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Abstract: RTD-A (Robustness Tracking Disturbance rejection-global Aggressiveness) controller, proposed by 
Babatunde A. Ogunnaike, is suitable for single input single output system (SISO). On the basis of it, a new 

RTD-A controller for Multiple Input Multiple Output system (MIMO) is illustrated and the global optimal 

control solution is also discussed in this paper. Simulation results prove that compared with IMC-PID (Internal 
Model Control), this new algorithm has good performances in set-point tracking, disturbance rejection and 

robustness. 
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1. Introduction 
Nowadays, PID controller is still the most 

widely used industrial controllers. It was formatted 

and developed in the year 1915-1940, with a simple 

structure, robust in the model error, and other 
characters. According to surveys, more than 90% 

process controls using traditional PID form all over 

the world 
[1-2]

. Due to its structural limitations, the 
relationship between the controller performance 

indicators and the setting parameters is not 

illustrative under the situation of non-linear or dead-
time control objects, making controller tuning quite 

complex. The afterwards compound PID control 

methods, such as the Internal Model PID, the Neural 
Network PID and the Expert PID, do have 

improvements on the control parameter tuning 

methods, but not address to the inherent flaws of the 
traditional PID because they share the same 

fundamentals. 
[3]

 It was reported that 80% of the 

industry controllers were not tuning well. On the 
other hand, more and more attentions has been paid 

on the development of new structure regulators, for 

examples, the Fuzzy Control, the State Feedback 
and Observation Control, and the Model Predictive 

Control which is quite popular recently.
[4-6]

 All these 

new achieves good control performance, but also 
has complex structure and expensive cost. Moreover, 

they need expert knowledge to tune the parameters, 

which is much more difficult compared with the 
traditional one, and that is the major roadblock for 

the extension activities of these new regulators. 

Therefore, it is very important to develop kind of 
controller which has excellent performance with 

relatively simple structure. The all-around single 

variable RTD-A robust controller purposed by 
Ogunnaike 

[7]
 has clear parameter setting meaning 

with strong robustness and easy to implement. The 

whole control performance indexes can be obtained 
and tuned at the same time, which cannot be done 

using the traditional PID controllers. In this paper, 

based on the work of Ogunnaike, a new RTD-A 
controller structure for multivariable systems is 

deduced and the existence proof of the optimal 

control solution is given out. At the end of this 
paper, this new algorithm got verified using the 

strong coupled system of binary fractionating tower. 

 

 

2. Introduction of SISO RTD-A 

controller 
 

 
There is only brief principle introduction for 

RTD controller. Its theoretical analysis please sees 

reference [7], and all parameters have the same 
meaning. 

 

 

2.1 First order plus delay model 
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The first order model with time delay proper 

represents process control objects. Its discrete model 

is: 
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Delay time step: ( )m round
t

   

Sampling time: t  

 

 

2.2 Output prediction 

After delay time m, the output prediction of 

model Eq.2 is: 
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According to Eq.3, the prediction of N time 

steps from current time k. Suppose the future input 

is: 
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                Eq.5 

 
Then the prediction output of N time steps is: 
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In actual prediction, various disturbances should 

be taken into account in Eq.6, which made the 

prediction more accurate. 
 

 

2.3 Error prediction update 

The deviation ( )e k  between the real data y( )k  

obtained from the control object and the model 

output ( )y k  is the accumulation of all kinds of 

errors and disturbances. 

 

( ) ( ) ( )e k y k y k                         Eq.7 

 
Take consider of real process control object: 

 
0 0 0( 1) ( ) ( )

               ( ) ( ) ( )S D

y k a y k b u k m

k k n k 

   

  
 

            Eq.8 
 

And 
0a ,

0b ,
0m  represent the true unknown 

parameters in the FOPDT model. S  is the high 

order nonlinear dynamic disturbance. D  is the 

disturbance that doesn’t include in the model. And n 
represents random disturbance. 

 

 

2.4 Model error prediction 

In reference [7], the error predictions for the 

current time k and future time N are: 
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            Eq.10 
 

R  and D  are the regulator parameters. Adds 

Eq.9 and Eq.10 into Eq.6, then the output prediction 

with errors update will be: 
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                     Eq.11 

 
 

2.5 The calculation of control input ( )u k  

According to the output prediction, optimization 
function for the control object is: 

 

2
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                               Eq.12 

 

Where: *( )y k i  is the set value trajectory, 

and its update formula is: 

 

*( ) *( ) (1 ) ( )i i
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                                    Eq.13 

 

dy  is the ideal set point. T  is the regulator 

parameter, N  is the prediction step. Based on the 

Least Square theory, the optimal solution of Eq.12 

after derivation is: 
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At each simple time k, after the update of model 

output prediction, the optimal control input ( )u k  

will be set into the control system. 

