












would subsequently be wrapped in a main module 
for a total representation of the ladder program. 
However, although such an approach would be 
considered modular it is also an unnecessarily bulky 
approach. It may have cost effects on time and the 
execution resources used as indicated in [22]. 
 
4.3. SMV Specification and Verification 
 
Verification is performed by defining the main 
module which will consist of the specification(s) 
written in Computation Tree Logic (CTL) or 
temporal logic to be verified. The result of SMV 
verification is a message stating whether the CTL 
specification is true or false. If it is not true, a 
counter example is generated indicating a sequence 
of state transitions that leads to a violation of the 
CTL specification (see example in [16]). The CTL 
is a reachability tree for the finite state machine 
defined by the SMV model. CTL statements consist 
of a temporal logic operator along with a logical 
expression. The temporal logic operators are E, A, 
X, F, G and U where: 

• E represents the existential path 
quantifier 
• A represents the universal path 
quantifier 
• X represents the next time 
• F represents the future 
• G represents globally 
• U represents until 

Therefore with an expression q, a CTL formula or 
specification could be written as Fq meaning that q 
holds some time in the future, Xq meaning that q 
holds for the next state and so on. If there is more 
than one SPEC declaration the specification is the 
conjunction of all the SPEC declarations. 
Each of the formulas would be evaluated and the 
results reported separately in the order of the SPEC 
declaration in the program text. Considering the 
example of section 3, a specification can be written 
that ensures that each rung will be able to “open” or 
“close” the particular vent being monitored. Hence 
the derived SMV main module representation of the 
PLC program would be: 
MODULEmain 
V AR 
in1 : boolean; 
in2 : boolean; 
in3 : boolean; 
r1 : rung1(in1; in2; in3); 
r2 : rung2(r1:c1; r1:c2; r1:c3); 
r3 : rung3(r2:c1; r2:c2; r2:c3); 
SPEC 
AG(EF(r1:output)&EF!r1:output& 

EF(r2:output)&EF!r2:output& 
EF(r3:output)&EF!r3:output) 
 
Variables in1, in2, and in3 are declared to be of type 
Boolean in this program but are not assigned values. 
This leaves the SMV system free values for this 
these variables, giving them the characteristics of 
being unconstrained inputs to the system. Instances 
r1, r2 and r3 represent rung 1, rung 2 and rung 3 
respectively which monitors the three different vents. 
Inputs to rung2 are driven by the inputs to the 
instance of rung 1. Likewise inputs to rung3 are 
driven by the inputs to the instance of rung 2. The 
specification that we are verifying states that the 
behavior of the system is to allow the vents to be 
turned “on” and “off”. 
The result of this SMV verification was true and 
was done with the Cadence FormalCheck SMV tool 
[8]. The resources used for this model are minimal: 
user time - 0.015625 s, system time - 0.03125 s, 
BDD [33] nodes allocated - 94, and data segment 
size - 0. 
As presented in [16], it is important to note that 
model checking only checks the model of the 
system. For example, when SMV declares a claim 
as ’true’ or ’false’, this is with respect to the system 
model whether or not it accurately represents the 
system.  
 
4.4. System Architecture 
 
The major components of a system and the 
communication 
Between these components identify its structural 
framework or its architectural design. The final 
system architecture is presented in Figure 6. The 
main implemented module is the 
“PLCSelectionEngine” and it contains other sub-
modules. The actualization of the 
“PLCSelectionEngine”, formal verification of a 
ladder diagram, and the PLC database actualization 
were presented previously. The java code for the 
full implementation of the “PLCSelectionEngine” 
and the generation of the SMV given [9]. The next 
section presents a study of a test case used with the 
Resource Allocator and the results obtained. 
 
5.  Case Study 
 
The aim of this case study is to demonstrate, that 
given an XML model of a control process, the 
Resource Allocator tool can be used to select the 
appropriate PLCs or EBCs. The user is then able to 
generate a report for each PLC returned in the 
results of the query to the database. This may 
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include additional modules, supporting materials, 
accessories, and diagrams from the database that are 
linked to the particular PLC or microcontroller. 
Likewise report listings of the contents of the 
database can be generated on demand. Figure 9 
shows the snapshot of the prototype execution. 

 
Fig. 9.  Resource Allocator Prototype Execution 

 
 
After submitting the XML file (i.e: 
VentSystemLadderDiagram.xml [9]), the Resource 
Allocator automatically generates, the list of 
PLCs/EBCs in a database that matches the 
generated parameters. In order to view the 
parameters that were used to generate the results, we 
use the View menu option and select the “Generated 
Parameters” sub-menu item as shown in Figure 10. 
 

 
Fig. 10. Parameters generated from XML file 

 
Likewise, to see the verifiable generated SMV code, 
the user should go to the View sub-menu and select 
the SMV Code menu item (Figure 11).  
 

