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would subsequently be wrapped in a main module
for a total representation of the ladder program.
However, although such an approach would be
considered modular it is also an unnecessarily bulky
approach. It may have cost effects on time and the
execution resources used as indicated in [22].

4.3. SMV Specification and Verification

Verification is performed by defining the main
module which will consist of the specification(s)
written in Computation Tree Logic (CTL) or
temporal logic to be verified. The result of SMV
verification is a message stating whether the CTL
specification is true or false. If it is not true, a
counter example is generated indicating a sequence
of state transitions that leads to a violation of the
CTL specification (see example in [16]). The CTL
is a reachability tree for the finite state machine
defined by the SMV model. CTL statements consist
of a temporal logic operator along with a logical
expression. The temporal logic operators are E, A,
X, F, G and U where:

o E represents the existential path
quantifier

o A represents the universal path
quantifier

o X represents the next time

o F represents the future

o G represents globally

o U represents until

Therefore with an expression ¢, a CTL formula or
specification could be written as Fg meaning that ¢
holds some time in the future, Xq meaning that g
holds for the next state and so on. If there is more
than one SPEC declaration the specification is the
conjunction of all the SPEC declarations.

Each of the formulas would be evaluated and the
results reported separately in the order of the SPEC
declaration in the program text. Considering the
example of section 3, a specification can be written
that ensures that each rung will be able to “open” or
“close” the particular vent being monitored. Hence
the derived SMV main module representation of the
PLC program would be:

MODULEmain

V AR

inl : boolean;

in2 : boolean;

in3 : boolean;

rl: rungl(inl; in2; in3);

r2 : rung2(rl:cl; rl:c2; rl:c3);

r3 : rung3(r2:cl; r2:c2; r2:c3);

SPEC

AG(EF(r1:output)&EF!rl:output&

EF(r2:output) &EF!r2:output&
EF(r3:output)&EF!r3:output)

Variables inl, in2, and in3 are declared to be of type
Boolean in this program but are not assigned values.
This leaves the SMV system free values for this
these variables, giving them the characteristics of
being unconstrained inputs to the system. Instances
rl, r2 and r3 represent rung 1, rung 2 and rung 3
respectively which monitors the three different vents.
Inputs to rung2 are driven by the inputs to the
instance of rung 1. Likewise inputs to rung3 are
driven by the inputs to the instance of rung 2. The
specification that we are verifying states that the
behavior of the system is to allow the vents to be
turned “on” and “off”.

The result of this SMV verification was true and
was done with the Cadence FormalCheck SMV tool
[8]. The resources used for this model are minimal:
user time - 0.015625 s, system time - 0.03125 s,
BDD [33] nodes allocated - 94, and data segment
size - 0.

As presented in [16], it is important to note that
model checking only checks the model of the
system. For example, when SMV declares a claim
as “true’ or ’false’, this is with respect to the system
model whether or not it accurately represents the
system.

4.4. System Architecture

The major components of a system and the
communication

Between these components identify its structural
framework or its architectural design. The final
system architecture is presented in Figure 6. The

main implemented module is the
“PLCSelectionEngine” and it contains other sub-
modules. The actualization of the

“PLCSelectionEngine”, formal verification of a
ladder diagram, and the PLC database actualization
were presented previously. The java code for the
full implementation of the “PLCSelectionEngine”
and the generation of the SMV given [9]. The next
section presents a study of a test case used with the
Resource Allocator and the results obtained.

5. Case Study

The aim of this case study is to demonstrate, that
given an XML model of a control process, the
Resource Allocator tool can be used to select the
appropriate PLCs or EBCs. The user is then able to
generate a report for each PLC returned in the
results of the query to the database. This may
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include additional modules, supporting materials,
accessories, and diagrams from the database that are
linked to the particular PLC or microcontroller.
Likewise report listings of the contents of the
database can be generated on demand. Figure 9
shows the snapshot of the prototype execution.