 

 

3 Deduction of MIMO RTD-A 

controller 
 

 

Following is the detail deduction of MIMO 
RTD-A controller based on a DIDO system (Double 

inputs and double outputs system). 

 
 

 

 
 

3.1 RTD-A controller for DIDO system 

 

 
Aim at the coupling system shown in Fig.1, the 

control performance indexes of each single-loop are 

integrated as ( ( ))J u k  by the proposed multi-

variable RTD-A controller, which leads to an global 

optimization function 1 2 n( ( ), ( ), ( ))J u k u k u k , 

whose best solution will be given out. 
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Fig.1 Block of double couple system 

 
 

For a general single-variable RTD-A controller, 

the coupling effect between systems only be 
considered as outside disturbance. But in the multi-

variable situation, this coupling effect will be 

separated from the predicted disturbance 

De k m i k( + +| ), namely 

 

1 2

  D

D D
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                              Eq.15 
 

In Eq.5, 1De  is the update part of all other 

respects except coupling effect, so the error updates 

formula (Eq.10) of single-variable is still effective. 

2De  is the disturbance caused by coupling. It is a 

function of u  which represents other loops’ control 

effects. 2De  is very useful to solve the global 

optimization control. For the above double-variable 

system, Y12 and Y21 represent the disturbances 

caused by system coupling, and their transfer 
functions are G12 and G21. According to Eq.6, there 

are: 
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Notice that ija ， ijb  and ijm  (1 , 2i j≤ ≤ ) are 

the discrete parameters corresponding to the transfer 

function ijG . 

In these equations, there is no error update 

because it is a part of error disturbance. The main 

challenge is to separate the control efforts of 1u  and 

2u . The global optimal function is: 
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The derivations of 1u  and 2u  are: 
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After reorganization, the global optimal 

function u  is: 
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Eq.20 has solution only when matrix R is 

invertible, which means 0R | | . 
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Lemma 1: according to energy inequality: 
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It can be deducted that 
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So 1 2 0  ≥  is true, and 
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As a conclusion, Eq.20 has no solution only if 
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It is a very harsh requirement of Eq.26, hence 

there is no need to worry about the situation of no 

solution in reality. That means equation 
-1=u R q  

mostly always has solution. 
 

 

3.2 RTD-A controller for general multi-

input/output system 

It is similar to deduct RTD-A controller for 

general multi-input/output system ( n n , 3n≥ ). 

The global optimal function is: 
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In Eq.27, 1 2, ,... nu u u  are inputs, 
*

nY  is the set 

point, 
nY  is model output. 1 2( , ,... )n nf u u u  is a 

function of error between output prediction and set 

point of each path under input nu . Base on the 

principle of least square, let the partial derivative of 

1 2, ,... nu u u  equate to zero, and the optimal control 

input will be: 
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4 Double variables complete 

decoupling internal model PID (IMC-

PID) 
 

 

The principle of this ideal decoupling control is 

that add a compensator ( )F s  before the multi-

variance system so that the product of ( ) ( )F s G s  is 

a 2ⅹ2 diagonal matrix ( 11( )G s  and 22 ( )G s  keep 

constant), namely: 
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The precondition of complete decoupling is 

that the transfer function matrix G is invertible. 
After decoupling, parameter tuning can be done 

following internal model PID tuning rules of single 

loop. 
A general PID controller for the first order plus 

delay process model is: 
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Its internal model PID tunings are: 
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i fT T                           Eq.33 

 

d fT T


 
 


                              Eq.34 

 

And 1 20.6143, 0.1247, 0.3866      . 

The detailed information is in reference [8]. 

 
 

5 Simulations of DIDO RTD-A 

Controller 

 

 
5.1 Illustration of Simulation Object 

The DIDO model of Distillation Column is 
from reference [10]. 
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                                                     Eq.35 

 

11G ， 22G  are the main path transfer functions; 

12G ， 21G  are the disturbance path transfer 

functions. All of them are first order plus large delay. 
The unit of delay time is second. The controlled 

variables are 1Y  and 2Y  which represent the 

temperatures of the tower and its bottom. 1U ， 2U  

are manipulated variable. 

For more realistic, there is 20% negative 

deviation between model parameter K ，  and the 

actual object value. In this way, the simulation 

model is more appropriate to the industry 
applications, and the comparisons on regulator 

performance are more persuasive. 

