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1 Introduction 
Analysis and synthesis of modern control systems 
are directed on controllers development, allowing to 
provide the required quality of the work for plant, 
which structure and parameters can be uncertain or 
are certain not precisely. Discrepancy of plant 
representation arises owing to impossibility of 
measurement its all state variables at various 
conditions and restrictions. For nonlinear plants, by 
development of their control systems, also following 
basic features [1] should be considered: 
 the superposition principle is not carried out, and 

research of nonlinear system at several 
influences cannot be reduced to research as sum 
of single influence; 

 transient stability depend at value of an initial 
deviation from equilibrium point; 

 for the fixed external influences some positions 
of stability are possible. 

The possible decision a problem at design of 
control system for nonlinear plants with unknown 
structure and parameters can be reached if to use 
only input and output signals of control system, 
having described the control law as the equation of a 
geodesic curve (further geodesic) on state surface 
Se, which geometrical properties are defined by the 
control error, depending at plant structure and 
parameters. For one-dimensional plant or plant with 
single input and single output (SISO), without 
dependence from physical principles of its 
functioning, the state surface of a complex control 
error it is define in the Cartesian coordinates system. 

The real axis R of this Cartesian coordinates system 
coincides with a vector of an input signal (the 
reference r), and imaginary axis I is displaced on an 
angle π/2 and physically defines delay in a plant [2]. 
Accordingly, for multi-dimension plant or plant 
with multi inputs and multi outputs (MIMO) the set 
of state surfaces of the complex errors defined 
between demanded pairs of vectors of input signals 
m and output signals n is formed. The general 
dimension of MIMO plant state space is defined by 
all surfaces of conditions for considered pairs 
“input-output”. Any point 0e  of complex error state 
surface Se may be defined as position of radius-
vector, which a difference between an input vector 
or reference 0r and output vector of plant 0y  in the 
entered Cartesian coordinates system: 000 yre  . 
In offered work the geometrical mathematical model 
of the SISO plant presented on a state surface of a 
complex error. The given material includes sections 
with the following maintenance. In the second 
section are resulted definitions of a state surface (for 
SISO plant) and state space (for MIMO plant) of 
control system complex error and a measurement 
method of a complex error with use a Hilbert 
transform are presented. Opportunity of calculation 
the real and imaginary components of a complex 
error in the Cartesian coordinates system, and also 
instant phase and the module of a complex error in 
the polar coordinates system, which connected with 
entered Cartesian coordinates system is shown. 
Statement of problems the analysis, identification 
and optimum control of plant in parameters of 
internal geometry of a complex error state surface is 
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considered. In the third section the model of plant 
on a complex error state surface is presented. The 
stability conditions of control system and condition 
of optimal control, defining geodesic on a complex 
error state surface are formulated. In the fourth 
section the example of the controller, using only the 
real component of a complex error by plant of the 
first order with a transport delay are presented. Also, 
an adaptive and robust property of such controller is 
shown. In conclusion, the basic directions of the 
further researches for development the industrial 
controllers, using representation on a state surface 
and in a state space of a complex error are 
considered, and also the substantive provisions 
presented in given paper are reflected. 
 

2 State Surface and State space of a 
Complex Error. 
Description of control system depends from a 
choice the state variables and a coordinates system 
in which they are considered. Modern control 
system, for optimal control, their maintenance 
adaptive and robust properties should be based on 
the algorithms, which are not requiring the detailed 
aprioristic information about plant, and capable to 
execute identification, structural and parametrical 
optimization of a controller, being based on 
measurement only their inputs and outputs. 
Therefore important to note, that work of control 
system depends on exact knowledge not only that 
occurs in it, i.e. from values of input and output, but 
also from when it happens, i.e. from time (phase) 
correlation between changes of input and output [3]. 
Structure of controller is defined by an opportunity 
to installation the sensors, measuring the state 
variables of plant and allowing to generate the 
necessary feedbacks. Traditional representation of 
control system with feedback is shown on fig. 1,  

 

Fig.1. Control system with feedback. 

where r - reference vector, е = r - y Σ - control error 
vector, u - input vector, y - output vector, d - 
disturbances vector, yΣ -measured output vector.  

