

Evolutionary Programming Versus Artificial Immune System in

Evolving Neural Network for Grid-connected Photovoltaic

System Output Prediction
1
SHAHRIL IRWAN SULAIMAN,

2
TITIK KHAWA ABDUL RAHMAN,

3
ISMAIL

MUSIRIN AND
4
SULAIMAN SHAARI

1,2,3
Faculty of Electrical Engineering
4
Faculty of Applied Sciences

Universiti Teknologi MARA Malaysia

40450 Shah Alam, Selangor

MALAYSIA
1
shahril_irwan2004@yahoo.com,

2
khawa@salam.uitm.edu.my,

3
i_musirin@yahoo.co.uk,

4
solarman_s@yahoo.com

Abstract: - This paper presents the evolutionary neural networks for the prediction of energy output from a grid-

connected photovoltaic (GCPV) system. Two evolutionary neural network (ENN) models have been proposed using

evolutionary programming and artificial immune system (AIS) respectively. The artificial neural network (ANN)

employed for these models utilized solar radiation and ambient temperature as its input whereas the kilowatt-hour

energy of the GCPV system is the only targeted output. The evolution of ANN involves the search of the optimal

number of nodes, the learning rate, the momentum rate, the transfer function and the learning algorithm of a single-

hidden layer multi-layer feedforward ANN. The results showed that evolutionary programming-ANN (EPANN)

outperformed artificial immune system-ANN (AISANN) in terms of correlation coefficient, R as well as computation

time. In addition, EPANN had also produced better convergence of the evolving parameters compared to the AISANN.

Key-Words: - artificial neural network (ANN), multi-layer feedforward neural network (MLFNN), photovoltaic (PV),

grid-connected photovoltaic system (GCPV), correlation coefficient (R), evolutionary programming (EP), artificial

immune system (AIS) and prediction.

1 Introduction
 Photovoltaic (PV) involves solar electricity converted

from solar energy. As any site on earth theoretically

receives significant amount of solar energy, solar power

generation offers significant advantages compared to

other sources of renewable energy which are mostly site

dependent. Although solar power generation is

traditionally related to stand-alone PV systems, the

current application of solar power generation is often

associated to the grid-connected PV (GCPV) systems,

particularly in urban areas where the conventional utility

grid is readily available. In a GCPV system, the PV

modules are connected in a specific configuration to form

a PV array. The power generated by PV array is then

channeled to an inverter which converts the DC power to

AC power.

Nevertheless, the operation of GCPV systems strongly

depends on various climatic factors such as solar

irradiation and ambient temperature [1]. Higher

irradiation would result in higher energy output produced

by a GCPV system. In contrast, higher ambient

temperature would heat up the solar cells inside the

modules, thus lowering the effective voltage of the solar

cells [2]. As a result, the overall energy output from the

system is similarly reduced. In addition, the variation of

these climatic factors with respect to time and location

has resulted in inconsistent performance of GCPV

systems.

Due to the inconsistent output performance, it would

be very beneficial if the energy output from the system

could be predicted when the expected irradiation and

temperature are known. Thus, the system owner could

pre-estimate the electricity bill savings or extra income

generated by exporting the solar electricity to the utility.

One of the available prediction techniques is the artificial

neural network (ANN). This technique has been used in

predicting PV system output. Firstly, a two-hidden layer

multi-layer feedforward was developed to predict the

energy (in kWh) output of grid-PV systems using

different combination of solar radiation, module

temperature and clearness index [3]. Likewise, the output

performance of a PV module had specifically modeled

using the same architecture but with a two-layer

configuration and different inputs [4]. The ANN utilizes

solar irradiance, ambient temperature and module

temperature as its inputs while voltage and current are

identified at its outputs. These studies had proven that

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 197 Issue 6, Volume 6, June 2011

ANN is highly capable of predicting the output of PV

systems.

Nevertheless, the selection of ANN design

parameters is often difficult and tedious as it is commonly

performed using trial and error process. As a result,

several methods using evolutionary neural network

(ENN) had been proposed to facilitate the design of

ANN. Firstly, evolutionary programming (EP) was used

to evolve the weights of an ANN [5]. Nevertheless, the

proposed algorithm did not focus on the evolution of

ANN architecture as the number of nodes was presumed

before the training process. As a result, the ANN design

may not be optimized. Secondly, an EP based ANN in [6]

was developed to evolve both the architecture and

weights of an ANN. but the proposed technique had only

been demonstrated with a simple XOR problem.