&

File Search View Generate Reports Help

XML File: |C Nemsy_slemLauderDiagram xnl ” Browse...
Submit | | Clear | \ Cancel
Hide Details << |

SELECT PLC_CODE PLC_NAME,INSTRUCTIONS,USER_PROGRAM_RA [=
M DATA_RAM INPUTS,0UTPUTS FROM PLC_NAMES WHERE INSTRUCT
IONS == 18 AND USER_PROGRAM_RAM = 1 AND DATA_RAM »= 1 AND (
(INPUTS »= 18 AND OUTPUTS »= 3) OR [0_PORTS »= 21) UNION SELEC]
T CONTROLLER_CODE,CONTROLLER_NAME,INSTRUCTIONS EEPRO

RAM INFUT OUTPUT FROM MICROCONTROLLER WHERE INSTRUCTIC)
NS »= 18 AND NVL{EEPROM,FLASH_MEMORY) »= 1 AND RAM »= 1 AND {
(INPUT »= 18 AND OUTPUT »= 3) OR I0_PORTS »= 21) ORDER BY INSTR
UCTIONS ASC,USER_PROGRAM_RAM ASC, DATA_RAM ASC INPUTS ASQ
[OUTFUTS ; -

Fig. 9. Resource Allocator Prototype Execution

After  submitting the XML file (i.e:
VentSystemLadderDiagram.xml [9]), the Resource
Allocator automatically generates, the list of
PLCs/EBCs in a database that matches the
generated parameters. In order to view the
parameters that were used to generate the results, we
use the View menu option and select the “Generated
Parameters” sub-menu item as shown in Figure 10.

[&
File Search View Generate Reports Help

XML File: CWentSystemLadderDiagram.zml ” Browse... ‘
Generated Parameters
Total Contacts il
Number of Branches 4
Total Instructions 18
Pragram Memaory Size 131 2words
Data Memory Size S48 words
Number of Inputs 18
Nurmber of Outauts .3 Is >>

Fig. 10. Parameters generated from XML file
Likewise, to see the verifiable generated SMV code,

the user should go to the View sub-menu and select
the SMV Code menu item (Figure 11).
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File Search View Generate Reports Help

|| " Browse.. |

RE |

-

XML File: CWentSystemLadderDiagramxml

& SMV Generated Code

MODULE main

AR

in1 ; boalean;

in2 : hoolean;

in3: boalean;

11 rungl{in,in2,indy,
| 12 crung2(rt.el,r.c2 r.c3), —
13 rung3(r.c1,r.e2 .3y, J
SPEC
BG(
EF {r.output) & EF (rl output) &
EF (r2.output) & EF (Ir2.output) &
EF (r3.output) & EF {Ir3.output))

Fig. 11. SMV code generated from XML file

We will present only one case study. The remaining
examples are described in [9].

Consider the example of a real-life control process,
that consists of a painting system (Figure 12).

Green Lamp H%ﬁ;ﬂp
—_—
Corw eyor u
PE2

Paint am

Fig. 12. Diagram of the painting system [11]

A conveyor system that retrieves parts as is needed
for a robot to complete paint job. The robot sweeps
over the part, before the part can move on. The
sensor lamps must be on for the conveyor to work.
All actuators and lamps should be off when the
switch is off. When the “On” switch is turned, the
conveyor should start. It should run until PE1
indicates the presence of a part at the paint station.
At this point, the conveyor should automatically
turn off. The paint arm, which is assumed to have
started in its counter clockwise position, should be
moved to the clockwise position (CW), and then
back to counter clockwise (CCW) position. While
the paint arm is moving, the paint should be
spraying (represented by the Red lamp being on).
After a complete spray operation, the Red lamp
should be off. The green light should turn on and
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stay on for two seconds (use of a timer), indicating
the process is complete.

The conveyor should then turn on again. The system
should then receive another part. Figure 13 gives a
snapshot of the ladder diagram of a painting system.
The system controller has a set of inputs and outputs
(tables 2 and 3).

