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Abstract: - It is commonly accepted that optimal control theory was born with the publication of a seminal 
paper by Pontryagin and collaborates last century, at the end of 50’s. Since then optimal control theory has 
played a relevant role not only in the dynamic optimization but also in the control and system engineering. 
Another crucial moment in this theory is closely related with the development of nonsmooth analysis during the 
70’s and 80’s. Nonsmooth analysis has triggered a renew interest in optimal control problems and brought new 
solutions to old problems. Nowadays optimal control theory is essential to different areas like system 
engineering, economics and biology since many problems are modelled as optimal control problems. A 
challenging area of study in this theory remains that of state constraints. In this paper we review the very basic 
notions of optimal control problems with and without state constraints focussing on necessary conditions of 
optimality for state constrained problems.   
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1 Introduction 
The fundamental concepts in optimal control theory 
came to light more than three centuries ago with the 
publication of Johann Bernoulli’s solution of the 
Brachystochrone problem in 1697 [24]. However 
the main developments in this field occurred 50-60 
years ago. Nowadays Optimal Control is an 
independent field of research. The development of 
optimal control has gained strength by treating 
multivariable, time-varying systems, as well as 
many nonlinear problems arising in control 
engineering. Several authors contributed to the basic 
foundation of a very large scale research effort 
initiated in the end of the 1950’s, which continues to 
the present day.  
The Pontryagin Maximum Principle plays a crucial 
role in optimal control theory. It extends the 
classical Euler and Weierstrass conditions from the 
classical calculus of variations to control settings 
[7]. The development of Nonsmooth Analysis ([7] 
and   [26]) has enhanced a wide scope of research as 
well as it has opened a new horizon in the optimal 
control theory.  

Necessary conditions of optimality for optimal 
control problems with state constraints have been 

studied since the very beginning of optimal control 
theory [21]. In spite of all the recent developments, 
this subject is far from explored. In particular, the 
presence of measures in these conditions, related to 
the entry and exit time of the constraint boundary, is 
not very attractive for applications.  
This paper focuses on the overall scenarios of the 
optimal control theory in where our topic of interest 
lies. Accordingly we will concentrate on a review of 
such problems and we explore the state of the art by 
investigating the background of OCPs up to the 
recent developments in this field. This paper is 
organized as follows. In Section 2, optimal control 
problems are formulated in different forms and in 
Section 3, different formulations of state constraints 
are discussed. In Section 4, optimal control 
problems without and with state variable constraints 
are studied. Section 5 is devoted to a discussion of 
the Pontryagin maximum principle. In Section 6, 
the role of penalization in converting a state 
constrained problem to an equivalent problem 
without state constraint is discussed. Section 7 deals 
with a brief review of nonsmooth optimal control 
problems along with nonsmooth maximum principle 
and finally in Section 8 we have made a conclusion 
with some future directions of our research.  
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2 Optimal Control Problems (OCPs) 
As mentioned before, the Optimal Control Problems 
(OCPs) appeared as essential tools in modern 
control theory in the late 1950s. Since the birth of 
the optimal control, several authors proposed 
different basic mathematical formulations of OCPs 
(fixed time problems). For fixed time problems 
three major mathematical formulations of the 
optimal control problems: Bolza form, Lagrange 
form and Mayer form are of special importance. We 
will discuss here these three forms and how one 
form is related to others. We start with the general 
form of Bolza (again fixed ``time`` problem) as 

( )
( ) ( )

( ) ( ) [ ]
( )

[ ]

Min ( ), ( ) , ( ), ( )

Subject to , ( ), ( ) a.e. ,

( ), ( )

( ) ( ) a.e. ,

b
J x a x b L t x t u t dt

a
x t f t x t u t t a bP

B x a x b C

u t t t a b

ϕ


= + ∫

 = ∈
 ∈

 ∈ ∈



U

where [ ],a b  is a fixed interval, : n nϕ × →   , 

:[ , ] n mL a b × × →    and :[ , ] n m nf a b × × →    
are functions, n nC ⊂ ×   is a closed set  and 

:[ , ] ma b → U  is a multifunction. 

The functional ( ) ( )( ), ( ) , ( ), ( )
b

J x a x b L t x t u t dt
a

ϕ= + ∫     (1) 

to be minimized is called the payoff or cost 
functional. The aim of this problem is to find the 
pair ( ),x u comprising two functions where 

:[ , ] mu a b →  (the control function) and the 
corresponding state trajectory x  which is an 
absolutely continuous function :[ , ] nx a b →  
(called the state function) satisfying all the 
constraints of the problem ( )BP and minimizing in 
some sense the cost. A pair   ( ),x u where  x  is an 
absolutely continuous function and u  is a function 
belonging to a certain space U  ( U can be 1,L C , 
the space of measurable functions, the space of 
piecewise continuous functions, etc.) such that 
( ) ( ), ( ), ( ) a.e.x t f t x t u t=  is called a process. A 

‘process’ ( ),x u  satisfying all the constraints of the 
problem ( )BP  is called an admissible process. The 
set of all admissible processes ( ),x u  is called the 

domain of the problem ( )BP . We say that ( )* *,u x  
is an optimal solution if it minimizes the cost over 
all admissible processes. For optimal control 

problems one may speak of local or global 
minimizers. Local minimizers can be also of 
different types. See, for example [26] for more 
details. 