Nonetheless, a more realistic approach was proposed in

[7]. Although the output of the GCPV system was

predicted successfully by evolving the number of nodes

in hidden layer, the learning rate and the momentum rate

of the ANN, the selection of transfer function and

learning algorithm was performed intuitively. Thus, the

evolution of the ANN was not comprehensive. Therefore,

this paper presents two better approaches towards ANN

design using evolutionary programming (EP) and

artificial immune system (AIS) as the optimizer in the

selection of ANN design parameters.

2 Proposed Artificial Neural Network

Model
 ANN is a generalization process for mathematical models

based on biological nervous system [8]. The fundamental

processing element of an ANN is called a neuron. In basic

computational model, the neuron collect input signals

from other neurons or sources and merge them. It will

then perform necessary computation before mapping

them to an output. ANN has been preferred over other

conventional statistical techniques to solve many

prediction problems since it is able to handle complex

interconnection problems more effectively compared to

its competitors via the large network of processing nodes

[9]. Moreover, ANN does not require prior knowledge on

the characteristics of data in contrast with the

conventional statistical methods which process

information based on the statistical values derived from

the data distribution presented to a problem.

Although there are different types of ANN architecture

used for prediction, the Multi-layer Feedforward Neural

Network (MLFFNN) has been widely used in solving

many engineering problems due to its good generalization

capability and simplicity [10]. Apart from that, MLFNN

is also capable of performing non-linear modeling with

reasonable accuracy [11]. Hence, MLFFNN was

employed in this study. The MLFNN comprises two

nodes at the input layer representing two inputs and one

node at the output layer representing a single output. In

addition, single hidden layer with sigmoid function was

chosen as it often produces satisfactory prediction

accuracy as long as the selected number of nodes is

adequate [12-13]. Besides that, it is also a good estimator

for any nonlinear function [14].

An example of a general MLFFNN architecture with

single hidden layer is shown in Fig. 1. The MLFNN

consists of one input layer, one hidden layer and an

output layer. The input layer, hidden layer and output

layer consist of two, four and one nodes respectively. The

inputs are represented by i1 and i2 while the output is

represented by t1.

Fig. 1: An example of multi-layer feedforward neural network with

single hidden layer.

In MLFNN, the data run rigidly from the input layer to

the output layer via several processing units. Despite

having no memory, the MLFNN output is heavily

dependent on the current input and weight values in the

network of nodes. The processing units, also known as

the activation functions, can be linear and non-linear, or a

combination of both. However, the activation function for

each node in the same layer has to be similar. In this

study, the activation function in the hidden layer was

selected from two non-linear functions, i.e the logistic

sigmoid function, logsig [15] and the tangent sigmoid

function, tansig [16]. These non-linear transfer functions

would provide output values from 0 to 1. On the other

hand, the linear transfer function, purelin was chosen for

the output layer such that the final output from the

network could have any value which is not limited.

Nevertheless, MLFNN often encounters a crucial

problem in its implementation. The primary challenge in

MLFNN design is to select the appropriate training

parameters and topology of the network. This process

involves the selection of the optimal number of hidden

nodes in its hidden layer, the learning rate and the

momentum rate. In many cases, the selection of the

number of nodes is conducted using the common trial-

and-error method as there is no strict approach for the

selection [17]. If the selected number of nodes is too

Input

layer

i1

i2

t1

Hidden

layer

Output

layer

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 198 Issue 6, Volume 6, June 2011

small, the MLFNN is unable to be trained effectively. On

the contrary, the training duration would be longer if the

selected number of nodes is too large. In fact, too many

nodes may result in over-generalization of the prediction

[18]. On the other hand, higher learning rate results in

slower convergence of the MLFNN whereas smaller

learning rate results in more iterative updates required for

convergence. Apart from that, if the momentum rate is

not optimal, the MLFNN would encounter slower

convergence as it is not able to learn the previous weight

patterns that would lead to convergence.

In this study, an MLFNN with single hidden layer has

been selected to predict the output performance of a grid-

connected PV (GCPV) system. The inputs to the MLFNN

are the solar irradiation, SI and ambient temperature, AT

data patterns whereas the sole output of the MLFNN is

the kilowatt-hour energy generated by the GCPV system.

The GCPV system is located at the rooftop of Green

Energy Office building, Malaysian Energy Centre (PTM),

Bandar Baru Bangi, Malaysia. The system comprises

27kWp mono-crystalline PV array and a 24kW inverter

(IG6). Each irradiance and temperature sensor was

connected to the inverter while all data were recorded at

fifteen minute interval.