 
Fig. 11. SMV code generated from XML file 

 
We will present only one case study. The remaining 
examples are described in [9].  
Consider the example of a real-life control process, 
that consists of a painting system (Figure 12).  
 

 
Fig. 12. Diagram of the painting system [11] 

 
A conveyor system that  retrieves parts as is needed 
for a robot to complete paint job. The robot sweeps 
over the part, before the part can move on. The 
sensor lamps must be on for the conveyor to work. 
All actuators and lamps should be off when the 
switch is off. When the “On” switch is turned, the 
conveyor should start. It should run until PE1 
indicates the presence of a part at the paint station. 
At this point, the conveyor should automatically 
turn off. The paint arm, which is assumed to have 
started in its counter clockwise position, should be 
moved to the clockwise position (CW), and then 
back to counter clockwise (CCW) position. While 
the paint arm is moving, the paint should be 
spraying (represented by the Red lamp being on). 
After a complete spray operation, the Red lamp 
should be off. The green light should turn on and 
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stay on for two seconds (use of a timer), indicating 
the process is complete. 
The conveyor should then turn on again. The system 
should then receive another part. Figure 13 gives a 
snapshot of the ladder diagram of a painting system. 
The system controller has a set of inputs and outputs 
(tables 2 and 3). 
 

Table 1. Inputs required by painting controller 

Inputs Description 

PE1 Photo Electric sensor signal that 
indicates the position of the part 
being painted (begin) 

PE2 Photo Electric sensor signal that 
indicates the position of the part 
being painted (end) 

CCWSense Sensing position signal of the 
paint arm and its rotation counter 
clockwise 

CWSense Sensing position signal of the 
paint arm and its rotation counter 
clockwise 

OnSwitch Signal that starts the process 

StopSwitch Signal that stops the process 

G_timer Signal that activates the 2-second 
timer 

 
Table 2. Outputs of the painting controller 

Outputs Description 

CCWMotor Control Signal used for switching 
on/off the motor that turns the 
paint arm counter clockwise 

CWMotor Control Signal used for switching 
on/off the motor that turns the 
paint arm counter clockwise 

ConMotor Control signal used for starting 
and stopping the conveyor 

GLamp Green lamp signal 

RLamp Red lamp signal 

Spainter Spray painter control signal 

The representative XML representation is saved as a 
file named PaintingSystemLadderDiagram.xml [9]. 
 

 
Fig. 13. Snap shot of the ladder diagram editor. 

 
Using this file as input to the PLC/EBC Resource 
Allocator the following results were observed for 
the generated parameters, the selected PLCs/EBCs, 
the generated SMV model and verification. The 
generated parameters are given below: 
Total Contacts : 25 
Number of Branches : 1 
Total Instructions : 20 
Program Memory Size : 360 words 
Data Memory Size : 104 words 
Number of Inputs : 17 
Number of Outputs : 8 
Number of Timers : 1 
 
The Allocator generates results that are similar to 
those of the vent control of figure 10. However it is 
important to recognize that the results returned are 
dependent on more than one factor. The collective 
points in the previous case are reiterated here; That 
is, the type and number of PLCs/MCUs returned 
depend on the population of the database [9]. 
Factors such as the variation in the values of the 
parameters in the database, a larger quantity of data 
and marked differences in the complexity of the 
control processes being studied cause greater 
variation in the results obtained. For example 
the ”Find dialog” command on the Resource 
Allocator can return more specific PLCs/MCUs by 
directly specifying the size of the parameters needed. 
If a search for all MCU from Z-World Inc [32] is 
made, a sample report similar to the one of Figure 
14 should be obtained. 
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Fig. 14.  Z-world MCUs Query 

 
Now, with a larger quantity of data in the database, 
a variation in the data is shown. Using the “Find 
dialog” command again and specifying MCUs with 
at least 256 Kbytes of RAM leads to few elements. 
The variation of parameters are directly related to 
the complexity of the control process being studied. 
Hence, since the test cases showed similar 
complexities, the results from the database agreed 
likewise (Figure 15). The SMV Model of the 
Painting system obtained from the XML using our 
software tool is given in Appendix 2 and the 
verification results in Appendix 3. 
 

