1  
𝐼𝑚𝐺𝑝 𝜔 

𝜌𝑝 𝜔 
             (30) 

 

    The PID controller transfer function follows: 

𝐺𝑐 𝑖𝜔 = 𝑘𝑝 + 𝑖 ∙  𝑘𝑑𝜔 −
𝑘𝑖
𝜔
                        (31) 

 

    The open loop transfer function is given by the 

product (32): 

 

𝐺𝑙 𝑖𝜔 = 𝐺𝑝 𝑖𝜔 𝐺𝑐 𝑖𝜔                                           (32)  

 

    The square of the distance of any Gl(iω) point of 

the Nyquist plot to the point (-1,0) on the real axis is 

given by the formula: 

 

𝑓 𝑘𝑝 , 𝑘𝑖 , 𝑘𝑑 , 𝜔 =  𝑅𝑒𝐺𝑙 𝑖𝜔 + 1 2 + 𝐼𝑚𝐺𝑙 𝑖𝜔 
2 

                                                                         (33) 

 

    According to Astrom et al. [16], the robustness 

condition is expressed by (34): 

𝑓 𝑘𝑝 , 𝑘𝑖 , 𝑘𝑑 , 𝜔 ≥ 𝑟𝑠                                                 (34) 

 

    Where rs=1/Ms. The argument ω is dropped in the 

subsequent computations to simplify the 

representation. 

 

 
𝜌𝑝
𝑟𝑠
 

2

 𝑘𝑝 +
𝑅𝑒𝐺𝑝

𝜌𝑝
2  

2

+  
𝜌𝑝
𝜔𝑟𝑠

 
2

 𝑘𝑖 −
𝜔𝐼𝑚𝐺𝑝

𝜌𝑝
2 −𝜔2𝑘𝑑 

2

≥ 1                                                   (35) 
 

    Then according to [16], the maximum value of ki 

for constant value of kd, occurs at the lower vertex 

of the ellipse (35). This point is given by the 

equations (36), (37): 

 

 

 

 

 

 

 

 

 

 

 

 

𝑘𝑝 = −
𝑐𝑜𝑠𝜑𝑝

𝜌𝑝
                                                           (36) 

 

𝑘𝑖 = −
𝜔

𝜌𝑝
 𝑟𝑠 − 𝑠𝑖𝑛𝜑𝑝 + 𝜔2𝑘𝑑                            (37) 

 

    By differentiating equation (37), the maximum ki 

occurs at the frequency where the derivative of ki is 

equal to 0. After some computations the derivative 

concludes to formula (38): 
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𝐻𝑃𝐼𝐷 𝜔 =  𝑟𝑠 − 𝑠𝑖𝑛𝜑𝑝  
𝜌𝑝
′

𝜌𝑝
−

1

𝜔
 + 𝜑𝑝

′ 𝑐𝑜𝑠𝜑𝑝

+ 2𝜌𝑝𝑘𝑑                                    (38)            
     

    Where ρp
’
 and φp’ denote the derivatives of ρp and 

φp respectively. Equation (38) is solved iteratively 

by applying the bisection method and solution ωPID 

is found. To guaranty that the solution corresponds 

to a maximum the condition 
𝜕2𝑓

𝜕𝜔2 < 0 shall be 

satisfied. As initial frequencies’ interval for the 

bisection implementation the region 

[ω(φ=π/2),ω(φ=π-sin
-1

(rs)) is determined.  

    The procedure starts with kd=0. By applying 

equation (24) to (38), kp, ki are computed. Then 

using a constant step, the kd value is increased and 

new proportional and integral gains are calculated. 

The procedure continues up to the largest kd for 

which the robustness condition is satisfied. 

Therefore the implementation of the MIGO 

technique provides a full group of (kp, ki, kd) 

parameters ranging from kd=0 to a maximum value 

fulfilling the Ms constraint as to the open loop 

transfer function. 