The MLFNN design consists of two basic steps, i.e. the

training process and the testing process. The training

process started with the presentation of training data

patterns to the MLFNN. The training data were later

normalized to ensure that all input and output data

patterns were transcribed into a common range of values

[19]. Thus, the search of the correlation among these

input and output patterns was simplified. The min-max

normalization [20] had been used in this study. It was

performed using

() norm

actual

normnormnorm Min
DD

Dx
MinMaxx +









−

−
×−=

minmax

min
 (1)

where xnorm is the normalized data value and xactual is the

actual data value to be normalized. Dmin is the minimum

actual data value while Dmax is the maximum actual data

value. In addition, Maxnorm is the predetermined

maximum normalized data value which is equal to 1

whereas Minnorm is the predetermined minimum

normalized data value which is equal to -1.

After normalization, the training data were propagated

throughout the network using a learning algorithm. The

Levenberg-Marquardt algorithm, trainlm has been

commonly used as the learning algorithm because it has

frequently outperformed other gradient-descent based

learning algorithms [21-22]. The trainlm operates

effectively such that the prediction error can be decreased

at the end of each iterative update during the training

process. Nevertheless, besides trainlm, the scaled

conjugate gradient algorithm, trainscg had also been

proven to produce satisfactory prediction performance of

grid-connected PV system output [23]. In addition, the

BFGS quasi-Newton backpropagation algorithm, trainbfg

was found to outperform trainlm in training MLFNN

[16]. Apart from that, trainbfg is also expected to have

similar performance with trainlm. However, for larger

size of network, more extensive computation is required

for trainbfg [24]. Therefore, as these learning algorithms

had proven useful [25-26], an optimal learning algorithm

must be selected to suit the prediction task implemented

in this study.

The training performance was quantified using the

correlation coefficient, R which represents the

relationship between the target output and the simulated

output. The values of R can vary from 0 to 1. The best

prediction performance is achieved when R is equal to

unity.

Once the training was completed, testing process was

performed to validate the training process. Different data

patterns were initially presented to the trained network.

Then, the network is simulated using the new data

patterns. Finally, the R of the data patterns was computed.

In this study, the training process was improved by

presenting an automatic selection of the number of hidden

nodes, the learning rate and the momentum rate using EP

and AIS.

3 Proposed Evolutionary Programming-

ANN Algorithm
EP in [27] is a branch of evolutionary computing (EC)-

based search technique which classified under the

artificial intelligence (AI). EP basically comprises several

important processes such as initialization, fitness

evaluation, mutation and selection [7]. In this study, EP

was used to search for the optimal number of hidden

nodes in its hidden layer, x1 the learning rate, x2, the

momentum rate, x3, the transfer function, x4 and the

training algorithm, x5 during the MLFNN training such

that the R of the prediction was maximized. These

training parameters represent the decision variables

required to be evolved in EP. The proposed evolutionary

neural network (ENN) algorithm, known as the

evolutionary programming- ANN (EPANN), was written

in Matlab software package. The algorithm is

implemented using the following steps

Step 1: (Initialization)- generate M population of sets of

random numbers, x1, x2, x3, x4 and x5. x1 was set to have

integer values between 1 to 20. On the other hand, both x2

and x3 were set to have continuous values between 0 and

1. In addition, x4 was transcribed to a value of either 1

(logsig) or 2 (tansig). x5 was set to be either 1 (trainlm), 2

(trainscg) or 3 (trainbfg) as these learning algorithms had

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 199 Issue 6, Volume 6, June 2011

been proven successful in many ANN training cases.

Each set of random numbers forms the initial candidates

of the optimal solutions known as parent. The fitness

value for each parent is then evaluated by training the

MLFNN to determine the R value of the prediction.

Step 2: (Mutation)- Mutate each parent based on

statistical values obtained from the parent population.

Each parent is mutated using the following equation to

produce a mutated parent known as offspring.

()kikikiki Nxx ,,,

'

, ,0 σ+= (2)

where xi,k is the value of i-th parent for the k-th decision

variable and Ni,k(0,σi,k) is the Gaussian random number

with mean zero and standard deviation σi,k. The value of

σi,k can be computed using

()min,max,

max,

,

, kk

k

ki

ki xx
f

f
−










⋅= βσ (3)

where β is the scaling factor for mutation and fi,k is the

fitness value of the i-th parent in the current population

for the k-th decision variables. At this stage, M offspring

was produced. These offspring present another set of

candidates for the optimal solutions.

Step 3: (Fitness evaluation)- Determine the fitness value

for each offspring using the training process described in

step 1.

Step 4: (Selection)- Select the best M candidates among

the 2M population of parents and offspring according to

their fitness values. R is used to describe the fitness value

of the candidates. Candidates with lower R value are

preferred compared to the candidates with larger R. Once

selection has been performed, the stopping criteria are

tested to terminate the evolution. The stopping criteria are

described as follows:

001.0minmax ≤− RR (4)

 0min,1max,1 =− xx (5)

If the stopping criteria are not satisfied, step 2 is

repeated. Otherwise, evolution is stopped and the best N

candidates are presented as the optimal solutions.

