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Abstract: - This paper presents the evolutionary neural networks for the prediction of energy output from a grid-

connected photovoltaic (GCPV) system. Two evolutionary neural network (ENN) models have been proposed using 

evolutionary programming and artificial immune system (AIS) respectively. The artificial neural network (ANN) 

employed for these models utilized solar radiation and ambient temperature as its input whereas the kilowatt-hour 

energy of the GCPV system is the only targeted output. The evolution of ANN involves the search of the optimal 

number of nodes, the learning rate, the momentum rate, the transfer function and the learning algorithm of a single-

hidden layer multi-layer feedforward ANN. The results showed that evolutionary programming-ANN (EPANN) 

outperformed artificial immune system-ANN (AISANN) in terms of correlation coefficient, R as well as computation 

time. In addition, EPANN had also produced better convergence of the evolving parameters compared to the AISANN. 

 

Key-Words: - artificial neural network (ANN), multi-layer feedforward neural network (MLFNN), photovoltaic (PV), 

grid-connected photovoltaic system (GCPV), correlation coefficient (R), evolutionary programming (EP), artificial 

immune system (AIS) and prediction. 

 

1   Introduction 
     Photovoltaic (PV) involves solar electricity converted 

from solar energy. As any site on earth theoretically 

receives significant amount of solar energy, solar power 

generation offers significant advantages compared to 

other sources of renewable energy which are mostly site 

dependent. Although solar power generation is 

traditionally related to stand-alone PV systems, the 

current application of solar power generation is often 

associated to the grid-connected PV (GCPV) systems, 

particularly in urban areas where the conventional utility 

grid is readily available. In a GCPV system, the PV 

modules are connected in a specific configuration to form 

a PV array. The power generated by PV array is then 

channeled to an inverter which converts the DC power to 

AC power. 

Nevertheless, the operation of GCPV systems strongly 

depends on various climatic factors such as solar 

irradiation and ambient temperature [1]. Higher 

irradiation would result in higher energy output produced 

by a GCPV system. In contrast, higher ambient 

temperature would heat up the solar cells inside the 

modules, thus lowering the effective voltage of the solar 

cells [2]. As a result, the overall energy output from the 

system is similarly reduced. In addition, the variation of 

these climatic factors with respect to time and location 

has resulted in inconsistent performance of GCPV 

systems. 

Due to the inconsistent output performance, it would 

be very beneficial if the energy output from the system 

could be predicted when the expected irradiation and 

temperature are known. Thus, the system owner could 

pre-estimate the electricity bill savings or extra income 

generated by exporting the solar electricity to the utility. 

One of the available prediction techniques is the artificial 

neural network (ANN). This technique has been used in 

predicting PV system output. Firstly, a two-hidden layer 

multi-layer feedforward was developed to predict the 

energy (in kWh) output of grid-PV systems using 

different combination of solar radiation, module 

temperature and clearness index [3]. Likewise, the output 

performance of a PV module had specifically modeled 

using the same architecture but with a two-layer 

configuration and different inputs [4]. The ANN utilizes 

solar irradiance, ambient temperature and module 

temperature as its inputs while voltage and current are 

identified at its outputs. These studies had proven that 
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ANN is highly capable of predicting the output of PV 

systems. 

Nevertheless, the selection of ANN design 

parameters is often difficult and tedious as it is commonly 

performed using trial and error process. As a result, 

several methods using evolutionary neural network 

(ENN) had been proposed to facilitate the design of 

ANN. Firstly, evolutionary programming (EP) was used 

to evolve the weights of an ANN [5]. Nevertheless, the 

proposed algorithm did not focus on the evolution of 

ANN architecture as the number of nodes was presumed 

before the training process. As a result, the ANN design 

may not be optimized. Secondly, an EP based ANN in [6] 

was developed to evolve both the architecture and 

weights of an ANN. but the proposed technique had only 

been demonstrated with a simple XOR problem. 