If the function : n nϕ × →    is absent from the 
cost functional (2.1) and all others data remain the 
same, we obtain the optimal control problem in 
Lagrange form; the cost is simply 

                     ( ), ( ), ( )
b

J L t x t u t dt
a

= ∫                       (2) 

On the other hand, if the Lebesgue integrable 
function :[ , ] n mL a b × × →    is absent from 
the cost functional (2.1) and all others constraints 
remain the same, we obtain the Mayer form with 
cost  

                            ( )( ), ( )J x a x bϕ=                         (3) 

However, we can reformulate Bolza form (1) into 
Mayer form by means of the process called state 
augmentation. Let us define, 

                      
( ), ( ), ( )

(0) 0
y L t x t u t
y
=

=



                         (4) 

Then the problem ( )BP  can be rewritten as 
following 

( )
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( ) ( ) [ ]
( ) ( ) [ ]
( )( ) { }
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P
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y b

y

y b

ϕ= +

= ∈

= ∈

∈ ×

∈ ∈

















U

      (5) 

This new problem (5) is in Mayer form. More 
extensive studies on the transformations of the 
optimal control problems from the Bolza form to the 
other two special forms along with examples can be 
found in [20] and [15], problems in three forms in 
[2], and problems in Mayer form in [16] and 
transformation of problems from Bolza form to 
Lagrange can be found in [6]. 
Different variants of optimal control problems 
appear in the control system dynamics over the 
years. The problems we have mentioned here are 
fixed time problems (since the time interval [ ],a b  is 
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fixed). There are also problems with free time, 
minimum time problems, constrained problems 
(state constrained or mixed constrained or both) as 
well as impulsive control problems. We are not 
going to discuss all the details. 

3 State Constraints 

State constraints are obviously constraints imposed 
on the state variables and they can appear in 
numerous situations. As an example consider the 
modelling of the temperature of a reactor. Taking 
the state to be the temperature, ( )x t  it is natural 
impose an upper limit M to this variable. This gives 
rise to the state constraint 

                          ( )x t M≤  

State constraints are a natural feature in many 
practical applications of optimal control problems. 
Let us briefly review some of the main form of such 
constraints.  

A. Equality state constraints: Let 
:[ , ] nh a b × →   be any given function. Then   

                   ( ), ( ) 0, a.e. [ , ]h t x t t a b= ∈   

is an equality state constraint. 

B. Inequality state constraints: Let 
:[ , ] nh a b × →   be any given function. Then   

     ( ), ( ) 0, a.e. [ , ]h t x t t a b≤ ∈   

is an inequality state constraint. 

C. Implicit state constraints: Let 
:[ , ] nX a b →   be any given multifunction. Then   

         ( ) ( ), a.e. [ , ]x t X t t a b∈ ∈   

is called an implicit state constraint. 
D. Mixed state-control constraints:  
Let :[ , ] n m kg a b × × →    be any given 
function. Then   

            ( ), ( ), ( ) 0, a.e. [ , ]g t x t u t t a b≤ ∈   
is a mixed state-control constraint. 

Usually one refers to constraints of types A, B 
and C as pure state constraints to highlight the 
difference with those in the form D which are mixed 
constraints. Observe that state constraints are 

imposed for all t  in an interval [ ],a b  while mixed 
constraints can be imposed simply for almost every 
t . 

 Focussing on the first three types of constraints it 
is obvious that type C is the more general (see in 
this respect the discussion in [26], chapter 9). 
Constraints of type A and B can be written as  

                ( ) ( )x t X t∈ for all [ ],t a b∈  
where  { }( ) : : ( , ) 0nX t x h t x= ∈ =  or  

                   { }( ) : : ( , ) 0nX t x h t x= ∈ ≤  

Mixed state control constraints of type D or even 
more general constraints of the form 
( )( ), ( ) ( )x t u t S t∈ are distinct from the pure state 
constraints. From the point of view of optimality 
conditions state constraints and mixed constraints 
have different treatments. Necessary conditions for 
problems with constraints of type D can be obtained 
when some constraint qualifications (also called in 
this case regularity conditions) are imposed. Such 
constraint qualifications involve the control 
variable. Clearly such constraint qualifications do 
not make any sense when state constraints are 
presented since the state constraints exhibit no 
dependence on the control variable. In some 
situations pure state constraints of type B and mixed 
constraints D can be related. That may occur when 
the function h  can be differentiated with respect to 
t  so as to obtain higher order derivatives containing 
the control variable. Here we present briefly this 
procedure.  Suppose, for simplicity, that 

( , )h t x ∈ . Define 

( ) ( )0 , ( ), ( ) , ( )h t x t u t h h t x t= =  
1( , , ) ( , ) ( , , ) ( , )x th t x u h h t x f t x u h t x= = +  
2 1 1 1( , , ) ( , ) ( , , ) ( , )x th t x u h h t x f t x u h t x= = +  

                           