4 Proposed Artificial Immune System-

ANN Algorithm
The second ENN algorithm, known as artificial

immune system-ANN (AISANN) proposed in this study

was developed using AIS. AIS is often described as an

adaptive-based optimization technique inspired by the

observation of immune function, theories and paradigms

[28]. Major processes of AIS algorithm based on clonal

selection principle include initialization, cloning, hyper-

mutation and selection. The AIS algorithms can be

mainly classified into two categories, namely the

population-based algorithms and the network-based

algorithms. In this study, a sub-class of the population-

based algorithm modified from the standard clonal

selection algorithm had been introduced to evolve the

MLFNN. In clonal selection process, the potential

candidates are presented as antibodies while the expected

solutions are considered as antigens. As the affinity

values of the antibodies can be different, the cloning of

antibodies is usually performed based on the affinity

values before affinity maturation is performed using a

hyper-mutation process. Nevertheless, in this study, the

proposed algorithm was developed using uniform clonal

process with the exclusion of hypermutation [29]. The

mutation of each clone was performed using constant

mutation rate as pervious study had shown that this

mutation method had been adequate to provide

satisfactory results [30]. Apart from that, the affinity

calculation was associated to the R for simplicity. The

proposed AISANN is almost similar to the proposed

EPANN explained previously with the modifications of

the steps outlined in the EPANN algorithm. The AISANN

algorithm was also written in Matlab.

• Cloning process: After the initialization of the M

parents has been completed, clone each parent population

such that nc clones are produced from each x1, x2, x3, x4

and x5. Thus, the new number of parents in the population

becomes M × nc.

• Mutation: during the mutation process, instead of M

offspring, M × nc offspring will be produced.

• Selection: select the best M candidates from the M ×

nc offspring based on their fitness values. Parent

population should be excluded during the selection to

avoid redundancies.

5 Results and Discussion
The values of the selected MLFNN settings are shown

in Table 1. These values were fixed throughout the

training process. Similar number of data patterns used for

the prediction was allocated for both training and testing.

In addition, the mean square error goal was set to be

0.001, which is sufficiently small to yield a satisfactory

prediction for majority of data patterns. Besides that, the

maximum number of iterative updates was found to 600.

This value was adequate for the training as most of the

trained patterns managed to converge much earlier before

reaching the maximum number of iterative updates.

Upon the completion of training process, testing

process had been performed to stop the training process.

The overall computation time for both training and testing

processes was recorded in each proposed ENN. The

overall training and testing performance is discussed in

section 5.1. On the other hand, the detailed fitness

performance of each algorithm is presented in section 5.2.

As the MLFNN operation is random in nature,

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 200 Issue 6, Volume 6, June 2011

inconsistent fitness values were expected despite having

similar MLFNN design parameters. As a result, besides

the maximum and minimum fitness values for each

evolution, the average fitness value and the standard

deviation were also computed to provide a better

representation of the fitness behavior for each generation.

The standard deviation profile for each algorithm is

presented in section 5.3. In addition, the convergence of

the number of nodes in hidden layer, the learning rate, the

momentum rate, the transfer function and the learning

(training) algorithm are presented in section 5.4, 5.5, 5.6

and 5.7 respectively.

5.1 Overall performance

The results of the optimal MLFNN design parameters as

well as the performance of EPANN and AISANN are

compared in Table 2. Twenty set of random numbers

were generated to form the initial population in both

algorithms. In addition, the number of clones was set to 5

in the AISANN algorithm.

In Table 2, the optimal number of nodes in the hidden

layer was found to be 4 using both algorithms. The

learning rates employed by EPANN were found to be

higher than those in AISANN. The minimum and

maximum learning rates in EPANN were discovered to

be 0.7720 and 0.7796 respectively. On the other hand, the

minimum and maximum learning rates in AISANN were

discovered to be 0.2724 and 0.5574 respectively.

Nevertheless, the momentum rates in EPANN showed

better convergence than the momentum rates in AISANN.

The maximum momentum rate of AISANN was

approximately twice higher than the maximum

momentum rate of EPANN but the minimum momentum

rates for both algorithms are almost equal. Apart from

that, unlike the transfer function of AISANN which did

not converge to a single function at the end of the

evolution process, the transfer function of EPANN

managed to converge to a similar function. The optimal

transfer function of the hidden layer in EPANN was

found to be logsig while the AISANN had failed to

produce a single transfer function. However, both

EPANN and AISANN showed that trainbfg is the optimal

learning algorithm. Besides that, the maximum and

minimum fitness values found in the final population of

both algorithms were approximately the same.