Nonetheless, a more realistic approach was proposed in 

[7]. Although the output of the GCPV system was 

predicted successfully by evolving the number of nodes 

in hidden layer, the learning rate and the momentum rate 

of the ANN, the selection of transfer function and 

learning algorithm was performed intuitively. Thus, the 

evolution of the ANN was not comprehensive. Therefore, 

this paper presents two better approaches towards ANN 

design using evolutionary programming (EP) and 

artificial immune system (AIS) as the optimizer in the 

selection of ANN design parameters.  

 

2 Proposed Artificial Neural Network 

Model 
    ANN is a generalization process for mathematical models 

based on biological nervous system [8]. The fundamental 

processing element of an ANN is called a neuron. In basic 

computational model, the neuron collect input signals 

from other neurons or sources and merge them. It will 

then perform necessary computation before mapping 

them to an output. ANN has been preferred over other 

conventional statistical techniques to solve many 

prediction problems since it is able to handle complex 

interconnection problems more effectively compared to 

its competitors via the large network of processing nodes 

[9]. Moreover, ANN does not require prior knowledge on 

the characteristics of data in contrast with the 

conventional statistical methods which process 

information based on the statistical values derived from 

the data distribution presented to a problem. 

Although there are different types of ANN architecture 

used for prediction, the Multi-layer Feedforward Neural 

Network (MLFFNN) has been widely used in solving 

many engineering problems due to its good generalization 

capability and simplicity [10]. Apart from that, MLFNN 

is also capable of performing non-linear modeling with 

reasonable accuracy [11]. Hence, MLFFNN was 

employed in this study. The MLFNN comprises two 

nodes at the input layer representing two inputs and one 

node at the output layer representing a single output. In 

addition, single hidden layer with sigmoid function was 

chosen as it often produces satisfactory prediction 

accuracy as long as the selected number of nodes is 

adequate [12-13]. Besides that, it is also a good estimator 

for any nonlinear function [14]. 

An example of a general MLFFNN architecture with 

single hidden layer is shown in Fig. 1. The MLFNN 

consists of one input layer, one hidden layer and an 

output layer. The input layer, hidden layer and output 

layer consist of two, four and one nodes respectively. The 

inputs are represented by i1 and i2 while the output is 

represented by t1. 

 
 

Fig. 1: An example of multi-layer feedforward neural network with 

single hidden layer. 

 

In MLFNN, the data run rigidly from the input layer to 

the output layer via several processing units. Despite 

having no memory, the MLFNN output is heavily 

dependent on the current input and weight values in the 

network of nodes. The processing units, also known as 

the activation functions, can be linear and non-linear, or a 

combination of both. However, the activation function for 

each node in the same layer has to be similar. In this 

study, the activation function in the hidden layer was 

selected from two non-linear functions, i.e the logistic 

sigmoid function, logsig [15] and the tangent sigmoid 

function, tansig [16]. These non-linear transfer functions 

would provide output values from 0 to 1. On the other 

hand, the linear transfer function, purelin was chosen for 

the output layer such that the final output from the 

network could have any value which is not limited. 

Nevertheless, MLFNN often encounters a crucial 

problem in its implementation. The primary challenge in 

MLFNN design is to select the appropriate training 

parameters and topology of the network. This process 

involves the selection of the optimal number of hidden 

nodes in its hidden layer, the learning rate and the 

momentum rate. In many cases, the selection of the 

number of nodes is conducted using the common trial-

and-error method as there is no strict approach for the 

selection [17]. If the selected number of nodes is too 
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small, the MLFNN is unable to be trained effectively. On 

the contrary, the training duration would be longer if the 

selected number of nodes is too large. In fact, too many 

nodes may result in over-generalization of the prediction 

[18]. On the other hand, higher learning rate results in 

slower convergence of the MLFNN whereas smaller 

learning rate results in more iterative updates required for 

convergence. Apart from that, if the momentum rate is 

not optimal, the MLFNN would encounter slower 

convergence as it is not able to learn the previous weight 

patterns that would lead to convergence.  