 

3.2 Controllers’ Parameterization 
To investigate the impact of Ms constraint to the 

values of the (kp,ki,kd) sets, the PID parameters are 

computed for the Ms range [1.3,2.5] using the 

average RM dynamics shown in Table 2. The results 

of kp, ki as function of Ms, kd for the controller 

between %limestone and LSF are shown in Figures 

5, 6. The corresponding results for the SM controller 

are depicted in Figures 7, 8. 

 

 
Figure 5. LSF controller. Kp as function of kd, Ms. 

 

    The following can be concluded from these 

figures: 

- As Ms increases, the maximum kd, kd,Max also 

enlarges. As regards the LSF parameters, for 

Ms=1.3 the maximum kd is equal to 0.06 while 

for Ms=1.6, kd,Max augments to 0.1 and for 

Ms=2.5 reach the value 0.16. 

 

 
Figure 6. LSF controller. Ki as function of kd, Ms. 

 
Figure 7. SM controller. Kp as function of kd, Ms. 

 

 
Figure 8. SM controller. Ki as function of kd, Ms. 

 

- For any given value of Ms, as kd increases from 

0 to kd,Max, the proportional and integral gains 

become around the double. 
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- The LSF kp, ki for the parameters’ sets (Ms, kd) 

and (Ms+0.1, kd-0.01) are around equivalent. 

- The same occurs for the sets (Ms, kd) and 

(Ms+0.1, kd-0.1), regarding the SM controller. 

    The above means that for the same kp, ki values, a 

lower Ms value can be obtained with an increase of 

the kd value. The impact of the kd value to the open 

loop Nyquist plot, for Ms=1.5 is shown in Figures 9 

and 10 for the LSF and SM controllers respectively. 

 

 
 

Figure 9. Niquist plots for Ms=1.5 and different kd 
for the LSF controller. 

 

 

Figure 10. Niquist plots for Ms=1.5 and different kd 
for the SM controller. 

    From these two figures it is observed that as kd 

increases from 0 to the maximum value, bigger 

segment of the loop approaches the circle of radius 

1/Ms by satisfying always the specified constraint. 

 

3.3 Influence of the Model Uncertainty on 

the Open Loop Properties 
The model parameters shown in Table 2 are the 

average of the values computed for each set of input 

and process variables. To study the effect of model 

parameter uncertainty on the achieved sensitivity 

and gain margin of the open loop function the 

following procedure is implemented: 

(a) A certain set of PID parameters is considered. 

(b) For each set of experimental data the open loop 

properties are computed. 

(c) The average, the standard deviation and the 

coefficient of variation, %CV, of each property 

are found. 

(d) The above procedure is applied for all PID sets 

for Ms range [1.3, 1.9] and kd range [0, kd,Max]  

    The Ms distribution for Ms design value equal to 

1.5 and kd = 0, 0.04, 0.08 are depicted in Figure 11 

for the LSF controller. Up to kd=0.04 the 

distribution appears steep enough. For kd=0.08 the 

distribution variance increases drastically and a 

significant portion of the experimental sets - ~20% - 

presents Ms ≥ 2.0. Therefore for the 20% of the 

actual data the maximum kd controller becomes less 

robust.  

 
Figure 11. Ms distribution for Ms,Design=1.5. LSF 

controller. 

    The average actual Ms and gm over all the data 

sets as function of the design Ms and kd are shown in 

Figures 12, 13 for the LSF controller. 

 

 
Figure 12. Average Ms as function Ms,Design and kd. 

LSF controller. 
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Figure 13. Average gm as function Ms,Design and kd. 

LSF controller. 

 

    The investigation of these figures leads to the 

following remarks:  

(a) For a certain value of the design maximum 

sensitivity, Ms,D, the realized average Ms 

remains close to Ms,D for 0 ≤ kd ≤ kd
*
, where kd

*
 

is located around to the middle of the range 

[0,kd,Max]. Then as kd augments, average Ms rises 

significantly. To elucidate further this trend the 

Ms/Ms,D ratio is plotted as function of Ms,D and 

kd. The results are depicted in Figure 14. 

(b) As kd increases, the gain margin passes from a 

maximum, placed near to the centre of [0,kd,Max]. 