So as the feedback of control system is defined 
by interaction of their separate elements, there is a 
phase delay between output and input (reference). 
For the control, based only on the information about 

correlation between changes of values and phases of 
input and output of control system, let us enter the 
definition of a complex error:  
 Definition 1. Complex error е of a control 
system is the difference between an input 
(reference) vector r and an output vector yΣ, 
presented on a complex plane R - I, where axis R is 
certain by a direction of an input (reference) vector 
r, and axis I is displaced on an angle π/2 in the 
Cartesian coordinates system, that allows to 
consider delay (displacement) of an output vector yΣ 
of a plant concerning an input (axis R). The complex 
error can be presented as е = r - yΣ = еR + jеI, where j 
= √-1 - imaginary unit, еR and еI - the real and 
imaginary components of a complex error in the 
chosen Cartesian coordinates system. Phase delay 
Δφ of control system, real еR and imaginary еI 
components of a complex error е in the Cartesian 
coordinates system, and also the module е and 
argument δ of a complex error in the polar 
coordinates system, that displaced concerning 
chosen Cartesian coordinates system on an input 
(reference) vector r, are defined according to the 
geometrical correlation, fig. 2: 

 

 
Fig.2. Complex error of a control system. 
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where r - module of an input (reference) vector, y∑ - 
module of an output vector of a plant, Δφ - the phase 
delay of control system, defined in the Cartesian 
coordinates system R-I*, δ - argument of a complex 
error in the polar coordinates system. 
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Phase delay Δφ of a control system can be define 
with use of a Hilbert transform [4], that map input 
and output as the analytical signals. The analytical 
signal represents a sum of two orthogonal signals, 
which components are shifted on a phase on π/2 and 
for which the instant phase and frequency [5] can be 
define. The imaginary part of an analytical signal 
Zs(t) is in a complex interfaced to its real part 

   tstZ s Re  and defined the Hilbert transform 
(НТ):       tsHTtstZ s  ~Im . Accordingly the 
analytical signal is defined as: 
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Hilbert transform implements the turn of initial 
phases for all frequency components of a signal on 
π/2 and at - ∞ < t < ∞ is assign by convolution s(t) 
with function НТ (t) = 1/(π t): 
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Function 
t

1  called as a core of a Hilbert 

transform, and the integral in the equation (3) is 
defined by a Cauchy principal value. The instant 
phases difference [6] for two signals s1(t) and s2(t) 
can be define with use of a Hilbert transform as: 
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For SISO control system: 
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For MIMO control system: 
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where m – inputs of control system, n - outputs of 
control system.    
 Definition 2. State surface of a complex error  
Sе of SISO control system is set origins of vectors a 
complex error е, which coordinates are defined 
concerning an input (reference) vector r in the 
Cartesian coordinates system, introduced in a 
definition 1.  

Let us define as e0 a vector of the complex error of 
control system that to be formed owing to influence 
of disturbances in an initial moment of time t0, and 
through ε(0) – an area of  reachability for all vectors 
of a complex error ei with a centre 0 in the end of 
transient by duration t1. Viewing a change of origin 
coordinates a vector of a complex error e0 in time t0 
≤ t ≤ t1, we shall get a curve on a state surface of the 
complex error Sе insert in the three-dimensional 
space R3 in which the reference point 0 with an area 
of reachability ε(0) is introduced, and a basis (еR, еI, 
t), which in aggregate to define the Cartesian 
coordinates system. Any point of this state surface 
defines a state of SISO control system. The curve on 
a state surface of a complex error is defined by 
vector function e(t) = e(еR(t), еI(t)) or equations 
system: еR = еR(t), еI = еI(t). In view of the 
introduced extra coordinate - time t, arrivals of 
control system to area of reachability ε(0), 
parameters of a complex error will be defined 
through the measured values input and output of  
control system and an angle ∆φ between them as: 
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where ∆t = (t1 – t0) - achievement time of control 
system the area of reachability ε(0), which from 
system (7) should not exceed an estimation 

)sin(0  yt . The state surface of a complex error 
is shown on fig. 3, 
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 Fig. 3. State surface of a complex error Sе, 
described a complex error е0 ((еR0, еI0) or (е0, δ0)) at 
time t0 to a point, defining necessary state ε(0) (area 
of reachability) of a control system on state surface 

at time t1. 
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Definition 3. State space of a complex error Ме of 
MIMO control system is formed by set of surfaces 
(leaves) according to definition 2. For everyone m-n 
surfaces of complex error Sеmn for MIMO plant are 
defined the Cartesian coordinates systems of 
concerning the general for all surfaces area of 
reachability ε(0). The complex error еmn(t) of MIMO 
control system is defined as a difference vector 
between an input rm(t) and an output yn(t) according 
to (6) and (7). Thus, using definitions 1-3 for MIMO 
plant, probably to display it R(m∙n)-dimensional state 
space in set (m∙n) surfaces (leaves), considered in 

coordinates (еR, еI, t), that is 


 
nm

nm RR
1

3)( . 