In this study, an MLFNN with single hidden layer has 

been selected to predict the output performance of a grid-

connected PV (GCPV) system. The inputs to the MLFNN 

are the solar irradiation, SI and ambient temperature, AT 

data patterns whereas the sole output of the MLFNN is 

the kilowatt-hour energy generated by the GCPV system. 

The GCPV system is located at the rooftop of Green 

Energy Office building, Malaysian Energy Centre (PTM), 

Bandar Baru Bangi, Malaysia. The system comprises 

27kWp mono-crystalline PV array and a 24kW inverter 

(IG6). Each irradiance and temperature sensor was 

connected to the inverter while all data were recorded at 

fifteen minute interval. 

The MLFNN design consists of two basic steps, i.e. the 

training process and the testing process. The training 

process started with the presentation of training data 

patterns to the MLFNN. The training data were later 

normalized to ensure that all input and output data 

patterns were transcribed into a common range of values 

[19]. Thus, the search of the correlation among these 

input and output patterns was simplified. The min-max 

normalization [20] had been used in this study. It was 

performed using 

 

( ) norm

actual

normnormnorm Min
DD

Dx
MinMaxx +









−

−
×−=

minmax

min
         (1) 

 

where xnorm is the normalized data value and xactual is the 

actual data value to be normalized.  Dmin is the minimum 

actual data value while Dmax is the maximum actual data 

value. In addition, Maxnorm is the predetermined 

maximum normalized data value which is equal to 1 

whereas Minnorm is the predetermined minimum 

normalized data value which is equal to -1.  

After normalization, the training data were propagated 

throughout the network using a learning algorithm. The 

Levenberg-Marquardt algorithm, trainlm has been 

commonly used as the learning algorithm because it has 

frequently outperformed other gradient-descent based 

learning algorithms [21-22]. The trainlm operates 

effectively such that the prediction error can be decreased 

at the end of each iterative update during the training 

process. Nevertheless, besides trainlm, the scaled 

conjugate gradient algorithm, trainscg had also been 

proven to produce satisfactory prediction performance of 

grid-connected PV system output [23]. In addition, the 

BFGS quasi-Newton backpropagation algorithm, trainbfg 

was found to outperform trainlm in training MLFNN 

[16]. Apart from that, trainbfg is also expected to have 

similar performance with trainlm. However, for larger 

size of network, more extensive computation is required 

for trainbfg [24]. Therefore, as these learning algorithms 

had proven useful [25-26], an optimal learning algorithm 

must be selected to suit the prediction task implemented 

in this study. 

The training performance was quantified using the 

correlation coefficient, R which represents the 

relationship between the target output and the simulated 

output. The values of R can vary from 0 to 1. The best 

prediction performance is achieved when R is equal to 

unity. 

Once the training was completed, testing process was 

performed to validate the training process. Different data 

patterns were initially presented to the trained network. 

Then, the network is simulated using the new data 

patterns. Finally, the R of the data patterns was computed. 

In this study, the training process was improved by 

presenting an automatic selection of the number of hidden 

nodes, the learning rate and the momentum rate using EP 

and AIS.  

 

3 Proposed Evolutionary Programming-

ANN Algorithm 
EP in [27] is a branch of evolutionary computing (EC)-

based search technique which classified under the 

artificial intelligence (AI). EP basically comprises several 

important processes such as initialization, fitness 

evaluation, mutation and selection [7]. In this study, EP 

was used to search for the optimal number of hidden 

nodes in its hidden layer, x1 the learning rate, x2, the 

momentum rate, x3, the transfer function, x4 and the 

training algorithm, x5 during the MLFNN training such 

that the R of the prediction was maximized. These 

training parameters represent the decision variables 

required to be evolved in EP. The proposed evolutionary 

neural network (ENN) algorithm, known as the 

evolutionary programming- ANN (EPANN), was written 

in Matlab software package. The algorithm is 

implemented using the following steps 

 

Step 1: (Initialization)- generate M population of sets of 

random numbers, x1, x2, x3, x4 and x5. x1 was set to have 

integer values between 1 to 20. On the other hand, both x2 

and x3 were set to have continuous values between 0 and 

1. In addition, x4 was transcribed to a value of either 1 

(logsig) or 2 (tansig). x5 was set to be either 1 (trainlm), 2 

(trainscg) or 3 (trainbfg) as these learning algorithms had 
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been proven successful in many ANN training cases. 