(c) The previous two remarks mean that for a 

specified Ms,D value a good compromise of 

performance and robustness can be achieved by 

selecting a set of PID parameters with kd located 

near to the midpoint of the permissible range 

[0,kd,Max] 

 

 
Figure 14. Ms/Ms,D as function Ms,D and kd. LSF 

controller. 

 

    The coefficients of variation, %CV, of Ms and gm 

over all the data sets are demonstrated in Figures 15, 

16. For Ms values belonging to the range [1.3, 1.7] 

and kd from 0 up to the middle of the maximum, the 

%CV is rising slowly. Then the rate of increase is 

higher. For Ms=1.8, the %CV increases linearly as 

kd varies from 0 to kd,Max. The above verifies that for 

kd higher than the midpoint of the range, the 

controller robustness seems to be deteriorated. 

Nevertheless if an Ms,Design reasonably low is 

selected, the actual Ms is not so high. Apparently a 

simulation of the real process is expected to lead to 

more rigorous optimization of the PID coefficients. 

The %CV of gm remains in the level of 37% to 43% 

for all the Ms and kd ranges examined.  

 

 
Figure 15. %CV of Ms as function Ms,Design and kd. 

LSF controller. 

 

 
Figure 16. %CV of gm as function Ms,Design and kd. 

LSF controller. 

    As regards the SM controller, the functions 

between the average values of Ms and gm and Ms,D , 

kd  are shown in Figures 17,18. The Ms/Ms,D ratio 

respective function appears in Figure 19. The 

interval [1.3, 1.6] is chosen as Ms range. The kd 

values are restricted up to kd,Max=0.75. For Ms > 1.6 

and kd > 0.75, there are data sets where the closed 

loop becomes unstable. The conclusions drawn for 

the PID parameters of the LSF controller are also 
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valid for the corresponding parameters of the SM 

controller. 

 
Figure 17. Average Ms as function Ms,D and kd. SM 

controller. 

 

 
Figure 18. Average gm as function Ms,D and kd. SM 

controller. 

 

 
Figure 19. Ms/Ms,D as function Ms,D and kd. SM 

controller. 

 

 

4   Application of the Controller 
The results of application of the controller for a 17 

months period for the regulation of the raw meal in 

Halyps plant are demonstrated and analyzed. Before 

the implementation of the current version of the PID 

controller the LSF and SM modules in the RM 

outlet were regulated using a PI controller presented 

in [19]. The PID is initially parameterized off line 

with the MIGO method using one year actual plant 

data. Then using the last months’ data the 

parameters are checked as regards the sensitivity of 

the open loop and retuned if necessary. As design 

parameters, Ms=1.5 and kd located in the middle of 

the permissible range are chosen. The standard 

deviation results of the modules are compared with 

the ones of the long term implementation of the PI 

controller which has been running continuously for 

more than ten years providing a remarkable 

improvement of the raw meal quality, compared 

with the manual regulation. 

    Results are also presented of PID controllers’ 

applications tuned with the MIGO technique and 

putted into operation in other plants. These results 

are compared with the ones of operation before the 

PID installation. 

 

4.1 Standard Deviation of LSF and SM in the 

Mill Outlet and Kiln Feed 
As evaluation indicator of quality performance the 

standard deviation of the variable under examination 

is considered. This standard deviation is calculated 

over all the available results for a specified period. 

The monthly standard deviation of LSF in the RM 

outlet is shown in Figure 20. The population of the 

results is composed from all the hourly analysis of 

samples taken in the RM exit, before the 

homogenization silo. These results indicate that 

there is a noticeable reduction of the LSF variance 

after the new PID operation. The range also of the 

monthly standard deviation is narrower than the one 

corresponding to PI controller. The above can be 

thought as a consequence of the sensitivity 

condition satisfied implicitly.   

 

 
Figure 20. Monthly LSF standard deviation in the 

RM exit. 
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    The LSF monthly standard deviation of the kiln 

feed spot samples are depicted in Figure 21. The 

sampling period for the given sampling system is 

four hours and the raw meal is sampled in the stock 

silo outlet before to be fed to the kiln.  