Further statement and possible decision of problems 
of the analysis, identification and optimal control of 
SISO plant in parameters of internal geometry of a 
state surface of a complex error will be considered. 
 For control system, which consider on a state 
surface of a complex error can be define the next 
properties: 

1. Reachability - an opportunity of movement the 
control system at control u*(t) from a point of a 
current state of the plant, described a complex error 
е0 to the area (point) defining the demanded state of 
the plant on a state surface of a complex error ε(0), 
where ε-vicinity defines an admissible control error;    

2. Observability - for each value of a complex error 
еi exists, at least, one control input ui which allows 
to distinguish given state of a control system 
between all nearest states еj; 

The given properties can be defining, if the state 
surface and state space of a complex error are 
normed metric [7], and for them following axioms 
are carried out: 
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where: ...  - complex error norm, ρ - distance 
between points on a state surface Sе or in a state 
spaces Ме of a complex error.  

Properties and parameters of a state surface of a 
complex error, which do not change at its bending 
(deformations without compression and stretching), 
name internal geometry of a surface and define with 
use of the first I and second II fundamental forms 
[8]. To such parameters of a surface to carry: 
lengths of curves, angles between curves, square of 
areas on a surface, Gaussian curvature of a surface 
and geodesic curvature of a curve on a surface. For 
plant control let us used the curve G of minimal 
length - geodesic [8] between points e0 and ε(0), 
laying on a state surface Sе. Then the analysis of 
control system based on a complex error to be 
concluded in definition the internal geometry and, 
accordingly, parameters of I and II fundamental 
forms of a state surface. The problem of synthesis of 
a control system based on a complex error consists 
in definition the law of optimum control as the 
equation of the geodesic curve connecting a signal 
of control with the equation geodesic, provided that 
given geodesic connected the boundary points e0 and 
ε(0). Thus, the problem of control to be reduced to 
definition of movement the radius-vector of a 
complex error e on a state surface from a boundary 
point of the initial, not certain value е0, depending 
from the disturbances influencing on plant, in the 
beginning of the entered coordinates system (the 
area of reachability ε(0)) at minimal time and 
minimal oscillations along a trajectory of 
movement. We assume, that the state surfaces of a 
complex error are one-coherent, suppose continuous 
bending and have constant Gaussian curvature      K 
= const. Curves on them are smooth and suppose 
differentiation necessary number of times, except 
for the beginning of coordinates with a vicinity ε(0.) 
Identification of plant based on characteristics of its 
state surface of a complex error, using an isometry 
[8], i.e. transformation of one surface to another 
with preservation of length, angles and square of 
areas. For this purpose, the existing state surface of 
a complex error will be transform to other surface 
having more simple metrics, but equal I 
fundamental form of the connected surfaces, that 
can be considered as: 

22 2 IIRR deGdedeFdeEI    (9) 
where its gains are defined as partial derivatives of a 
complex error for the real and imaginary 
components:  
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The regularity condition of a state surface of a 
complex error is defined by an inequality [8] 

02  FGE       (11) 

For definition 2 components of a complex error еR 
and еI is orthogonal that F = 0. Therefore a 

condition of regularity 00 2

2
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is carried out for all  state surface of a complex 
error, except for the beginning ε(0). The I 
fundamental form describes a state surface of a 
complex error as a first approximation when the 
small area of a surface is replaced on an area of a 
tangent plane. The II fundamental form describes a 
surface in the second approximation, showing as the 
surface deviates at a tangent plane, i. e. defines 
curvature of a state surface of a complex error: 

22 22 IIRR deNdedeMdeLhII    (12) 
where h - distance between a point е0 surfaces Se 
with coordinates (eR0 + deR, eI0 + deI) and a point еТ  
of a tangent plane Т with coordinates (eR0, eI0) in 
view of a sign, depending on an arrangement of a 
point еТ. Gains of a II fundamental form are defined 
as a scalar product: 