Each set of random numbers forms the initial candidates 

of the optimal solutions known as parent. The fitness 

value for each parent is then evaluated by training the 

MLFNN to determine the R value of the prediction. 

Step 2: (Mutation)- Mutate each parent based on 

statistical values obtained from the parent population. 

Each parent is mutated using the following equation to 

produce a mutated parent known as offspring.  

                     
( )kikikiki Nxx ,,,

'

, ,0 σ+=                       (2) 

 

where xi,k is the value of i-th parent for the k-th decision 

variable and  Ni,k(0,σi,k) is the Gaussian random number 

with mean zero and standard deviation σi,k. The value of 

σi,k can be computed using 

                     

( )min,max,

max,

,

, kk

k

ki

ki xx
f

f
−










⋅= βσ          (3) 

 

where β is the scaling factor for mutation and fi,k is the 

fitness value of the i-th parent in the current population 

for the k-th decision variables. At this stage, M offspring 

was produced. These offspring present another set of 

candidates for the optimal solutions. 

Step 3: (Fitness evaluation)- Determine the fitness value 

for each offspring using the training process described in 

step 1. 

Step 4: (Selection)- Select the best M candidates among 

the 2M population of parents and offspring according to 

their fitness values. R is used to describe the fitness value 

of the candidates. Candidates with lower R value are 

preferred compared to the candidates with larger R. Once 

selection has been performed, the stopping criteria are 

tested to terminate the evolution. The stopping criteria are 

described as follows: 

001.0minmax ≤− RR                         (4) 

 

              0min,1max,1 =− xx                                (5) 

If the stopping criteria are not satisfied, step 2 is 

repeated. Otherwise, evolution is stopped and the best N 

candidates are presented as the optimal solutions. 

 

4 Proposed Artificial Immune System-

ANN Algorithm 
The second ENN algorithm, known as artificial 

immune system-ANN (AISANN) proposed in this study 

was developed using AIS. AIS is often described as an 

adaptive-based optimization technique inspired by the 

observation of immune function, theories and paradigms 

[28]. Major processes of AIS algorithm based on clonal 

selection principle include initialization, cloning, hyper-

mutation and selection. The AIS algorithms can be 

mainly classified into two categories, namely the 

population-based algorithms and the network-based 

algorithms. In this study, a sub-class of the population-

based algorithm modified from the standard clonal 

selection algorithm had been introduced to evolve the 

MLFNN. In clonal selection process, the potential 

candidates are presented as antibodies while the expected 

solutions are considered as antigens. As the affinity 

values of the antibodies can be different, the cloning of 

antibodies is usually performed based on the affinity 

values before affinity maturation is performed using a 

hyper-mutation process. Nevertheless, in this study, the 

proposed algorithm was developed using uniform clonal 

process with the exclusion of hypermutation [29]. The 

mutation of each clone was performed using constant 

mutation rate as pervious study had shown that this 

mutation method had been adequate to provide 

satisfactory results [30]. Apart from that, the affinity 

calculation was associated to the R for simplicity. The 

proposed AISANN is almost similar to the proposed 

EPANN explained previously with the modifications of 

the steps outlined in the EPANN algorithm. The AISANN 

algorithm was also written in Matlab. 

• Cloning process: After the initialization of the M 

parents has been completed, clone each parent population 

such that nc clones are produced from each x1, x2, x3, x4 

and x5. Thus, the new number of parents in the population 

becomes M × nc.  