 
1 1 1( , , ) ( , , ) ( , , ) ( , , )p p p p

x th t x u h h t x u f t x u h t x u− − −= = +

 (6)    
Then the state constraint 0h ≤  is called of order 
p if 

( ) ( ), , 0, for 0 1, , , 0.i p
u uh t x u i p h t x u= ≤ ≤ − ≠   (7) 

The relevance of this recursive procedure is 
discussed in [13]. See also [16] on Nondegenerate 
conditions for higher order state constraints 
problems.  
Next we discuss some important features of state 
constraints: the instants of time when the trajectory 
enters or leaves the boundary of the state 
constraints. Entry and exit times of a trajectory are 
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indeed crucial when dealing, for example, with 
necessary conditions for optimal control problems 
with state constraints. For the sake of simplicity we 
focus on constraints of type B. Observe that in this 
case the boundary of the state constraints is the set 

                      [ ]{ }, : ( , ) 0a bt h t x∈ =   
Consider a subinterval [ ]0 1( , ) ,t t a b⊂ , 0 1t t< . Here 

[ ],a b  is a fixed interval. Then the interval [ ]0 1,t t  is 
called an interior interval of a trajectory x  if 
( ), ( ) 0,h t x t < for all ] [0 1,t t t∈ and an interval 

[ ]1 2,t t  is called a boundary interval if  
                        ( ), ( ) 0h t x t =  for all [ ]1 2,t t t∈ . 

Definition: An instant 0t  is defined to be an entry 
time with respect to the trajectory x  if   the interior 
interval [ ]0 1,t t  ends at 1t t=  and the boundary 

interval [ ]1 2,t t  starts at 1t . 

Definition: An instant 2t  is defined to be an exit 
time with respect to the trajectory x  if the boundary 
interval [ ]1 2,t t  ends at 2t t= and the interior interval 

[ ]2 3,t t  starts at 2t . 
Definition: An instant t  when the trajectory x just 
hits the boundary, i.e., ( ), ( ) 0,h t x t = but just 
before and just after that time t  the trajectory 
remains in the interior, is called the contact time. 
Entry, exit and contact times all together are called 
the junctions times. 
Before moving to the next discussion it is 
convenient to emphasize that mixed state-control 
constraints are not the main subject of the proposed 
study. This is the reason why we do not discuss 
them here. However, the interested reader may see 
([1] and [18]) for detailed treatments of such sorts of 
problems. 

4  Optimal Control Problems: Without 
and With State Constraints 
In this section we will illustrate the effect of state 
constraints on the solution of an optimal control 
problem. We choose a simple problem and we solve 
it. Next we introduce a state constraints to that 
problem and see how the solution of the problem 
changes. Let us first consider the problem without 
state constraints 

              ( )
[ ]

( ) ( )

3
Min ( )

0
.t. ( ) . .

1 ( ) 1,1 . .

(0), (3) 1,1

J x t dt

s x u t a eP
u t a e

x x


= ∫


 =
 ∈ −

 =

  

The optimal control that minimizes the cost 

                        
[ [
[ ]

*
1  if  t 0,1.5

( )
1   if  t 1.5,3

u t
− ∈= 

∈
 

which gives the optimal solution                                    

                      
[ [
[ ]

*
1 if 0,1.5

( )
2 if 1.5,3

t t
x t

t t

 − ∈= 
− ∈

 

The graphs of the optimal trajectories are shown in 
Fig. 1(a) (state trajectory) and in Fig. 1 (b) (control 
trajectory). 
 
 
 
 
 
 
 
 

 
Fig. 1 Optimal solution of problem

1
( )P . 

Now we discuss the same cost of the problem ( )1
P  

with state constraint: 

( )
[ ]

( ) ( )

3
Min ( )

0
.t. ( ) . .

( ) 0 for all
2

( ) 1,1 . .

(0), (3) 1,1

J x t dt

s x u t a e
P x t t

u t a e

x x


= ∫


 =
 ≥
 ∈ −
 =





 

Since we have to minimize the cost of the 
problem ( )2

P  subject to the state constraint 0x≥  and 

the boundary conditions (0) (3) 1x x= = , the optimal 

solution ( )* *,x u will be such that the cost should be 

kept as small as possible. The solution is  
[ [
[ [
[ ]

*

1 if 0,1

( ) 0 if 1,2

2 if 2,3

t t

x t t

t t

 − ∈


= ∈
 − ∈

,  

[ [
[ [
[ ]

*

1 if 0,1

( ) 0 if 1,2

1 if 2,3

t

u t t

t

− ∈


= ∈
 ∈

 

1

0
3

1 2 t

*x

(a) Optimal Trajectory

1−

10 2
t

*u

(b) Optimal Control

3

1

1−
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The graphs of the optimal trajectories of 
problem

2
( )P  are shown in Fig. 2 (a) (state trajectory) 

and in Fig. 2 (b) control trajectory). 
 
 
 
 
 
 
 
 

 
Fig. 2  Optimal solution of problem 

2
( )P . 

Observe that the interval [ ]1,2  is a boundary 

interval being 1t =  and 2t =  entry and exit times 
respectively. Both intervals [ [0,1  and ] ]2,3  are 
interior intervals.State constraints do appear in 
practice in many applications of system and control 
engineering, especially in robotics and space-crafts.  
For examples, when moving a robot from one point 
to another in a room with obstacles the obstacles 
introduce state constraints. 
 