),(),,(),,( neNneMneL
IIIRRR eeeeee         (13) 

where n – the ort of a normal to a state surface of a 
complex error in the given point. Classification of 
points (structure of point vicinity) [8] of a state 
surface of a complex error taking into account gains 
of II fundamental form can be used for identification 
of plant in small («differential identification»): 

1) point е0 of a regular state surface of a complex 
error Se be called elliptic (accordingly plant of 
elliptic type), if discriminant of II fundamental form 
in this point LN - M2 > 0; 

2) point е0 of a regular state surface of a complex 
error Se be called hyperbolic (accordingly plant of 
hyperbolic type), if discriminant of II fundamental 
form in this point LN - M2 < 0; 

3) point е0 of a regular state surface of a complex 
error Se be called parabolic (accordingly plant of 
parabolic type), if discriminant of II fundamental 
form in this point LN - M2 = 0 at L2 + N2 ≠ 0; 

4) point е0 of a regular state surface of a complex 
error Se be called planar, if in this point L = N = M 
= 0. For a planar point of a state surface of a 
complex error the plant cannot be identified, as in its 
vicinity not probably to define change of a complex 
error on a state surface concerning a tangent plane.       

Curvature of a state surface of a complex error is 
defined by structure and parameters of plant and it is 
proportional to the disturbances influencing on 
control system. The curve γ on a state surface of a 
complex error Sе is geodesic only if the main normal 
in its each point coincides with a normal to surface 
Sе in the given point. This corresponds to equality to 
zero of its geodesic curvature in each point [8]. Thus 
through any point of a regular state surface of a 
complex error in any direction can pass exactly one 
geodesic [8], that can be used for unequivocal 
definition of control. For this purpose on regular 
surface Se in a small vicinity of a point е0 it is 
possible to define a semigeodesic coordinates 
system [8] in which coordinate lines of various 
families in pairs is orthogonal and one of families 
consists the geodesic. Let us construct a 
semigeodesic coordinates system (SCS) in a point 
е0, for what: 
 let us define a point  е0  as beginning of SCS on a 

state surface of a complex error and set an any 
direction d; 

 lead through a point  е0  in a direction d geodesic γ1  
and to define on it a direction of detour; 

 each point  еi on a geodesic γ1  is uniquely defined 
by length of an arch ξ =  iee 

0 , taken with a sign 
“+”, if the direction of an arch coincides with a 
direction of detour and with a sign “-” in a return 
case; 

 through each point еi on a geodesic γ1 and to 
orthogonal it, let us lead to direct geodetic γ2. 
Orientation of a geodetic γ2 continuously depends 
on a point еi and family of geodetic γ2 for various 
points еi geodetic γ1 do not intercross among 
themselves; 

 each point еj of a state surfaces of a complex error, 
through which there transits one of geodetic γ2, is 
uniquely defined the length of an arch ή = jiee   
with the certain sign +/-, and coordinates (ξ, ή) 
uniquely define position of a point еj on a state 
surface of a complex error in entered SCS 
concerning a point е0.

Thus, the length ξ is a natural parameter [8] on γ1, 
and length ή on γ2 and both are counted from е0. 
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Then I fundamental form of a state surface of a 
complex error in entered SCS is defined as:  

222 ),(  dGdds           (14)

where 0),0(,1),0(,0   GGG . If to accept ξ 
≡ eR and ή ≡ eI, we shall receive: 

  222 ),( IIRR deeeGdede                    (15) 

Expression for Gaussian curvature in given SCS 
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with a constant gain  K = const. The decision of the 
given differential equation and, accordingly, the 
metric form of a state surface of a complex error, 
depend on a sign of a Gaussian curvature: 
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 Classification of the metric form of a state 
surface of a complex error, depending on a sign of a 
Gaussian curvature [8], can be used for 
identification of plant in big («integrated 
identification »): 

1. K > 0. The state surface of a complex error is 
locally isometric to sphere of radius 1/К or areas 
on sphere. Points    ек + the given type of a regular 
state surfaces of a complex error Se refer to 
elliptic and correspond to discriminant of II 
fundamental form in this point  L0 N0 - M0

2 > 0; 

2. K < 0. The state surface of a complex error is 
locally isometric to a pseudosphere of radius 1/К 
or areas on a pseudosphere. Points ек- the given 
type of a regular state surfaces of a complex 
error Se refer to hyperbolic and correspond to 
discriminant of II fundamental form in this point  
L0 N0 - M0

2 < 0; 

3. K = 0. The state surface of a complex error is 
locally isometric to a plane or areas on a plane. 
Points ек0 the given type of a regular state 
surfaces of a complex error Se refer to parabolic 
and correspond to discriminant of II fundamental 
form in this point L0 N0 - M0

2 = 0. 