Table 1. Inputs required by painting controller

Inputs Description

PE1 Photo Electric sensor signal that
indicates the position of the part
being painted (begin)

PE2 Photo Electric sensor signal that
indicates the position of the part
being painted (end)

CCWsSense Sensing position signal of the
paint arm and its rotation counter
clockwise

CWSense Sensing position signal of the
paint arm and its rotation counter
clockwise

OnSwitch Signal that starts the process

StopSwitch Signal that stops the process

G_timer Signal that activates the 2-second
timer

Table 2. Outputs of the painting controller

Outputs Description

CCWMotor Control Signal used for switching
on/off the motor that turns the
paint arm counter clockwise

CWMotor Control Signal used for switching
on/off the motor that turns the
paint arm counter clockwise

ConMotor Control signal used for starting
and stopping the conveyor

GLamp Green lamp signal

RLamp Red lamp signal

Spainter Spray painter control signal
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The representative XML representation is saved as a
file named PaintingSystemLadderDiagram.xml [9].

e = ol
Tie e Cowaig Gomptt [ornt hem. isinc Mt
SICT IR SR RS IR S 1L TR SRS S

1 Latier s EEE

t

Fig. 13. Snép shot of the ladder diagram editor.

Using this file as input to the PLC/EBC Resource
Allocator the following results were observed for
the generated parameters, the selected PLCs/EBCs,
the generated SMV model and verification. The
generated parameters are given below:

Total Contacts : 25

Number of Branches : 1

Total Instructions : 20

Program Memory Size : 360 words

Data Memory Size : 104 words

Number of Inputs : 17

Number of Outputs : 8

Number of Timers : 1

The Allocator generates results that are similar to
those of the vent control of figure 10. However it is
important to recognize that the results returned are
dependent on more than one factor. The collective
points in the previous case are reiterated here; That
is, the type and number of PLCs/MCUs returned
depend on the population of the database [9].
Factors such as the variation in the values of the
parameters in the database, a larger quantity of data
and marked differences in the complexity of the
control processes being studied cause greater
variation in the results obtained. For example
the ”Find dialog” command on the Resource
Allocator can return more specific PLCs/MCUs by
directly specifying the size of the parameters needed.
If a search for all MCU from Z-World Inc [32] is
made, a sample report similar to the one of Figure
14 should be obtained.
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£ MCU Results From PLC Database Query...

ERE ELIZ00 JackRatil 2410
ERED BLIBI0 JackRabl 2410
EREA ELIA0 JackRabbl 241,
BLEIO0 BLNODSmaeat 34
BLID BL2170 Smartat
BLII0 BLZI0Bmakat 2411
BLI130 BLI0 Smarteat 2

BLEGID BLG00 Wof u
BLIE10 [BL281 W 2

Fig. 14. Z-world MCUs Query

Now, with a larger quantity of data in the database,
a variation in the data is shown. Using the “Find
dialog” command again and specifying MCUs with
at least 256 Kbytes of RAM leads to few elements.
The variation of parameters are directly related to
the complexity of the control process being studied.
Hence, since the test cases showed similar
complexities, the results from the database agreed
likewise (Figure 15). The SMV Model of the
Painting system obtained from the XML using our
software tool is given in Appendix 2 and the
verification results in Appendix 3.

| INSTRUCTIONS | Rsht | DATA Rt | INPLIT | oUTRLT
1 N LI
BL2610 BL2610 Wor 11 B0 (G

Fig. 15. Finding Results - Z-world MCUs with at
least 256 K RAM

CONTROLLER CODE‘ CONTROLI:ER HAME
BLIED LW M1

6. Conclusion and Future Direction
6.1. Conclusion

This paper presents a preliminary study that
combines  software methods for effective
deployment of programmable logic controllers in
control processes. The database is intended to be
representative of all PLCs and microcontrollers.
This is achieved by capturing the essential
characteristics of these components through the
analysis of data sheets from various industry
practitioners. The intent is that the resultant database
should be general enough to represent all the
fundamental information necessary for any selection,
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as well as to provide auxiliary information on the
components selected.

The prototype of the Resource Allocator tool has
been designed with a few limitations with regard to
the structure and size of the Ladder Diagram
programs that can be handled. The rung depth has
been restricted to 2 and the number of rungs to 20.
Additionally, all programs are assumed to be
sequential while in reality programs may have
jumps or loops. Nevertheless the structural
limitations were sufficient for the level of analysis
needed for this research. However, the Resource
Allocator tool can be expanded to improve these
limitations and also to increase the number and type
of contacts that are accommodated. This will
increase the number of instructions or the size of the
PLC program that can be processed.