5 The Pontryagin Maximum Principle 
The maximum principle (MP) is one of the most 
elegant methods used to solve the OCPs. It provides 
a set of necessary conditions which should be 
satisfied by any optimal solution of optimal control 
problem. Admissible solutions satisfying the 
Maximum Principle are called extremals. All 
extremals are candidate to the optimal and the 
optimal solution will be among the set of extremals. 
Not surprisingly the idea behind derivation of 
necessary conditions in the form of Maximum 
Principles is to obtain MPs that produces the 
smallest set of candidates to the optimal. It is well 
known that for some problems the Maximum 
Principle is not only a necessary condition of 
optimality but also a sufficient condition (for a 
discussion on this feature in a smooth and 
nonsmooth context see [20]).  

One way of obtaining necessary conditions of 
optimality for optimal control problems is via 
optimization on infinite dimensional spaces. In fact 
an optimal control problem may be regarded as an 
optimization problem in corresponding infinite 
dimensional (Hilbert or, in general, Banach) spaces. 
Applying necessary conditions of optimality to such 
infinite dimensional problem and representing them 

in the appropriate form we obtain the Maximum 
Principle.  

The maximum principle is a milestone in the 
development of modern optimal control theory. 
Maximum principle plays significant role not only 
in solving the smooth problems, but also in 
problems with nonsmooth functions. When the data 
of the problem are smooth, we call the 
corresponding maximum principle smooth, but for 
the problems with nonsmooth data we call it 
nonsmooth maximum principle. Here we will 
present a maximum principle for a particular smooth 
optimal control problem with state constraints. The 
nonsmooth maximum principle will be discussed in 
Section 7. 

We consider now ´´the following problem with state 
constraints´´ 

( )

( )
( ) ( )
( )

0

Min ( ), ( )

s. t. , ( ), ( ) a.e. [ , ]

for all [ , ]

( ) ( ) a.e. [ , ]

, ( ) 0

( )

J x x

x t f t x t u t t

OCP h t

u t t t

a b

a b

t x t a b
a b

x a x

ϕ=

= ∈

∈

∈ ∈




 ≤


 ∈



U
 

Here :[ , ] mu a b →  is a measurable function and 
the arc [ ]( )1,1 , ; nx W a b∈  (i.e., absolutely 
continuous function) depends on the choice of 
control u  and the initial state 0x . Before stating the 
maximum principle for the state constrained 
problem ( )OCP  we present here a basic definition 
related to the MP. 

Definition 5.1 (Strong local minimum): An 
admissible process * *( , )x u  is called a strong local 
minimum for the problem ( )OCP  if, for 
some 0ε > , the process * *( , )x u  minimizes the cost 
over all the admissible processes ( , )x u  satisfying 

*( ) ( )x t x t ε− ≤  for all [ ],t a b∈ . 

We start by stating the Maximum Principle for 
(OCP) without state constraints, i.e., we assume that 
the constraint ( ), ( ) 0h t x t ≤ is absent from the 
problem. 

1

0 31 2 t

*x

(a) Optimal Trajectory

1−

10 2
t

*u

(b) Optimal Control

3
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The smooth maximum principle, which we present 
next, is valid under smooth assumptions on the data. 
Here, and for simplicity, we consider that the 
functions ,f ϕ  are all continuously differentiable. 
Observe that in (OCP) (and again for the sake of 
simplicity) we assume the multifunction U  to be 
constant (i.e., ( )t =U U ) and U  is a closed set. We 
define the pseudo-Hamiltonian 

              ( ) ( ), , , , , , .H t x p u p f t x u=  

The next Theorem is an adaptation of Theorem 9.3.1 
in [26]. 

Theorem 5.1 (The Maximum Principle for 
(OCP) without state constraints): Suppose that 

( )* *,u x is a strong local minimum of ( )OCP  
without state constraints. Then there exists 

[ ]( )1,1 , ; , 0np W a b λ∈ ≥  such that the following 
conditions are satisfied: 

(i) The Nontriviallity Condition 

         ( ) ( ), 0,0p λ ≠  

(ii) The Adjoint Equation                             
( )* *( ) , ( ), ( ), ( ) a.e.xp t D H t x t p t u t− =  

(iii) The Weierstrass Condition 

( ) ( )* * *, ( ), ( ), ( ) max , ( ), ( ),
u

H t x t p t u t H t x t p t u
∈

=
U

 

(iv) The Transversality Condition 

( ) ( ) ( )* *( ), ( ) ( ), ( ) ,0p a p b D x a x bλ ϕ ζ− = +   

for some nζ ∈ . 