 Thus, considering a state surface of a complex 
error for SISO plant or state space of a complex 
error for MIMO plant, they can be identified as: 

1.   Plant of elliptic type; 

2.   Plant of hyperbolic type; 

3.   Plant of parabolic type. 

 Let's consider further a synthesis of the optimal 
control law for plant (elliptic, hyperbolic or 
parabolic type) as the equation of the geodesic 
passing on a state surface of a complex error 
between boundary points e0 and ε(0). From the point 
of view of the theory of optimal control [9], the 
decision of a problem in offered statement is carried 
out for conditions with a free beginning point e0 and 
the fixed final point ε(0) of optimized trajectories at 
restrictions: 

 time Т of achievement a condition e < ε(0), 
where ε(0) - the small area of reachability that 
defining an precision of control, T = t1 - t0; 

 character of movement along a geodesic, that it 
is limited a condition 0 ≤  ∆еi  ≤  ∆еmax where the 
value ∆еmax is a possible admissible oscillation 
along geodesic; 

 power of control u ≤  umax. 
 The length of curve L defined in the Cartesian 
coordinates system (eR, eI, t) with use I fundamental 
form: 
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where gains E, F, G are defined according to (10) 
and gij (e (t)) is a metric tensor [8], representing a 
scalar product of a standard tangent vectors to eR and 
eI curvilinear coordinate lines on a state surface of a 
complex error in a point of their crossing. 
Coordinates of a vector are differentials of 
increments deR and deI. SCS (14) can be presented in 
a polar coordinates [8], considered family of the 
geodesic, which are starting with a point e0 in all 
directions and having fixed one of these directions 
(a polar angle ψ = 0). Then I fundamental form: 

22 ),(  dGdI                (18) 
where ρ - radius of a geodesic circle (distance from 
a point е0), and ψ - a polar angle, fig. 4.: 
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Fig. 4. Semigeodesic coordinates system (SCS) in a 
polar form, certain in a point е0 a state surfaces of a 

complex error Sе. 

For SCS in the polar form (18) length of a curve:  
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The necessary condition of an optimal control on a 
state surface of a complex error is defined by Euler-
Lagrange equations [9]: 
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For the smooth curve e = (eR(t), eI(t)) in the 
Сartesian coordinates system or e = (ρ(t), ψ(t)) in 
the polar coordinates system it is possible to define 
tangent vector fields [7] in each point of the given 
curve:   
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Movement along geodesic G occurs without 
acceleration (to constant speed). That vector field 
(21) has the constant module and a vector of its 
derivative (i. е. acceleration) )(tve

  is an orthogonal 
vector functions to a tangent vector field. The 
necessary condition of an optimal control providing 
movement along geodesic on a state surface of a 
complex error is an equality 0 the scalar products 

0)(),( tvtv ee
 . That the given expression for 

vector fields (21) can be presented as: 
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Control of plant is function of the coordinates 
entered on a state surface of a complex error u = 
ξ(eR, eI) or u = ή (ρ, ψ). It is possible to define 
inverse functions eR = ξR(u), eI = ξI(u) or   ρ = ήρ(u), 
ψ = ήψ(u), allowing to formulate a condition (22) as: 
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(23) 

  
Based on (23), the control of plant is defined. Then 
for synthesis the optimal control law of plant on a 
state surface of a complex error it is necessary: 

1. To define the internal geometry of a state surface 
of a complex error via I and II fundamental forms 
according to (9), (14) and (12) and to identify the 
plant according to (13) and (16); 

2. Using the I fundamental form and a necessary 
condition (20) to define the equation of a geodesic 
on a state surface of a complex error between a 
point of a current condition е0 and a point of 
demanded state ε(0); 

3. Using a condition (23) for the equation of a 
geodesic on a state surface of a complex error to 
define a control signal u = ξ (eR, eI) or u = ή (ρ, ψ). 
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3 Model of Plant and it is Stability on 
a State Surface of a Complex Error. 
Control of plant is considered as a movement of 
beginning the radius-vector of a complex error e on 
a state surface from a boundary initial point е0, 
depending from the disturbances, influencing on a 
plant, in the origin the entered coordinates system 
(area of reachability ε(0)) for minimal time and at 
minimally oscillations along a trajectory of 
movement. Then the model of a plant and a problem 
of it is optimal control can be considered by it as 
Bolza problem [9]: 