The digraph-XML model presented requires further
testing and analysis with more industrial PLC
programs written in Ladder Diagram for added
validation and verification of the model. Although
the test case was

successfully verified, the model presented can be
refined to be more semantically rich thus increasing
the capabilities of the Resource Allocator.

The XML model can be represented as a set of
edges and as a simplified incidence matrix which
can increase the performance of the PLC selection
engine. Such a model is purported to be more
memory efficient and will increase the speed of
parsing. Therefore it is expected to be a core part of
the resource allocation system in  future
implementations. There are also inherent limitations
in the generated SMV code. The problem of being
able to generate ad hoc CTL specifications in the
SPEC section of the SMV main module for each
control process is still an unaccomplished task. It is
no small feat to specify invariants or other
properties such as fairness, safety and liveness that
remain constant for all control processes.

The prospect of performing this task appears
possible with the concept of a more semantically
rich model. However, SMV code generated in this
work models the system and model verification
checks whether or not it accurately represents the
system. This work has the potential to be very
useful to practitioners in the PLC industry and is a
precursory step in the total automation and formal
verification of industrial control processes. It
facilitates this process through the implementation
of a reference database, a PLC selection engine and
a SMV code generator for Ladder Diagram program
verification. It also provides a number of
perspectives for future research in the field.
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6.2. Future Direction

Further The future direction of this work can be
gleaned from the answer to the following question:
What is expected in the future of resource
allocation and model verification? It is anticipated
that more efficient methods for automatic selection
and verification will be produced based on enhanced
or novel models. This should result in the improved
performance of the selection engine. It can be noted
that even the simple creation of strategic indexes
(indices) in the PLC database can significantly
improve the database’s performance as the size of
the database is continually increased. However, the
focus was on the implementation and functionality
of the model, so no indices were created on the
reference database.

It should be the case that verification is done
automatically before the selection engine is called to
perform automatic resource allocation. That is,
getting a result from the Resource Allocator tool
should be dependent on the ladder logic being
correct to the wusers’ specification. Hence we
forecast a tighter integration or a convergence of the
Resource Allocator and the formal verification tools
to produce more complete automation process. This
remains a task for a later version of the system. It
has been the nature of formal verification to create
an intermediate model of the system prior to
translating it into the formal language. For example,
[10] used state chart, Thomas and Bryla [27] used
transition systems diagrams and for our study
digraphs and XML.

To use our model as the basis for formal verification
would require an equivalent digraph representation
for the ladder logic programs written in any of the
five different PLC programming languages.
Essentially, this would allow programs written in
other languages to be represented in ladder diagram
according to our specifications. A tool that
represents ladder diagrams internally as digraphs
and that generates the corresponding XML model
from the ladder diagram programs is created in [4,
18] The generated XML model is then used to
generate the formal model in SMV for verification.
Alternatively, a common XML model could be
found for the programming languages represented in
the International Electro-technical Commission
(IEC) standard, IEC 61131- 3, which can be used
for the basis of all PLC verification. Achieving any
of these could be the precursor for the
standardization of formal verification of ladder
diagrams using SMV.

ISSN: 1991-8763

11

Lucien Ngalamou, Leary Myers

Appendixes

Appendix 1: Sample XML Model
</LadderDiagram>

- <Graph graphNumber="3">

- <Vertices>

- <Vertex number="0">
<startX>60.0</startX>
<startY>470.0</startY>

</Vertex>

- <Vertex number="24">
<startX>180.0</startX>
<startY>470.0</startY>

</Vertex>

= <Vertex number="25">
<startX>300.0</startX>
<startY>470.0</startY>

</Vertex>

- <Vertex number="26">
<startX>420.0</startX>
<startY>470.0</startY>

</Vertex>

-<Vertex number="27">
<startX>540.0</startX>
<startY>470.0</startY>

</Vertex>

</Vertices>

- <Edges>

-<Edge type="CloseContactEdge”>
<from>0</from>

<to>24</to>
<address>000.02</address>
<symbol>V1</symbol>

</Edge>

- <Edge type="CloseContactEdge”>
Exploring an Approach for Effective Deployment of
Programmable Logic Controllers (PLCs) 11
<from>24</from>