The function p  is called the costate (adjoint) 
function and λ  the cost multiplier. The adjoint 
equation is also called the costate differential 
equation.  
We now turn to the more general problem (OCP), 
this time assuming that the state constraint is 
imposed. The effect of state constraints is the 
introduction of measures as multipliers. The adjoint 
multiplier p is then related with a function q of 
bounded variation. We need to introduce some new 

concepts before proceeding.  The multipliers 
associated with state constraints will be elements of 
the topological dual [ ]( )* , ;C a b   of the space of 

continuous functions [ ]( ), ;C a b  . Elements of 

[ ]( )* , ;C a b   can be identified with finite regular 

measures on the Borel subsets of[ ],a b . The set of 

elements in [ ]( )* , ;C a b   taking nonnegative values 

on nonnegative-valued functions in [ ]( ), ;C a b   is 

denoted by [ ]( ), ;C a b⊕  . The norm 

in [ ]( ), ;C a b⊕  ,
TV

µ  coincides with the total 

variation of
[ ],

, ( )
a b

dsµ µ∫ . The support of a 

measure [ ]( )* , ;C a bµ∈  , written { }supp µ , is the 

smallest closed set [ ],A a b⊂  such that for any 

relatively open subset [ ], \B a b A⊂  we have ( ) 0Bµ = . 

Let us assume again that the functions ,f ϕ   and h  
are all continuously differentiable and as before, that 
U  is a closed set. Then the following holds: 

Theorem 5.2 (The Maximum Principle): 
(adaptation of Theorem 9.3.1 in [26]) Suppose that 
( )* *,u x is a strong local minimum of ( )OCP .Then 

[ ]( ) ( )1.1 , ; , 0, ,np W a b C a bλ µ ⊕∃ ∈ ≥ ∈ and a 

measurable function [ ]: , na bγ →  satisfying 

( )*( ) , ( )   . .xt h t x t a eγ µ=  such that the following 
conditions are satisfied: 

(i) The Nontriviallity Condition 

         ( ) ( ), , 0,0,0p µ λ ≠  

(ii) The Adjoint Equation                             
( )* *( ) , ( ), ( ), ( ) a.e.xp t D H t x t q t u t− =  

(iii) The Weierstrass Condition 

( ) ( )* * *, ( ), ( ), ( ) max , ( ), ( ), a.e.;
u

H t x t q t u t H t x t q t u
∈

=
U

(iv) The Transversality Condition 

( ) ( ) ( )* *( ), ( ) ( ), ( ) ,0p a q b D x a x bλ ϕ ζ− = +  

for some nζ ∈  
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(v) { } ( )*supp I xµ ⊂ .  

Here we define,  : ( ) ( );  i.e.,q p s dsγ µ= + ∫  

[ )
[ )

[ ]

,

,

( ) ( ) ( )   for ,
( ) :

( ) ( ) ( )   for 

a t

a b

p t s ds t a b
q t

p b s ds t b

γ µ

γ µ

 + ∈
= 

+ =

∫
∫

 

and ( ) ( ){ }* *: : , ( ) 0I x t h t x t= =   

We do not discuss different issues related with this 
result (as for example, degeneracy of the above set 
of conditions) and we do not present its proof. We 
refer the readers to see ([14] and [26]) for the proof 
of the theorem and for more discussion on 
maximum principle for state constrained problems. 
 

6 The Role of Penalty Function in 
Optimal Control Problems  

It is almost obvious that constraints are important in 
most optimization problems. Sometimes problems 
with multiple objectives are reformulated with some 
of the objectives acting as constraints. Difficulty in 
satisfying constraints will increase (generally more 
than linearly) with the number of constraints [23]. 
Especially the presence of pure state constraints 
makes the problems hard to solve. In such situation, 
penalty function is an essential tool which plays a 
crucial role to solve the problems and in the 
derivation of necessary conditions. 

Penalty functions have been a part of the literature 
on constrained optimization for decades. A detailed 
survey of penalty methods and their applications to 
nonlinear programming can be found in [3, 5, 17] 
and the references therein. In these methods, the 
original constrained problem is replaced by an 
unconstrained problem, whose objective function is 
the sum of a certain “merit” function (which reflects 
the objective function of the original problem) and a 
penalty term which reflects the constraint set. The 
merit function is chosen in general as the original 
objective function, while the penalty term is 
obtained by multiplying a suitable function, which 
represents the constraints, by a positive 
parameter K , called the penalty parameter. A given 
penalty parameter *K  is called an exact penalty 
parameter when every solution of the original 
problem can be found by solving the unconstrained 

optimization problem with the penalty function 
associated with *K . The penalty approach showed 
to be a powerful tool from a theoretical point of 
view (see, e.g., [3] for a detailed survey of 
theoretical applications of penalty methods). 
Furthermore, some fundamental notions of the 
theory of constrained optimization can be developed 
using the exact penalty function approach (see [5]). 
Various kinds of penalty techniques have been 
proposed and studied in the past four decades. In 
this section, we will discuss how penalty function is 
used to convert the constrained optimal control 
problems to the equivalent problems without state 
constraints.  