Definition 4. Model and a problem of optimal 
control of SISO plant on a state surface of a 
complex error: 
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  (24) 

where Se – a state surface of a complex error, 
defined a structure and parameters of the plant, e0 – 
the point of beginning the radius-vector of a 
complex error in the initial time moment t0;  ε(0) - 
area of reachability in the end of a transient t1; f - a 
vector function, modelling a plant on a state surface 
of a complex error; L – integrand of a functional J 
of a problem of the optimal control, defining a 
trajectory of movement the radius-vector of a 
complex error on a state surface of its possible 
conditions, depending on control u and boundary 
points e0 and ε(0); ψ, g - the vector functions, 
defining a boundary conditions of a problem of 
optimal control. We assume, that all functions are 
continuous and are twice differentiated on all sets of 
variables t, e, u. The vector function f, modelling a 
plant on a state surface of a complex error, can be 
presented also by the system of the scalar functions, 
defined in Cartesian or semigeodesic polar 
coordinates systems: 
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The stability of plant, presented on a state surface or 
in a state space of a complex error on an interval T 
= t1 - t0 is defined by the integrated equation: 

  0)(),(,
1

0


t

t

tutetf              (26) 

According to (26) and unlike a classical definition, 
stability of a plant is considered as dynamic process, 
with an opportunity to control on an interval [t0, t1]. 
At the same time, by analogy to classical definition 
of Lyapunov stability [10], following definition of 
the steady state (an equilibrium point) of plant on a 
state surface or in a state space of a complex error 
can be formulated: 

Definition 5. The steady state of a control system is 
stable (an equilibrium point is stable) on a state 
surface or in a state space of a complex error, if for 
any given moment of time t0 and any positive α 
exists positive β = β (t0, α) such, that if 

  )()0()( 00 tete  (in a limit ε(0) → 0), then 

  ),()0(),( 00 ttette            (27) 

for all moments of time 0tt  , that is hodograph of  
the radius-vector of a complex error е(t) at the set 
initial deviation β in the subsequent, eventually does 
not leave for the certain border α. 
 

4. Example: Control of 1st Order Plant 
with a Transport Delay Based on 
Complex Error  
Let us consider the 1st order plant with a transport 
delay: 

    sLp e
sT

K
sW 




1
       (28) 

where s - an independent complex variable, КР = 1 – 
the gain of plant, Т = 1 s - a time constant of plant, 
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L = 0.3 s - a transport delay of plant. Used it 
transitive characteristic at submission a step signal 
on an input and observe the response the method 
CHR (Chien, Hrones, Reswick) [11] optimal gains 
of PID controller have been certain: K = 3, Ti = 1 s, 
Td = 0.0452 s. Differential equations of control 
system with plant (28) were integrated by a method 
ode45 operational environment SIMULINK of 
system MATLAB R2010a. The control system it is 
shown on fig. 5: 

 
Fig. 5 Simulated control system. 

For simulating noise of measurement, according 
to fig. 1, the block “Band-Limited White Noise” 
were used with parameters: Noise power = 0.001, 
Sample time = 0.01, Seed = 23341. Disturbances on 
an plant output were simulated by the block   
“Random Number” with parameters: Mean = 0, 
Variance = 0.001, Initial seed = 0. The used PID 
controller is shown on fig. 6: 

 

Fig. 6 PID controller for 1st order plant with a 
transport delay 

Control system with adjusted PID controller were 
investigated at set reference r = 1 and the 
subsequent submission at the t = 15 s a step signal. 
Received transient for plant with nominal 
parameters is shown in the appendix 1 on fig. 1а. 
Further, properties of control system were 
investigated at change of plant parameters  КР = 0.5 
- 2, Т = (0.5 - 2)s , L = (0.3 - 1)s. The received 
transients resulted in the appendix 1 on fig. 2а-6а 
and in table 1. It has shown low adaptive and robust 

properties of control system with a PID controller 
which has been adjusted for plant with nominal 
parameters: 

Table 1 

Transients of control system with PID controller at 
change nominal parameters of plant (28) 