 
Fig. 15. Finding Results - Z-world MCUs with at 
least 256 K RAM 
 
6. Conclusion and Future Direction 
 
6.1. Conclusion 
 
This paper presents a preliminary study that 
combines software methods for effective 
deployment of programmable logic controllers in 
control processes. The database is intended to be 
representative of all PLCs and microcontrollers. 
This is achieved by capturing the essential 
characteristics of these components through the 
analysis of data sheets from various industry 
practitioners. The intent is that the resultant database 
should be general enough to represent all the 
fundamental information necessary for any selection, 

as well as to provide auxiliary information on the 
components selected. 
The prototype of the Resource Allocator tool has 
been designed with a few limitations with regard to 
the structure and size of the Ladder Diagram 
programs that can be handled. The rung depth has 
been restricted to 2 and the number of rungs to 20. 
Additionally, all programs are assumed to be 
sequential while in reality programs may have 
jumps or loops. Nevertheless the structural 
limitations were sufficient for the level of analysis 
needed for this research. However, the Resource 
Allocator tool can be expanded to improve these 
limitations and also to increase the number and type 
of contacts that are accommodated. This will 
increase the number of instructions or the size of the 
PLC program that can be processed.   
The digraph-XML model presented requires further 
testing and analysis with more industrial PLC 
programs written in Ladder Diagram for added 
validation and verification of the model. Although 
the test case was 
successfully verified, the model presented can be 
refined to be more semantically rich thus increasing 
the capabilities of the Resource Allocator. 
The XML model can be represented as a set of 
edges and as a simplified incidence matrix which 
can increase the performance of the PLC selection 
engine. Such a model is purported to be more 
memory efficient and will increase the speed of 
parsing. Therefore it is expected to be a core part of 
the resource allocation system in future 
implementations. There are also inherent limitations 
in the generated SMV code. The problem of being 
able to generate ad hoc CTL specifications in the 
SPEC section of the SMV main module for each 
control process is still an unaccomplished task. It is 
no small feat to specify invariants or other 
properties such as fairness, safety and liveness that 
remain constant for all control processes. 
The prospect of performing this task appears 
possible with the concept of a more semantically 
rich model. However, SMV code generated in this 
work models the system and model verification 
checks whether or not it accurately represents the 
system.  This work has the potential to be very 
useful to practitioners in the PLC industry and is a 
precursory step in the total automation and formal 
verification of industrial control processes. It 
facilitates this process through the implementation 
of a reference database, a PLC selection engine and 
a SMV code generator for Ladder Diagram program 
verification. It also provides a number of 
perspectives for future research in the field. 
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6.2. Future Direction 
 
Further The future direction of this work can be 
gleaned from the answer to the following question: 
What is expected  in the future of resource 
allocation and model verification? It is anticipated 
that more efficient methods for automatic selection 
and verification will be produced based on enhanced 
or novel models. This should result in the improved 
performance of the selection engine. It can be noted 
that even the simple creation of strategic indexes 
(indices) in the PLC database can significantly 
improve the database’s performance as the size of 
the database is continually increased. However, the 
focus was on the implementation and functionality 
of the model, so no indices were created on the 
reference database. 
It should be the case that verification is done 
automatically before the selection engine is called to 
perform automatic resource allocation. That is, 
getting a result from the Resource Allocator tool 
should be dependent on the ladder logic being 
correct to the users’ specification. Hence we 
forecast a tighter integration or a convergence of the 
Resource Allocator and the formal verification tools 
to produce more complete automation process. This 
remains a task for a later version of the system. It 
has been the nature of formal verification to create 
an intermediate model of the system prior to 
translating it into the formal language. For example, 
[10] used state chart, Thomas and Bryla [27] used 
transition systems diagrams and for our study 
digraphs and XML. 
To use our model as the basis for formal verification 
would require an equivalent digraph representation 
for the ladder logic programs written in  any of the 
five different PLC programming languages. 
Essentially, this would allow programs written in 
other languages to be represented in ladder diagram 
according to our specifications. A tool that 
represents ladder diagrams internally as digraphs 
and that generates the corresponding XML model 
from the ladder diagram programs is created in [4, 
18] The generated XML model is then used to 
generate the formal model in SMV for verification. 
Alternatively, a common XML model could be 
found for the programming languages represented in 
the International Electro-technical Commission 
(IEC) standard, IEC 61131- 3, which can be used 
for the basis of all PLC verification. Achieving any 
of these could be the precursor for the 
standardization of formal verification of ladder 
diagrams using SMV. 
 
 