 
Figure 21. Monthly LSF standard deviation in the 

kiln feed. 

    Three periods are indicated in Figure 21:  

- August 2008 – December 2009 of PID 

operation. 

- October 1997-July 2008, the period of the PI 

continuous and long term implementation 

- July 1993 – September 1997 where the raw meal 

quality was regulated by applying written 

instructions and the operator’s experience, 

manually.  

    Not only the average standard deviation appears 

in the figure, but also its upper control limit (UCL) 

according to ISO 8258:1991. The formulae to 

compute the UCL for this specific application are 

described in [19].  As it is also analytically 

illustrated in [19], the PI controller tuned with a 

specific technique, provided a huge amendment of 

the raw meal homogeneity. Sensitivity criteria were 

taken into account to this method, but an embedded 

criterion of robustness was not involved. The above 

fact could be the reason that 15 out of 130 monthly 

deviations - 11.5% - are higher of the UCL, which is 

equal to 1.87. On the opposite after the 

implementation of the MIGO methodology, where 

the sensitivity robustness condition is implied, not 

only the average deviation is significantly lower but 

only 1 out of 16 -or 6.3% - is higher that the UCL 

that is only 1.54, minor than the average deviation 

during the PI implementation. Therefore the tuning 

by the MIGO technique appears to be very effective, 

under normal operating conditions.  

    The same results for the SM module are presented 

in Figures 22, 23. 

 
Figure 22. Monthly SM standard deviation in the 

RM exit. 

 

 
Figure 23. Monthly SM standard deviation in the 

kiln feed. 

    The same conclusions drawn from the Figures 

shown the LSF variance are also valid for the SM 

one. During the PI operation 20 out of 118 points – 

16.9% - are higher than the UCL. On the other hand 

the PID installation led to a decrease of the average 

deviation and of the UCL as well, which is 

positioned very near to the average of the PI 

operation.  

     

Table 3. Annual quality indicators 
Year s RM 

LSF 

s KF 

LSF 

%Num.  

of Cuts 

s RM 

SM 

s KF 

SM 

%Num.  

of Cuts 

2005 11.2 1.58   36.3 0.23 0.062 28.4 

2006 10.5 1.67   36.1 0.23 0.072 25.4 

2007 8.8 1.46   37.3 0.19 0.057 25.8 

1-7 

2008 

10.6 1.56   37.9 0.19 0.053 29.3 

8-12 

2008 

8.3 1.11   39.3 0.16 0.050 29.5 

2009 8.1 1.44   38.7 0.18 0.052 30.6 

    The quality indicators in annual basis are also 

presented in Table 3 from 2005 to 2009. The 

percentage of times the module values pass from the 
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target to the total samples’ population - the 

%Number of Cuts – is also calculated. The first four 

rows correspond to PI operation while the last two 

ones to PID functioning. During the new controller 

implementation not only a lower deviation in RM 

outlet is achieved, but also an increase of the 

%Number of cuts. Especially the second result 

produces more and thinner layers of raw meal into 

the homo and stock silos contributing to a better 

mixing and the respective reduction of variance in 

the raw meal fed to the kiln.  

 

4.2 Other Implementations of the PID 

Controller Tuned with the MIGO Method 
The method applied to tune the PID driving the raw 

meal quality control of Halyps and the software 

developed, were also putted in operation to other 

plants of Italcementi Group in Egypt, regulating a 

severe number of raw mills. Each kiln of these 

plants is fed with raw meal produced from one or 

two RM. Before the installation of the controllers, 

the quality regulation was performed in manual 

mode. Results of LSF monthly standard deviation of 

the raw meal in the kiln feed are demonstrated in 

Figures 24 to 27. 

 
Figure 24. Plant 1. Kiln 1 raw meal feed from one 

RM. 

 
Figure 25. Plant 1. Kiln 2 raw meal feed from one 

RM. 