Nonetheless, the average R value in AISANN was

0.008% higher than the average R value in EPANN while

the standard deviation of fitness in AISANN was slightly

lower than the standard deviation in EPANN.

In contrast, the testing process showed that the R value

of EPANN was 0.007% higher than the R value of

AISANN. Apart from that, although the required number

of iterations in EPANN was thrice higher than the

required number of iterations in AISANN, EPANN had

shown faster computation time compared to AISANN.

EPANN was found to be almost two times faster than

Table 2: Prediction performance of EPANN and

AISANN

Parameter/Results EPANN AISANN

Number of initial parent, M 20 20

Number of clones, nc - 5

Number of nodes in hidden

layer, x1
4 4

Minimum value of x2 0.7720 0.2724

Maximum value of x2 0.7796 0.5574

Minimum value of x3 0.1033 0.1012

Maximum value of x3 0.1154 0.2857

Minimum value of x4 1 (logsig) 1 (logsig)

Maximum value of x4 1 (logsig) 2 (tansig)

Minimum value of x5 3 (trainbfg) 3 (trainbfg)

Maximum value of x5 3 (trainbfg) 3 (trainbfg)

Minimum R in training,

dimensionless
0.99854 0.99862

Maximum R in training,

dimensionless
0.99871 0.99872

Average R in training,

dimensionless
0.99858 0.99866

Standard deviation 4.9 × 10
-5

3.12 ×10
-5

R in testing 0.99839 0.99832

Required number of

iteration before stoppage
18 6

Average computation time,

in seconds
4345.83 8721.62

Table 1: Fixed ANN training parameter settings

Parameters Value

Number of training patterns 386

Number of testing patterns 386

Number of nodes in the input

layer
2

Number of nodes in the output

layer
2

Mean square error goal 10
-3

Maximum number of iterative

updates
600

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 201 Issue 6, Volume 6, June 2011

AISANN. Therefore, after considering the R performance

of EPANN which were relatively similar to R of

AISANN as well as the superior computation time,

EPANN was selected as the better option for

implementing the ENN.

5.2 Fitness performance

The fitness performances of EPANN and AISANN are

illustrated in Fig. 2 and Fig. 3 respectively. In Fig. 2, the

fitness values in EPANN had actually converged since

the first evolution according to equation 4. However, the

number of nodes had not come to an absolute

convergence. Thus, the evolution process continued and

stopped at the eighteen evolution. As the final minimum

fitness values obtained were very close to unity, the

prediction task was deemed successful. Besides that, the

average fitness also showed a fluctuating trend towards

the maximum value. However, the final average fitness

value was slightly lower than the maximum average

fitness achieved during the evolution process. While the

ANN operation is random in nature, this phenomenon is

acceptable since the number nodes had not yet converged

to its final value. Similarly, the maximum fitness value

had fluctuated before reaching a value which was very

close to its maximum value.

0 2 4 6 8 10 12 14 16 18
0.9985

0.9985

0.9986

0.9986

0.9987

0.9987

Evolution Number

F
it

n
e

s
s

 V
a

lu
e

 o
r

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t,

 R
(b

e
tw

e
e

n
 0

 t
o

 1
)

Maximum fitness Minimum fitness Average fitness

Fig. 2: Fitness convergence of EPANN

On the other hand, in Fig. 3, the fitness values had

initially converged at the first evolution before the

algorithm reached the overall convergence on the sixth

evolution. Apart from that, unlike the maximum fitness

value, the average fitness and minimum fitness in

AISANN had shown a consistent increasing trend before

convergence. When compared to EPANN during the first

six evolutions, the AISANN had shown better

consistency of fitness values throughout the evolution.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.9986

0.9986

0.9986

0.9986

0.9986

0.9987

0.9987

0.9987

0.9987

0.9987

Evolution Number

F
it

n
e

s
s

 V
a

lu
e

 o
r

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t,

 R
(b

e
tw

e
e

n
 0

 t
o

 1
)

Maximum fitness Minimum fitness Average fitness

Fig. 3: Fitness convergence of AISANN

5.3 Standard deviation performance

In terms of standard deviation, both ENN models

showed fluctuating standard deviation values throughout

the evolution process. The standard deviation

performance of EPANN and AISANN are illustrated in

Fig. 4 and Fig. 5 respectively. The standard deviation was

found to be directly proportional to the difference

between the minimum and maximum fitness value in the

evolution process. At the end of the evolution process, the

final standard evolution values produced by both

algorithms were found to be approximately equal and

sufficiently low. Thus, the degree of variation among the

fitness values in the final population for each algorithm

was low, which subsequently indicated good prediction

results.