Appendixes 
 
Appendix 1: Sample XML Model 
</LadderDiagram> 
... 
- <Graph graphNumber=”3”> 
- <Vertices> 
- <Vertex number=”0”> 
<startX>60.0</startX> 
<startY>470.0</startY> 
</Vertex> 
- <Vertex number=”24”> 
<startX>180.0</startX> 
<startY>470.0</startY> 
</Vertex> 
= <Vertex number=”25”> 
<startX>300.0</startX> 
<startY>470.0</startY> 
</Vertex> 
- <Vertex number=”26”> 
<startX>420.0</startX> 
<startY>470.0</startY> 
</Vertex> 
-<Vertex number=”27”> 
<startX>540.0</startX> 
<startY>470.0</startY> 
</Vertex> 
</Vertices> 
- <Edges> 
-<Edge type=”CloseContactEdge”> 
<from>0</from> 
<to>24</to> 
<address>000.02</address> 
<symbol>V1</symbol> 
</Edge> 
- <Edge type=”CloseContactEdge”> 
Exploring an Approach for Effective Deployment of 
Programmable Logic Controllers (PLCs) 11 
<from>24</from> 
<to>25</to> 
<address>000.01</address> 
<symbol>V2</symbol> 
</Edge> 
- <Edge type=”CloseContactEdge”> 
<from>25</from> 
<to>26</to> 
<address>000.03</address> 
<symbol>V3</symbol> 
</Edge> 
- <Edge type=”OpenOutputEdge”> 
<from>26</from> 
<to>27</to> 
<address>003.00</address> 
<symbol>NO VENT</symbol> 
</Edge> 
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</Edges> 
</Graph> 
</LadderDiagram> 
 
Appendix 2: Generated SMV from the XML 
model 
of the Painting System Controller 
 
MODULE 
rung1(ONSWITCH,OFFSWITCH,START) 
VAR 
output : boolean; 
ASSIGN 
init(output) := 0; 
next(output) := (ONSWITCH — START) & 
(!OFFSWITCH); 
DEFINE 
c1 := ONSWITCH; 
c2 := OFFSWITCH; 
c3 := START; 
 
MODULE rung2(ONSWITCH,PE1,START) 
VAR 
output : boolean; 
ASSIGN 
init(output) := 0; 
next(output) := (ONSWITCH & !PE1 & !START); 
DEFINE c1 := ONSWITCH; 
c2 := PE1; 
c3 := START; 
 
MODULE rung3(PE1,CCWSENSE) 
VAR 
output : boolean; 
ASSIGN 
init(output) := 0; 
next(output) := (PE1 & !CCWSENSE); 
DEFINE 
c1 := PE1; 
c2 := CCWSENSE; 
 
MODULE rung4(PE1,CCWSENSE) 
VAR 
output : boolean; 
ASSIGN 
init(output) := 0; 
next(output) := (PE1 & !CCWSENSE); 
DEFINE 
c1 := PE1; 
c2 := CCWSENSE; 
 
MODULE rung5(PE1,CCWSENSE) 
VAR 
output : boolean; 
ASSIGN 

init(output) := 0; 
next(output) := (PE1 & !CCWSENSE); 
DEFINE c1 := PE1; 
c2 := CCWSENSE; 
 
MODULE rung6(CCWSENSE,CWSENSE) 
VAR 
output : boolean; 
ASSIGN 
init(output) := 0; 
next(output) := (!CCWSENSE & CWSENSE); 
DEFINE 
c1 := CCWSENSE; 
c2 := CWSENSE; 
 
MODULE rung7(CCWSENSE,GTIMER) 
VAR 
output : boolean; 
ASSIGN 
init(output) := 0; 
next(output) := (CCWSENSE & !GTIMER); 
DEFINE 
c1 := CCWSENSE; 
c2 := GTIMER; 
 
MODULE rung8(GLAMP) 
VAR 
output : boolean; 
ASSIGN 
init(output) := 0; 
next(output) := (GLAMP); 
DEFINE 
c1 := GLAMP; 
 
MODULE main 
VAR 
in1 : boolean; 
in2 : boolean; 
in3 : boolean; 
in4 : boolean; 
in5 : boolean; 
in6 : boolean; 
r1 : rung1(in1,in2,r1.output); 
r2 : rung2(r1.c1,in3,r1.c3); 
r3 : rung3(r2.c2,in4); 
r4 : rung4(r2.c2,r3.c2); 
r5 : rung5(r2.c2,r3.c2); 
r6 : rung6(r3.c2,in5); 
r7 : rung7(r3.c2,in6); 
r8 : rung8(r7.output); 
SPEC 
AG( 
EF (r1.output) & EF (!r1.output) & 
EF (r2.output) & EF (!r2.output) & 
EF (r3.output) & EF (!r3.output) & 
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EF (r4.output) & EF (!r4.output) & 
EF (r5.output) & EF (!r5.output) & 
EF (r6.output) & EF (!r6.output) & 
EF (r7.output) & EF (!r7.output) & 
EF (r8.output) & EF (!r8.output)) 
 
Appendix 3: Summary of the Verification Results 
for 
Painting System  
 
Model checking results 
====================== 
(AG ((((((((((((((((EF r1.output)&(EF 
(˜r1.output)))&(EF 
r2.output))&(......true 
user time.........................................0.046875 s 
system time.......................................0.03125 s 
 
 
Resources used 
============== 
user time.........................................0.046875 s 
system time.......................................0.03125 s 
BDD nodes allocated...............................415 
data segment size.................................0 
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