 
 

5.2 Simulations on set point tracking 

Sample time in these simulations is t =10 s. 

the results are illustrated in Fig.2 and Fig.3. 

(1) According to Eq.31-34, internal model PID 

tunings are: 

 

Top: 50  ， = -52.2cK ， = 41.7dT , 

= 1243.3iT ， = 3.1fT  

Bottom: 40  ， = 9.6cK ， = 22.5dT ，

= 423.9iT ， = 4.3fT 。 

 
(2) SISO RTD-A controller tunings are: 

 

Top: 0.5R  ， 0.1T  ， 0.1D  ，

0.15A   

Bottom: 0.6R  ， 0.1T  ， 0.1D  ，

0.15A   

 
(3) DIDO RTD-A controller tunings are: 

 

Top: 0.5R  ， 0.1T  ， 0.1D  ，

0.1A   

Bottom: 0.6R  ， 0.1T  ， 0.1D  ，

0.1A   

 
 

5.3 Simulations of disturbance suppression 

Based on mismatch model, the white 
disturbance with Mean 0 and Variance 1 is added 

into the system. The compare of complete 

decoupling IMC-PID and DIDO RTD-A is given 
out in Fig.4 and Fig.5. Tunings are the same as 

section 5.2. 

The simulations showed that even under the 
situation of model mismatch, all the three kinds of 

regulators could track the set point and meet certain 

control requirements. Among them, IMC-PID and 
SISO RTD-A controller had large overshoots during 

the tracking process, especially the IMC-PID got 

oscillations in strong disturbances. The reason for 
overshoots in SISO RTD-A controller is that it 

cannot overcome the disturbance caused by 

coupling in MIMO system. After all, it was 
originally designed for single variable system 

control. In contrast, the DIDO RTD-A controller 

proposed here had much better performances which 
had small tracking overshoot, effective anti-

interference and strong robustness. This new 

algorithm not only eliminates coupling effects from 
its derivation, but also achieves a global optimal 

solution, and the control process is quite satisfactory. 
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5.4 Simulations of discontinuities 

Sometimes, the set point needs change from 

one to another. A common reason for it is the 
fluctuation of incoming raw material. In this 

situation, the main target is a smooth transition to 

the new steady-state.  
The change in transfer function is rare, but has 

obviously effects on the whole process. This may 

happen when work condition has an unexpected 
shift. For example, solid reactive residues are 

frequently and randomly adhered to the Higee’s 

packing-disk which leads to serious vibration 
problems. In practice, the solution on this problem is 

“cleaning downtime”. Although this approach can 

solve the vibration issue, it definitely affects the 
industry continuity. 

In Fig.6, the normalized temperature set point 

of the top was changed from 0.8 to 0.2 at time 

500

60
t  , while the set point of the bottom kept the 

same (set point = 0.6). Due to the coupling effect, 
the temperature of the bottom also changed, but the 

shift was very small, as shown in Fig.7. 

Fig.8 and Fig.9 illustrated that at time 
500

60
t  , 

the transfer function of the top changed, but the 
bottom had no change. In detail as follow: 
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There was an adjustment process after the 

change in the top’s output. And it is very hard to 

observe the affection on the bottom’s output in Fig.9. 
As figures shown, the simulations confirmed 

that the new algorithm can be self adapting to these 

discontinuities. Not only the production efficiency 
will be highly enhanced, but the whole process flow 

will benefit. 

 

 

 
Fig.2 Set point tracking of top temperature 

 

 

 
Fig.3 Set point tracking of bottom temperature 

 

 

 
Fig.4 Disturbance rejection of top temperature 
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Fig.5 Disturbance rejection of bottom temperature 

 

 

 
Fig.6 Discontinuity of set point change 

(Top) 
 

 

 
Fig.7 Discontinuity of transfer function 

(Bottom) 

 

 

 
Fig.8 Discontinuity of transfer function (Top) 

 

 

 
Fig.9 Discontinuity of transfer function (Bottom) 

 
 

6 Conclusions 

 

 
Based on SISO RTD-A controller, a MIMO 

RTD-A controller is proposed in this paper and the 
existence condition of global optimal solution for 

multivariable systems are also given out. The 

correctness and validity of this new control 
algorithm are verified by the simulation 

comparisons of SISO RTD-A control, IMC-PID 

control and itself. The realization of RTD-A control 
algorithm is simple, and its parameter tuning is very 

convenient. Although the application prospect of 

RTD-A controller is quite positive, its research still 
limited to certain models and parameter 

optimization is equivocal. That’s all focus of the 

future study. 
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