Suppose we have the optimal control problem in the 
form 

( )

( )

( ) ( )
( )

( )

Min , ( ), ( )

Subject to , ( ), ( ) , a.e. [ , ]

, ( ) 0, a.e. [ , ]

( ), ( )
( ) ( ), a.e. [ , ]

b
J l t x t u t dt

a
x t f t x t u t t a b

P h t x t t a b

x a x b C
u t t t a b


= ∫


= ∈

 ≤ ∈
 ∈
 ∈ ∈





U

     (8) 

where the functions ( ) ( ), ( ), ( ) , , ( ), ( )l t x t u t f t x t u t  are 

well behaved. We remove the constraints ( ), ( ) 0h t x t ≤  
by penalizing the cost with the integral  

                  ( ){ }max 0, , ( )
b

h t x t dt
a∫                          (9)  

Then we get 

( )
( ) ( ){ }

( ) ( )

0

Min , ( ), ( ) max 0, , ( )

s.t.  , ( ), ( ) , a.e. [ , ]
( ) ( ), a.e. [ , ]
( )

K

b b
J l t x t u t dt K h t x t dt

a a
x t f t x t u t t a bR
u t t t a b
x a x


= +∫ ∫

 = ∈
 ∈ ∈


=



U

Thus we can get a standard optimal control problem 
by adding the penalty function (6.2) to the cost for 
some 0K >  and K  is called the penalty 
parameter. Now, the interesting fact is that our 
problem involves the use of optimality conditions 
for nondifferentiable functions as the cost with 
penalty term is not differentiable, even if the 
original problem involves only differentiable 
functions. Several authors (see for examples [27] 
and [13]) showed the relation between the solutions 
of a sequence of problems  and that of problem 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Md. Haider Ali Biswas

ISSN: 1991-8763 223 Issue 6, Volume 6, June 2011



 

 

(P). They show that under some well-posed 
conditions, the sequence of solutions to problems 

 converges to the minimizer of the original 
problem ( )P . Thus, the penalty function plays a 
significant role in transferring an optimal control 
problem with state constraints into equivalent 
problem without state constraints. The applications 
of penalty function in such types of problems can be 
found more details in [10, 28]. 

Remarks: 
In spite of the above mentioned importance of 
penalty function, in some cases, especially in the 
theoretical point of view, the use of penalty function 
does not provide good results. However, this 
approach gives good results in numerical 
calculations of optimal control problems [25]. 
 
7 Nonsmooth Optimal Control 
Problems 
Nonsmooth Analysis had been closely interrelated 
with Optimal Control theory since 1970’s. The 
present day research in optimal control requires an 
essential familiarities as well as an in-depth 
understanding with nonsmooth analysis. In control 
theory, the necessity of nonsmooth analysis first 
came to light while finding the proofs of necessary 
conditions for optimal control, notably in 
connection with the Pontryagin Maximum Principle. 
This necessity holds even for problems which are 
expressed entirely in terms of smooth data. 
Generally nonsmooth analysis is taken into account 
when one wants to consider problems which are 
truly nonlinear or nonlinearizable, whether for 
deriving or expressing necessary conditions, in 
applying sufficient conditions, or in studying the 
sensitivity of the problem. 
The main notion in the classical (smooth) 
mathematical analysis is that of gradient. 
Nonsmooth analysis deals with nondifferentiable 
functions, therefore, the problem is to find a proper 
replacement for the concept of gradient. The notion 
of a subdifferential (or generalised gradient) was 
introduced to serve as a replacement for the 
derivative [19].  
The quest for some replacement of the derivative 
has a long history and can be dated to Dini in the 
XVIII century. The first successful attempts to 
obtain a nondifferential calculus took place in the 
60’s and 70’s of the XX century where smoothness 
assumptions were replaced by convexity. The book 
"Convex Analysis" by Rockafellar is a cornerstone 

in such development. In the seventies F. Clarke 
generalized the convex subdifferentials of 
Rockafellar to cover Lipschitz continous functions 
and to some extent, lower semi-continuous 
functions (see, for example [7]). He also 
successfully applied nonsmooth analysis to 
optimization and optimal control theory. In 76’s 
Mordukhovich proposed the concept of limiting 
subdifferential and he showed how transversality 
conditions in the nonsmooth Maximum principle 
could be weakened. 

In classical sense, derivatives of a function f are 
related to normal vectors to tangent hyperplanes; for 
any differentiable function f the vector 
( )( ), 1f x′ − is a downward normal to the graph of 

f  at ( ), ( )x f x . This geometric relationship is the 
key for the development of nonsmooth analysis. 
Instead of considering derivatives as elements of 
normal subspaces to smooth sets, ‘generalized 
derivatives’ are defined to be elements of normal 
cones to possibly nonsmooth sets. 

Now, we will discuss some fundamental definitions 
which are closely related to the study of nonsmooth 
analysis.  

Let  nC ⊂   be a closed and non-empty subset and 
\nx C∈ . Let c C∈ . The distance function is 

defined by 

       { }( ) : inf ,Cd x x c c C= − ∀ ∈                (10) 

We call c  as the closest point in C or the projection 
of x  onto C , i.e. Proj ( )C x (see Fig. 3)  if 

Proj ( )Cc x∈  such that the following condition 
holds: 

                      ,x c x c c C′ ′− ≥ − ∀ ∈         (11) 

 

Fig. 3 Proximal normal and Limiting normal cones. 
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Squaring both sides of (11) and then using the 
properties of inner product we can easily obtain the 
conclusion that Proj ( )Cc x∈  iff  

21, ,
2

w c c c c c C′ ′ ′− ≤ − ∀ ∈                      (12) 

where the vector w x c= − is perpendicular to C at 
c . Now any nonnegative multiple , 0tw tζ = >  of 
w  is a proximal normal.  