0 2 4 6 8 10 12 14 16 18
1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

-5

Evolution Number

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Fig. 4: Standard deviation performance of EPANN

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 202 Issue 6, Volume 6, June 2011

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

-5

Evolution Number

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Fig. 5: Standard deviation performance of AISANN

0 2 4 6 8 10 12 14 16 18
2

4

6

8

10

12

14

16

18

20

Evolution Number

N
u

m
b

e
r

o
f

N
o

d
e

s

Maximum of x1

Minimum of x1

Fig. 6: Convergence of number of nodes in EPANN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2

4

6

8

10

12

14

16

18

20

Evolution Number

N
u

m
b

e
r

o
f

N
o

d
e

s

Maximum of x1

Minimum of x1

Fig. 7: Convergence of number of nodes in AISANN

5.4 Number of nodes
Besides that, the convergence of number nodes in the

hidden layer in EPANN and AISANN are shown in Fig. 6

and Fig. 7 respectively. In Fig. 6, the number of nodes in

EPANN managed to converge only at the eighteen

evolution. In contrast, the number of nodes in AISANN

had converged on the sixth evolution. In addition, the

maximum and minimum number of nodes in AISANN

had reached the optimal value at an earlier evolution

compared to those in EPANN. The minimum number of

nodes in AISANN had reached the optimal value at the

third evolution while the minimum number of nodes in

EPANN only reached the optimal value on the eighth

evolution. On the other hand, the maximum number of

nodes in AISANN had reached the optimal value on the

sixth evolution whereas the EPANN produced the optimal

value only at the eighteen evolution. However, when their

performance were averaged out based on the overall

computation time, the EPANN had actually produced

faster optimal results compared to AISANN.

5.5 Learning rates and momentum rates
In Fig. 8, the EPANN had produced a better

convergence of the learning rate and the momentum rate

at the end of the evolution process compared to the

learning rate and momentum rate of AISANN shown in

Fig. 9. In EPANN, the final difference between the

maximum and minimum learning rates was 0.0076

whereas the final difference in AISANN was 0.2850.

Thus, the EPANN had produced 97.3% lower final

difference in the learning rate compared to AISANN. On

the other hand, the final difference between the maximum

and minimum momentum rates in EPANN was 0.0121

while the final difference in AISANN was 0.1845.

Correspondingly, the EPANN had yielded a final

difference which is 93.4% lower than the final difference

produced by AISANN. Due to the lower final difference

of learning rate and momentum rates, the EPANN had

actually outperformed AISANN in selecting the optimal

values for both training parameters.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evolution Number

T
ra

in
in

g
 P

a
ra

m
e

te
r

V
a

lu
e

 (
b

e
tw

e
e

n
 0

 t
o

 1
)

Maximum of x2 Minimum of x2 Maximum of x3 Minimum of x3

Fig. 8: Convergence of learning rate and momentum rate in EPANN

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 203 Issue 6, Volume 6, June 2011

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Evolution Number

T
ra

in
in

g
 P

a
ra

m
e

te
r

V
a

lu
e

 (
b

e
tw

e
e

n
 0

 t
o

 1
)

Maximum of x2 Minimum of x2 Maximum of x3 Minimum of x3

Fig. 9: Convergence of learning rate and momentum rate in AISANN

5.6 Transfer functions
During the selection of the optimal transfer function for

the hidden layer, the EPANN had managed to produce an

absolute convergence of the transfer function code. The

optimal transfer function was logsig. This result was

obtained after the eighteen evolution as illustrated in Fig.

10. In contrast, the AISANN had failed to yield an

absolute convergence of the transfer function as shown in

Fig. 11. Both logsig and tansig were found to be

comparably suitable for the AISANN training process.

Due to the absolute convergence demonstrated by

EPANN, EPANN had been found to clearly outperform

the AISANN in selecting the optimal transfer function. In

addition, the optimal transfer function for the ANN was

logsig.

0 2 4 6 8 10 12 14 16 18
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Evolution Number

T
ra

n
s

fe
r

fu
n

c
ti

o
n

 (
c

o
d

e
d

 f
ro

m
 1

 t
o

 2
)

Maximum of x4 Minimum of x4

Fig. 10: Convergence of transfer function in EPANN

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Evolution Number

T
ra

n
s

fe
r

fu
n

c
ti

o
n

 (
c

o
d

e
d

 f
ro

m
 1

 t
o

 2
)

Maximum of x4 Minimum of x4

Fig. 11: Convergence of transfer function in AISANN

5.7 Learning algorithms
In the search of the optimal learning algorithm for the

prediction model, both EPANN and AISANN had yielded

trainbfg as the optimal training algorithm as shown in

Fig. 12 and Fig. 13 respectively. In addition, the learning

algorithm had converged on the second evolution in both

EPANN and AISANN. Thus, both algorithms were found

to require less effort in determining the optimal learning

algorithm compared to other MLFNN design parameters.