• Mutation: during the mutation process, instead of M 

offspring, M × nc offspring will be produced. 

• Selection: select the best M candidates from the M × 

nc offspring based on their fitness values. Parent 

population should be excluded during the selection to 

avoid redundancies. 

 

5 Results and Discussion 
The values of the selected MLFNN settings are shown 

in Table 1.  These values were fixed throughout the 

training process. Similar number of data patterns used for 

the prediction was allocated for both training and testing. 

In addition, the mean square error goal was set to be 

0.001, which is sufficiently small to yield a satisfactory 

prediction for majority of data patterns. Besides that, the 

maximum number of iterative updates was found to 600. 

This value was adequate for the training as most of the 

trained patterns managed to converge much earlier before 

reaching the maximum number of iterative updates.  

Upon the completion of training process, testing 

process had been performed to stop the training process. 

The overall computation time for both training and testing 

processes was recorded in each proposed ENN. The 

overall training and testing performance is discussed in 

section 5.1. On the other hand, the detailed fitness 

performance of each algorithm is presented in section 5.2. 

As the MLFNN operation is random in nature, 
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inconsistent fitness values were expected despite having 

similar MLFNN design parameters. As a result, besides 

the maximum and minimum fitness values for each 

evolution, the average fitness value and the standard 

deviation were also computed to provide a better 

representation of the fitness behavior for each generation. 

The standard deviation profile for each algorithm is 

presented in section 5.3. In addition, the convergence of 

the number of nodes in hidden layer, the learning rate, the 

momentum rate, the transfer function and the learning 

(training) algorithm are presented in section 5.4, 5.5, 5.6 

and 5.7 respectively. 

 
5.1 Overall performance 

The results of the optimal MLFNN design parameters as 

well as the performance of EPANN and AISANN are 

compared in Table 2. Twenty set of random numbers 

were generated to form the initial population in both 

algorithms. In addition, the number of clones was set to 5 

in the AISANN algorithm. 

In Table 2, the optimal number of nodes in the hidden 

layer was found to be 4 using both algorithms. The 

learning rates employed by EPANN were found to be 

higher than those in AISANN. The minimum and 

maximum learning rates in EPANN were discovered to 

be 0.7720 and 0.7796 respectively. On the other hand, the 

minimum and maximum learning rates in AISANN were 

discovered to be 0.2724 and 0.5574 respectively. 

Nevertheless, the momentum rates in EPANN showed 

better convergence than the momentum rates in AISANN. 

The maximum momentum rate of AISANN was 

approximately twice higher than the maximum 

momentum rate of EPANN but the minimum momentum 

rates for both algorithms are almost equal. Apart from 

that, unlike the transfer function of AISANN which did 

not converge to a single function at the end of the 

evolution process, the transfer function of EPANN 

managed to converge to a similar function. The optimal 

transfer function of the hidden layer in EPANN was 

found to be logsig while the AISANN had failed to 

produce a single transfer function. However, both 

EPANN and AISANN showed that trainbfg is the optimal 

learning algorithm. Besides that, the maximum and 

minimum fitness values found in the final population of 

both algorithms were approximately the same. 

Nonetheless, the average R value in AISANN was 

0.008% higher than the average R value in EPANN while 

the standard deviation of fitness in AISANN was slightly 

lower than the standard deviation in EPANN.  

 
In contrast, the testing process showed that the R value 

of EPANN was 0.007% higher than the R value of 

AISANN. Apart from that, although the required number 

of iterations in EPANN was thrice higher than the 

required number of iterations in AISANN, EPANN had 

shown faster computation time compared to AISANN. 