Definition 7.1 (Proximal Normal Cone): A vector 
ζ is called the proximal normal to C at c  iff there 
exists some 0σ >  such that  

2, ,c c c c c Cζ σ′ ′ ′− ≤ − ∀ ∈  and set of all such 

vectors, denoted by ( )P
CN c  is a cone and it is called 

the Proximal Normal Cone. 

The interesting fact is that if c C∈  
but Proj ( ), n

Cc x x∉ ∀ ∈ , we have { }( ) 0P
CN c = . 

But if nC ⊂   is closed and convex, then  

                     { }bdr( ) ( ) 0P
Cc C N c∈ ⇒ ≠ .  

Definition 7.2 (Limiting Normal Cone):  Suppose 
that   nC ⊂   is a closed set and c C∈ . Then a 
vector ζ is called the limiting normal to C  at c  if  

lim , ( ), ,P
i i C i i iN c c C c cζ ζ ζ= ∀ ∈ ∈ →  and the 

set of all such  limiting normals, denoted by ( )L
CN c  

is a cone called the  limiting normal cone to C  at 
c . 
Note that ( )P

CN c ⊂ ( )L
CN c  for all c C∈ , but if C  

is a convex set, then ( )P
CN c = ( )L

CN c  for all c C∈ . 

Moreover, if bdr( )c C∈  then { }( ) 0L
CN c ≠ . 

Definition 7.3 (Proximal Normal 
Subdifferential): Let us consider 

( ]: ,nf → −∞ +∞  to be a lower semi-continuous 
function and  the domf   is such that, 

                 { }dom : ( )f x f x= < +∞ . 

Then proximal normal subdifferential of f at 
domx f∈ is defined as 

P ( ) 0, 0 :f xζ δ σ∈∂ ⇔ ∃ > ∃ ≥  

2( ) ( ) , , ( )f y f x y x y x y B xδζ σ≥ + − − − ∀ ∈ . 

Definition 7.4 (Limiting Subdifferential): The 
limiting subdifferential of a function f at 

domx f∈ is defined as 

{ }
L ( )

lim : ( ), , ( ) ( ) .i i P i i i

f x
f x x x f x f xζ ζ ζ

∂

= = ∀ ∈∂ → →
 Now we are interested to extend this notion 
to Lipschitz continuous function. 

Definition 7.5 (Lipschitz Continuous): Let 
: nf →   be a function and nx∈  is a given 

point. Then f is said to be Lipschitz near x , if there 
exist a scalar 0K >  and   a positive number 0ε >  
such that  

     ( )1 2 1 2 1 2( ) ( ) , , ,f x f x K x x x x B x ε− ≤ − ∀ ∈ , 
where B  is the open ball of radius ε  about x  and 
K  is the called the Lipschitz constant. 

A function f  Lipschitz in a neighbourhood of a 
point nx∈  does not necessarily imply the 
differentiability at that point, but we can find the 
generalized directional derivative, 

        
, 0

( ) ( )( ; ) : limsup
y x

f y v f yf x v
λ

λ
λ→ ↓

+ −
=   

We are now in a position to define the Clarke’s 
subdifferential:                        

{ }( ) : : ( ; ) , ,n n
C f x f x v v vξ ξ∂ = ∈ ≥ ∀ ∈   

It is worth to mention that ( )C f x∂ is a compact 
convex nonempty set satisfying the usual 
differential calculus, 

                         ( ) ( )( )C Cf x f x−∂ = ∂ −   

  and           ( )( ) ( ) ( )C C Cf g x f x g x∂ + ⊂ ∂ + ∂  

This generalized gradient and its calculus were first 
defined by Clarke in 1973 [7], so ( )C f x∂  is called 
Clarke subdifferential of f . Taking into account 
that a Lipschitz function is differentiable almost 
everywhere the Clarke’s subdifferential can be 
defined alternatively as 
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         { }( ) : co lim ( ) : ,C i i ii
f x f x x x x

→+∞
∂ = ∇ → ∉ U  

where U is any set of measure zero containing the 
local points of nondifferentiability of f . See, for 
example ([7], [8], [19]) for more details about 
nonsmooth analysis and its basic calculus. 

The fundamental ideas of Nonsmooth Analysis were 
first restricted to locally Lipschitz functions where 
the class of convex functions plays an important 
role.  

Having introduced briefly the main concepts of 
nonsmooth analysis we are now in position to state a 
nonsmooth version of the Maximum Principle. Let 
us as before consider the problem 

( )

( )
( ) ( )
( )

0

Min ( ), ( )

s.t. , ( ), ( ) a.e. [ , ]

       all [ , ]

( ) a.e. [ , ]

( )

, ( ) 0 for 

J x x

x t t x t u t t

h t

u t t

x x

a b

f a b

OCP t x t a b
a b

a

ϕ=

∈

∈

∈ ∈

∈




=
 ≤







U  

Before proceeding some new definitions are called 
for.  