Therefore, trainbfg had clearly performed better than its

competitors.

0 2 4 6 8 10 12 14 16 18
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Evolution Number

T
ra

in
in

g
 a

lg
o

ri
th

m
 (

c
o

d
e

d
 f

ro
m

 1
 t

o
 3

)

Maximum of x5

Minimum of x5

Fig. 12: Convergence of learning algorithm in EPANN

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 204 Issue 6, Volume 6, June 2011

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Evolution Number

T
ra

in
in

g
 a

lg
o

ri
th

m
 (

c
o

d
e

d
 f

ro
m

 1
 t

o
 3

)

Maximum of x5

Minimum of x5

Fig. 13: Convergence of learning algorithm in AISANN

5 Conclusion
In this study, two intelligent algorithms have been

developed for evolving the MLFNN for predicting the

kWh power output from a grid-connected PV system. The

EPANN algorithm was found to be superior compared to

AISANN algorithm in terms of computation time,

although the average R value produced by EPANN was

slightly lower than the average R value in AISANN.

Nevertheless, the EPANN had yielded higher value of R

value during the testing process. Moreover, despite

having almost similar performance in the search of the

optimal fitness value, number of nodes in the hidden

layer and the learning algorithm, the EPANN had

outperformed AISANN in the search of the learning rate,

momentum rate and transfer function. Therefore, EP was

selected as the better optimizer for the proposed

evolutionary MLFNN.

References:

[1] S. I. Sulaiman, T. K. A. Rahman, and I. Musirin,

Optimizing one-hidden layer neural network design

using evolutionary programming, in Proceedings of

the 5
th
 International Colloquium on Signal

Processing & Its Applications, 6-8 March 2009, pp.

288-293.

[2] S. Shaari and A. M. Omar, Grid-connected

Photovoltaic System Design and Installation.

Bangi: Pusat Tenaga Malaysia, 2008.

[3] I. Ashraf and A. Chandra, Artificial Neural

Network Based Models for Forecasting Electricity

Generation of Grid Connected Solar PV Power

Plant, Int. Journal of Global Energy Issues, Vol.

21, Vo. 1/2, 2004, pp. 119-130.

[4] M. Balzani and A. Reatti, Neural Network Based

Model of a PV Array for the Optimum Performance

of PV System, in Proc. 2005 PhD Research in

Microelectronics and Electronics Conf., Vol. 2, pp.

123-126.

[5] D. B. Fogel, L. J. Fogel, and V. W. Porto,

Evolutionary Programming for Training Neural

Networks, in International Joint Conference on

Neural Networks, 1990, pp. 601-605.

[6] W. Gao, Study on new evolutionary neural

network, in Proceedings of the Second

International Conference on Machine Learning and

Cybernetics, 2003, pp. 1287-1292.

[7] S. I. Sulaiman, T. K. A. Rahman, I. Musirin, and S.

Shaari, Optimizing three-layer neural network

model for grid-connected photovoltaic system

output prediction, in Proceedings of the Innovative

Technologies in Intelligent Systems and Industrial

Applications (CITISIA 2009), 25-26 July 2009, pp.

338-343.

[8] S. Kumar, Neural Networks A Classroom

Approach, Singapore: McGraw-Hill, 2005, p. 61.

[9] C. Fontes, P. R. B. Guimaraes, A. C. Gondim, S. B.

Neves, and L. Carvalho, Development of an

artificial neural network for predicting oil melting

point through pattern recognition, in 4th Mercosur

Congress on Process Systems Engineering, 2005.

[10] D. W. Gao, P. Wang, and H. Liang, Optimization

of hidden nodes and training times in ANN-QSAR

model, Environmental Informatics Archives, Vol. 5,

2007, pp. 464-468.

[11] E. Inohira and H. Yokoi, An optimal design method

for artificial neural networks by using the design of

experiments, Journal of Advanced Computational

Intelligence and Intelligent Informatics, Vol. 11,

No. 6, 2007, pp. 593-594.

[12] F. Wang, V. K. Devabhaktuni, C. Xi, and Q.-J.

Zhang, Neural network structures and training

algorithms for RF and microwave applications,

International Journal of RF and Microwave CAE,

Vol. 9, 1999, pp. 216-240.

[13] K. K. Aggarwal, Y. Singh, P. Chandra, and M.