Changeable 
parameter 

The characteristic of a 
transient 

Increase of a 
transport delay         

L = 0.7s 

Loss of stability 

Decrease of a gain 
Кр = 0.5 

Delay at change of an output 
of plant td ≈ 10 s 

Increase of a gain 
Кр = 2 

Loss of stability 

Decrease of a time 
constant Т = 0.5 s 

Significant not fading 
oscillations with frequency 

≈1 Hz. 
Increase of a time 
constant Т = 2 s 

Delay at change of an 
output of plant td ≈ 2 s 

 

Further, for plant (28) it is considered the control 
system with a controller, that using as an input only 
the real component eR of a complex error (1), (7). 
For measurement a phase difference between 
reference of a control system and an output of plant 
(28) according to (1), (7) were used the scheme, 
using blocks library of Signal Processing Blockset 
[12], shown on fig. 7: 

 
Fig. 7 Scheme for measuring the phase difference, 

based on a Hilbert transform. 

The scheme for measuring a phase difference 
between reference and output of a plant (28), 
masked as block “Calculate delta fi”, used in a      
eR-controller, fig. 8: 
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Fig. 8 eR-controller 
Control system with a eR-controller were 
investigated under the same conditions, as for the 
adjusted PID controller. The received transients 
resulted in the appendix 1 on fig. 1b – 6b and in 
table 2 and show good adaptive properties: 

Table 2 

Transients of control system with eR-controller at 
change nominal parameters of plant (28) 

Changeable 
parameter 

The characteristic of a transient 

Increase of 
a transport 

delay L = 0.7s 

Stability transient with an 
overshoot 0.5 p.u. in the initial 

moment of time 
Decrease  

of a gain       
Кр = 0.5 

The output of plant changes 
without delay, however it is value 
decreases proportionally to gain in 

the steady state ≈ 0.7 
Increase of a 
gain Кр = 2 

Stability transient, however the 
output   increases proportionally to 

value of gain   ≈ 1.2 times 
Decrease  of a 
time constant         

Т = 0.5 s 

Stability transient with an 
overshoot 0.2 p.u. in the initial 

moment of time 
Increase of 

a time constant 
Т = 2 s 

Delay at change of an output of 
plant td ≈ 2 s 

 
5 Conclusion                                         
In work presented the formalized mathematical 
model of a plant on a state surface of a complex 
error and definitions of it is stability. The 
identification method of a plant, depending from the 
internal geometry of a state surface of a complex 
error is offered. Considering, that the given work is 
introductory, many questions of control system 
development with use of a complex error demand 
the study and decisions. To first such questions are:                                                    
 
1. Detailed mathematical description of a control 

system and a plant on a state surface and in a 

state space of a complex error. Definition of 
analogies between the entered classes of a plant, 
based on an internal geometry of a  state surface 
of a complex error and the accepted fundamental 
types of plant (proportional, integral, 
differential); 

2. Analysis of adaptive properties of a control 
systems using a state surface or state space of a 
complex error for synthesis of the optimal 
control; 

3. Development detailed synthesis algorithm for a 
control system on a state surface or state space of 
a complex error; 

4. Development industrial controllers, using as an 
input signal a complex error and it is 
components. 
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Fig. 1а. Transient of control system with PID 
controller for plant (28) with nominal parameters. 

 

 
Fig. 2а. Transient of control system with PID 

controller for plant (28) with L = 0.7 s 
 
 

 
Fig. 3а. Transient of control system with PID 

controller for plant (28) with КР = 0.5. 
 

Appendix 1 
       

 

Fig. 1b. Transient of control system with eR -
controller for plant (28) with nominal parameters. 

 
 

 

Fig. 2b. Transient of control system with         
eR-controller for plant (28) with L = 0.7 s. 

 

 

Fig. 3b. Transient of control system with         
eR-controller for plant (28) with КР = 0.5. 
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 Fig. 4а. Transient of control system with PID 
controller for plant (28) with КР = 2. 

 

 Fig. 5а. Transient of control system with PID 
controller for plant (28) with Т = 0.5 s. 

 
 

 Fig. 6а. Transient of control system with PID 
controller for plant (28) with Т = 2 s. 

 

 

 

Fig. 4b. Transient of control system with eR 
controller for plant (28) with КР = 2. 

 

Fig. 5b. Transient of control system with eR 
controller for plant (28) with Т = 0.5 s. 

 

Fig. 6b. Transient of control system with eR 
controller for plant (28) with Т = 2 s. 
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