Definition 7.6 (Integrably Lipschitz): A function 
f  is said to be integrably Lipschitz in x  near *x if 

there exist 0ε >  and an integrable function k  such 
that, for almost every [ ],t a b∈  the following 
condition holds: 

      
( )

2 1

*
2 1 1 2

( , , ) ( , , )

( ) , ( ), , ,

f t x u f t x u

k t x x u t x x B x ε

−

≤ − ∀ ∈ ∈U
 

Definition 7.7 (The Graph of a multifunction U ): 
The graph of the multifunction [ ]: , ma b →U , 
denoted by GrU  is defined as the set 

                   [ ]{ }: ( , ) , : ( )mGr t u a b u t= ∈ × ∈U U  

We shall impose the following hypotheses which 
make reference to an optimal solution ( )* *,x u  and 

a parameter 0ε > : 

 (NH1) The function ( , ) ( , , )t u f t x u→  is ×L B  
measurable and Lipschitz on  *( ) (0, )x t B ε+ . 

(NH2) ϕ is Lipschitz near ( )* *( ), ( )x a x b with 

Lipschitz constant Kϕ . 

(NH3) h is upper semicontinuous and for each 
[ ],t a b∈  the function ( ),h t ⋅  is Lipschitz on  

*( ) (0, )x t B ε+  with Lipschitz constant hK . 

(NH4) GrU  is a Borel set. 

Also we define the partial subdifferential, 
( ), ( )xh t x t>∂ as  

( ) ( ) ( ) ( ){ }= co lim : , , , , , , 0i i C i i i i i ii
h t x t x t x h t xγ γ γ

→∞
= ∈∂ → >

and the pseudo-Hamiltonian function as in section 5. 

Theorem 7.1 (Nonsmooth Maximum 
Principle): (Theorem 9.3.1, [26]) Suppose that 

( )* *,u x is a strong local minimum of ( )OCP and 
assume that hypotheses (NH1)-(NH4) are satisfied. 
 
Then [ ]( ) ( )1.1 , ; , 0, ,np W a b C a bλ µ ⊕∃ ∈ ≥ ∈ a

nd a measurable function [ ]: , na bγ →  satisfying 

( )*( ) , ( )   . .xt h t x t a eγ µ>∈∂  such that the following 
conditions are satisfied: 

(i) The Nontriviallity Condition 

         ( ) ( ), , 0,0,0p µ λ ≠  

(ii) The Adjoint Equation                             
( )* *( ) , ( ), ( ), ( ) a.e.C

xp t H t x t q t u t− ∈∂  

(iii) The Weierstrass Condition 

( ) ( )* * *, ( ), ( ), ( ) max , ( ), ( ), a.e.
u

H t x t q t u t H t x t q t u
∈

=
U

(iv) The Transversality Condition 

( ) ( ) ( )* *( ), ( ) ( ), ( ) ,0Cp a q b x a x bλ ϕ ζ− ∈ ∂ +  

for some nζ ∈  

(v) { } ( )*supp I xµ ⊂ .  

Here we define  
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[ )
[ )

[ ]

,

,

( ) ( ) ( )   for ,
( ) :

( ) ( ) ( )   for 

a t

a b

p t s ds t a b
q t

p b s ds t b

γ µ

γ µ

 + ∈
= 

+ =

∫
∫

 

and ( ) ( ){ }* *: : , ( ) 0I x t h t x t= =    

In the statement of the theorem C
x∂ denotes the 

Clarke subdifferential (with respect to the x  
variable). 

We refer readers to ([7] and [9]) for the detailed 
presentations and to [12] for the recent 
developments in the nonsmooth maximum principle. 

8 Conclusion and Future Directions 

We have presented a brief review on optimal control 
problems with state constraints which appear in a 
very natural way when modeling many real life 
engineering applications in robotics, aeronautics and 
medicine. We have introduced some important 
issues on optimal control theory as well as on 
nonsmooth analysis from the very beginning to the 
recent developments. In all optimal control 
problems, necessary conditions are a powerful tool 
in the determination of the optimal solution. Indeed, 
they are widely used to develop solvers. Moreover, 
they can provide qualitative information on the 
solution and are the basis for the study of regularity 
of the optimal control, an important ingredient in 
choosing efficient solvers for optimal control 
problems. However, necessary conditions for 
optimal control problems with state constraints are 
not easy to use in applications due to the presence of 
measures as multipliers. In the very beginning of the 
Optimal Control Theory, necessary conditions for 
state constrained problems were not stated directly 
in terms of measures. Most of such conditions were 
derived assuming that the optimal trajectory would 
touch the boundary of the constraint set in a finite 
number of times, an assumption that could not be 
made a priori, on applications.  

Many questions concerning necessary conditions for 
state constrained problems are unanswered or not 
clearly answered. In my future research we hope to 
study and contribute to four of important questions 
concerning state constraints, not necessarily 
independent; 

(1) what kind of necessary conditions can we 
obtain using the latest developments on the Euler-

Lagrange Inclusion type conditions for control 
problems with differential inclusion  developed in 
[9]  and/or  exact penalization techniques introduced 
in [11]?  

(2) is it possible to identify classes of problems 
for which the measures are absolutely continuous?;  

(3) is it possible to identify a class of problems 
with optimal trajectories touching the boundary of 
the constraints in a finite number of points?  

(4) under which conditions can we assert that 
when the trajectory touches the boundary it will 
remain there during an interval of time?;  

The quest for answers to such questions will be 
illustrated by the treatment and study of several 
academic examples.   
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