Puri, Bayesian regularization in a neural network

model to estimate lines of code using function

points, Journal of Computer Sciences, Vol. 1, No.

4, 2005, pp. 505-509.

[14] T. Senjyu, H. Takara, K. Uezato, and T. Funabashi,

One-hour-ahead Load Forecasting Using Neural

Network, IEEE Transactions on Power Systems,

Vol. 17, No. 1, 2002, pp. 113-118.

[15] H. S. Hippert, C. E. Pedreira, and R. C. Souza,

Neural Neworks for Short-term Load Forecasting:

A Review and Evaluation, IEEE Transactions on

Power Systems, Vol. 16, No. 1, 2001, pp. 44-55.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 205 Issue 6, Volume 6, June 2011

[16] S. R. I. Gabran, S. Zhang, M. M. A. Salama, R. R.

Mansour, and C. George, Real-time automated

neural-network sleep classifier using single channel

EEG recording for detection of narcolepsy

episodes, in 30th Annual International IEEE EMBS

Conference, 2008, pp. 1136-1139.

[17] O. Kisi, "Multi-layer perceptrons with Levenberg-

Marquardt training algorithm for suspended

sediment concentration prediction and estimation,"

Hydrological Sciences, Vol. 49, No. 6, 2004, pp.

1025-1040.

[18] N. Subramanian, A. Yajnik, and R. S. R. Murthy,

Artificial neural network as an alternative to

multiple regression analysis in optimizing

formulation parameters of cytarabine liposomes,

AAPS PharmSciTech, Vol. 5, No. 1, 2004, pp. 1-9.

[19] G. O. Tirian and C. B. Pinca, Applications of neural

networks in continuous casting, WSEAS

Transactions on Systems, Vol. 8, No. 6, 2009, pp.

693-702.

[20] K.L Priddy and P.E. Keller, Artificial Neural

Networks: An Introduction, New Delhi: Prentice

Hall of India, 2007, p. 121.

[21] M. T. Hagan and M. B. Menhaj, Training

feedforward networks with the Marquardt

algorithm, IEEE Transactions on Neural Networks,

Vol. 5, No. 6, 1994, pp. 989-993.

[22] M. Zandieh, A. Azadeh, B. Hadadi, and M. Saberi,

Application of artificial neural networks for airline

number of passenger estimation in time series state,

Journal of Applied Science, Vol. 9, No. 6, 2009,

pp. 1001-1013.

[23] S. I. Sulaiman, T. K. A. Rahman, I. Musirin, and S.

Shaari, Asessment of Different Training

Algorithms in ANN Model for Grid-Photovoltaic

System Output Prediction, in Progress of Solar

Energy Research & Development, 21-22 October

2008, pp. 101-107.

[24] N. V. N. I. Kiran, M. P. devi, and G. V. Lakshmi,

Effective control chart pattern recognition using

artificial neural networks, IJCSNS International

Journal of Computer Science and Network Security,

Vol. 10, No. 3, 2010, pp. 194-199.

[25] J. R. Salinas, F. Garcia-Lagos, G. Joya, and F.

Sandoval, Sine-fitting multiharmonic algorithms

implemented by artificial neural networks,

Neurocomputing, Vol. 72, No. 16-18, 2009, pp.

3640-3648.

[26] A. Abraham, Meta learning evolutionary artificial

neural networks, Neurocomputing, Vol. 56, 2004,

pp. 1-38.

[27] H.-P. Schwefel, On the evolution of evolutionary

computation, Computational Intelligence: Imitating

Life, J. Zurada, R. M. II, and C. Robinson, Eds.,

1994, pp. 147-159.

[28] L. N. d. Castro and J. I. Timmis, Artificial immune

systems as a novel soft computing paradigm, Soft

Computing - A Fusion of Foundations,

Methodologies and Applications, Vol. 7, No. 8,

2003, pp. 526-544.

[29] I. Musirin, N. D. M. Radzi, M. M. Othman, M. K.

Idris, and T. K. A. Rahman, Voltage profile

improvement using unified power flow controller

via artificial immune system, WSEAS Transactions

on Power Systems, Vol. 3, No. 4, 2008, pp. 194-

204.

[30] S. Ishak, A. F. Abidin, and T. K. A. Rahman, Static

Var compensator planning using artificial immune

system for loss minimisation and voltage

improvement, in Proceedings of the National

Power and Energy Conference, Kuala Lumpur,

2004, pp. 41-45.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Shahril Irwan Sulaiman, Titik Khawa Abdul Rahman,
Ismail Musirin, Sulaiman Shaari

ISSN: 1991-8763 206 Issue 6, Volume 6, June 2011