 
Figure 26. Plant 2. Kiln 1 raw meal feed from one 

RM. 

 

 
Figure 27. Plant 3. Kiln 1 raw meal feed from two 

RM. 

    In Table 4 the average standard deviations are 

summarized, before and after the installation of the 

PID controller software, sb and sa respectively. 

 

Table 4. Kiln feed standard deviation before and 

after the PID installation. 

Plant, kiln    sb     sa  sb – sa 

Plant 1, kiln 1  2.09   1.69  0.40 

Plant 1, kiln 2  1.90   1.54  0.36 

Plant 2, kiln 1  1.60   1.30  0.30 

Plant 3, kiln 1  2.60   1.41  1.19 

    The operation of the PID controllers 

parameterized with the MIGO technique provides a 

step decrease of the raw meal standard deviation 

resulting in a distinguishable amendment of the 

product quality delivering improved economic 

performance in cement production [36]. 

  

 

5   Conclusions 
Based on a dynamical model of the raw materials 

mixing in closed circuit ball mill, efficient efforts 

were accomplished to parameterize a PID controller 

regulating a high importance process from the 

quality and production point of view. The settings of 

the limestone and additive weight feeders consist of 
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the set of the two control variables. As process 

variables the Lime Saturation Factor and the Silica 

Modulus are chosen. For the TITO process under 

investigation and the current raw materials’ quality 

the two loops interaction is extremely week at low 

frequencies according to the Relative Gain Array 

results.  

    The two controllers’ tuning is realized by 

applying the M-constrained integral gain 

optimization technique to the specific conditions of 

raw meal production and quality control. By 

utilizing seven months industrial raw data, the 

dynamical model parameters are determined. 

Afterwards sets (kp, ki, kd) are computed for 

maximum sensitivity 1.3 ≤ Ms ≤ 2.5. Ms constitutes 

the robustness criterion and it can be thought as the 

principal design parameter. For a specified Ms, a 

family of (kp, ki, kd) sets is determined starting from 

kd=0 up a maximum value kd,Max, satisfying the 

robustness constraint. Using the industrial data sets, 

for each PID parameter set the actual Ms and gain 

margin as found. In the current level of development 

of the research, among these PID sets, it is selected 

the one having design Ms=1.5, actual Ms not 

differing significantly from the designed one and the 

higher possible kd. This set is found near to the 

middle of the [0, kd,Max] interval.  

   The described methodology of tuning is 

implemented in the raw meal grinding system of 

Halyps cement plant, where an efficient PI 

controller was operating for more than ten years 

deriving a huge amendment of the raw meal quality. 

The technique of this controller tuning is described 

in [19]. The implementation of the PID version 

analyzed to this study resulted in a noticeable 

increase of homogeneity of the raw meal fed to the 

kiln. The same technique of tuning was also applied 

to other raw meal grinding systems, previously 

operating in manual mode as concerns the chemical 

modules regulation. The PID implementation 

software was built, installed and operated. 

According to the results presented after a sufficient 

period of operation, the raw meal standard deviation 

in the kiln feed approached satisfactorily the levels 

achieved in Halyps installations. Therefore the 

current implementation of the M-constrained 

integral gain optimization contributed remarkably to 

the effectiveness of the raw meal quality control in a 

noticeable number of industrial installations.  

   A further and deeper development of the robust 

and effective control of the raw meal quality could 

investigate the following issues: 

- With the acceptance of the Ms robustness 

constraint as design criterion, to simulate the 

raw mill, homo and stock silos operation, 

specific for each plant, to find the optimum PID 

set. 

- To examine whether the chemical modules in 

the homo or stock silos, predicted with the 

model, can be fed back as an outer loop to 

provide set point to the raw mill controller, 

resulting in a cascade control. 

- By utilizing model predictive control (MPC) 

techniques and respecting the robustness 

constraints, to predict the chemical modules in 

the RM or the silos outlet supposing constant 

raw materials and to tune the controller 

accordingly. Extensive simulations are always 

necessary before to apply the findings in actual 

raw meal systems.  
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