EPANN was found to be almost two times faster than 

Table 2: Prediction performance of EPANN and 

AISANN 

Parameter/Results EPANN AISANN 

Number of initial parent, M 20 20 

Number of clones, nc - 5 

Number of nodes in hidden 

layer, x1 
4 4 

Minimum value of x2 0.7720 0.2724 

Maximum value of x2 0.7796 0.5574 

Minimum value of x3 0.1033 0.1012 

Maximum value of x3 0.1154 0.2857 

Minimum value of x4 1 (logsig) 1 (logsig) 

Maximum value of x4 1 (logsig) 2 (tansig) 

Minimum value of x5 3 (trainbfg) 3 (trainbfg) 

Maximum value of x5 3 (trainbfg) 3 (trainbfg) 

Minimum R in training, 

dimensionless 
0.99854 0.99862 

Maximum R in training, 

dimensionless 
0.99871 0.99872 

Average R in training, 

dimensionless 
0.99858 0.99866 

Standard deviation 4.9 × 10
-5 

3.12 ×10
-5 

R in testing 0.99839 0.99832 

Required number of 

iteration before stoppage 
18 6 

Average computation time, 

in seconds 
4345.83 8721.62 

Table 1: Fixed ANN training parameter settings 

Parameters Value 

Number of training patterns 386 

Number of testing patterns 386 

Number of nodes in the input 

layer 
2 

Number of nodes in the output 

layer 
2 

Mean square error goal 10
-3 

Maximum number of iterative 

updates 
600 
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AISANN. Therefore, after considering the R performance 

of EPANN which were relatively similar to R of 

AISANN as well as the superior computation time, 

EPANN was selected as the better option for 

implementing the ENN. 

 

5.2 Fitness performance 

The fitness performances of EPANN and AISANN are 

illustrated in Fig. 2 and Fig. 3 respectively. In Fig. 2, the 

fitness values in EPANN had actually converged since 

the first evolution according to equation 4. However, the 

number of nodes had not come to an absolute 

convergence. Thus, the evolution process continued and 

stopped at the eighteen evolution. As the final minimum 

fitness values obtained were very close to unity, the 

prediction task was deemed successful. Besides that, the 

average fitness also showed a fluctuating trend towards 

the maximum value. However, the final average fitness 

value was slightly lower than the maximum average 

fitness achieved during the evolution process. While the 

ANN operation is random in nature, this phenomenon is 

acceptable since the number nodes had not yet converged 

to its final value. Similarly, the maximum fitness value 

had fluctuated before reaching a value which was very 

close to its maximum value. 
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Fig. 2: Fitness convergence of EPANN 

 

On the other hand, in Fig. 3, the fitness values had 

initially converged at the first evolution before the 

algorithm reached the overall convergence on the sixth 

evolution. Apart from that, unlike the maximum fitness 

value, the average fitness and minimum fitness in 

AISANN had shown a consistent increasing trend before 

convergence. When compared to EPANN during the first 

six evolutions, the AISANN had shown better 

consistency of fitness values throughout the evolution. 
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Fig. 3: Fitness convergence of AISANN 

 

5.3 Standard deviation performance 

In terms of standard deviation, both ENN models 

showed fluctuating standard deviation values throughout 

the evolution process.  The standard deviation 

performance of EPANN and AISANN are illustrated in 

Fig. 4 and Fig. 5 respectively. The standard deviation was 

found to be directly proportional to the difference 

between the minimum and maximum fitness value in the 

evolution process. At the end of the evolution process, the 

final standard evolution values produced by both 

algorithms were found to be approximately equal and 

sufficiently low. Thus, the degree of variation among the 

fitness values in the final population for each algorithm 

was low, which subsequently indicated good prediction 

results. 
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Fig. 4: Standard deviation performance of EPANN 
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Fig. 5: Standard deviation performance of AISANN 
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Fig. 6: Convergence of number of nodes in EPANN 
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Fig. 7: Convergence of number of nodes in AISANN 

 