<to>25</to>
<address>000.01</address>
<symbol>V2</symbol>

</Edge>

- <Edge type="CloseContactEdge”>
<from>25</from>

<to>26</to>
<address>000.03</address>
<symbol>V3</symbol>

</Edge>

- <Edge type="OpenOutputEdge”>
<from>26</from>

<to>27</to>
<address>003.00</address>
<symbol>NO VENT</symbol>
</Edge>
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</Edges>
</Graph>
</LadderDiagram>

Appendix 2: Generated SMV from the XML

model
of the Painting System Controller

MODULE
rungl(ONSWITCH,OFFSWITCH,START)
VAR

output : boolean;

ASSIGN

init(output) :=0;

next(output) := (ONSWITCH — START) &
('OFFSWITCH);

DEFINE

¢l := ONSWITCH;

€2 := OFFSWITCH,;

¢3 := START;

MODULE rung2(ONSWITCH,PE1,START)
VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := (ONSWITCH & !PE1 & ISTART);

DEFINE c1 := ONSWITCH;
c2 := PE1;
¢3 := START;

MODULE rung3(PE1,CCWSENSE)
VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := (PE1 & 'CCWSENSE);
DEFINE

cl :=PE1;

c2 := CCWSENSE;

MODULE rung4(PE1,CCWSENSE)
VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := (PE1 & ICCWSENSE);
DEFINE

cl :=PE1;

c2 := CCWSENSE;

MODULE rung5(PE1,CCWSENSE)
VAR

output : boolean;

ASSIGN
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init(output) :=0;

next(output) := (PE1 & !CCWSENSE);
DEFINE c1 := PE1;

c2 := CCWSENSE;

MODULE rung6(CCWSENSE,CWSENSE)
VAR

output : boolean;

ASSIGN

init(output) :=0;

next(output) := ('\CCWSENSE & CWSENSE);
DEFINE

¢l := CCWSENSE;

c2 := CWSENSE;

MODULE rung7(CCWSENSE,GTIMER)
VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := (CCWSENSE & !GTIMER);
DEFINE

cl := CCWSENSE;

c2 := GTIMER;

MODULE rung8(GLAMP)
VAR

output : boolean;

ASSIGN

init(output) :=0;
next(output) := (GLAMP);
DEFINE

cl := GLAMP;

MODULE main

VAR

inl : boolean;

in2 : boolean;

in3 : boolean;

in4 : boolean;

in5 : boolean;

in6 : boolean;

rl: rungl(inl,in2,rl.output);

r2 : rung2(rl.cl,in3,rl.c3);

r3 : rung3(r2.c2,ind);

r4 : rung4(r2.c2,r3.c2);

r5 : rung5(r2.c2,r3.c2);

ré : rung6(r3.c2,in5);

r7 : rung7(r3.c2,in6);

r8 : rung8(r7.output);

SPEC

AG(

EF (rl.output) & EF ('rl.output) &
EF (r2.output) & EF (!r2.output) &
EF (r3.output) & EF ('r3.output) &
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EF (r4.output) & EF (!r4.output) &
EF (r5.output) & EF (!r5.output) &
EF (r6.output) & EF (!r6.output) &
EF (r7.output) & EF (!r7.output) &
EF (r8.output) & EF (!r8.output))

Appendix 3: Summary of the Verification Results
for

Painting System

Model checking results

(((((((((_(((((((EF )

(AG

rl.output)&(EF
(‘rl.output)))&(EF
r2.output))&(......true
USEr tIME.....eciiccie e 0.046875 s
SYSteM tiMe.....ooveeeeie e, 0.03125 s
Resources used
USEr tIME.....cciieiieciec e 0.046875 s
SYStem time......cocveeeee e 0.03125 s
BDD nodes allocated............cccccevevvenene 415
data segment Size.........ccocvvvvveiieriennns 0
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