5.4 Number of nodes 
Besides that, the convergence of number nodes in the 

hidden layer in EPANN and AISANN are shown in Fig. 6 

and Fig. 7 respectively. In Fig. 6, the number of nodes in 

EPANN managed to converge only at the eighteen 

evolution. In contrast, the number of nodes in AISANN 

had converged on the sixth evolution. In addition, the 

maximum and minimum number of nodes in AISANN 

had reached the optimal value at an earlier evolution 

compared to those in EPANN. The minimum number of 

nodes in AISANN had reached the optimal value at the 

third evolution while the minimum number of nodes in 

EPANN only reached the optimal value on the eighth 

evolution. On the other hand, the maximum number of 

nodes in AISANN had reached the optimal value on the 

sixth evolution whereas the EPANN produced the optimal 

value only at the eighteen evolution. However, when their 

performance were averaged out based on the overall 

computation time, the EPANN had actually produced 

faster optimal results compared to AISANN. 

 

5.5 Learning rates and momentum rates 
In Fig. 8, the EPANN had produced a better 

convergence of the learning rate and the momentum rate 

at the end of the evolution process compared to the 

learning rate and momentum rate of AISANN shown in 

Fig. 9. In EPANN, the final difference between the 

maximum and minimum learning rates was 0.0076 

whereas the final difference in AISANN was 0.2850. 

Thus, the EPANN had produced 97.3% lower final 

difference in the learning rate compared to AISANN. On 

the other hand, the final difference between the maximum 

and minimum momentum rates in EPANN was 0.0121 

while the final difference in AISANN was 0.1845. 

Correspondingly, the EPANN had yielded a final 

difference which is 93.4% lower than the final difference 

produced by AISANN. Due to the lower final difference 

of learning rate and momentum rates, the EPANN had 

actually outperformed AISANN in selecting the optimal 

values for both training parameters. 
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Fig. 8: Convergence of learning rate and momentum rate in EPANN 
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Fig. 9: Convergence of learning rate and momentum rate in AISANN 

 

5.6 Transfer functions 
During the selection of the optimal transfer function for 

the hidden layer, the EPANN had managed to produce an 

absolute convergence of the transfer function code. The 

optimal transfer function was logsig. This result was 

obtained after the eighteen evolution as illustrated in Fig. 

10. In contrast, the AISANN had failed to yield an 

absolute convergence of the transfer function as shown in 

Fig. 11. Both logsig and tansig were found to be 

comparably suitable for the AISANN training process. 

Due to the absolute convergence demonstrated by 

EPANN, EPANN had been found to clearly outperform 

the AISANN in selecting the optimal transfer function. In 

addition, the optimal transfer function for the ANN was 

logsig. 
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Fig. 10: Convergence of transfer function in EPANN 
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Fig. 11: Convergence of transfer function in AISANN 

 

5.7 Learning algorithms 
In the search of the optimal learning algorithm for the 

prediction model, both EPANN and AISANN had yielded 

trainbfg as the optimal training algorithm as shown in 

Fig. 12 and Fig. 13 respectively. In addition, the learning 

algorithm had converged on the second evolution in both 

EPANN and AISANN. Thus, both algorithms were found 

to require less effort in determining the optimal learning 

algorithm compared to other MLFNN design parameters. 

Therefore, trainbfg had clearly performed better than its 

competitors. 
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Fig. 12: Convergence of learning algorithm in EPANN 
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Fig. 13: Convergence of learning algorithm in AISANN 

 

5   Conclusion 
In this study, two intelligent algorithms have been 

developed for evolving the MLFNN for predicting the 

kWh power output from a grid-connected PV system. The 

EPANN algorithm was found to be superior compared to 

AISANN algorithm in terms of computation time, 

although the average R value produced by EPANN was 

slightly lower than the average R value in AISANN. 

Nevertheless, the EPANN had yielded higher value of R 

value during the testing process. Moreover, despite 

having almost similar performance in the search of the 

optimal fitness value, number of nodes in the hidden 

layer and the learning algorithm, the EPANN had 

outperformed AISANN in the search of the learning rate, 

momentum rate and transfer function. Therefore, EP was 

selected as the better optimizer for the proposed 

evolutionary MLFNN. 
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