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Abstract: - In this paper we study optimal control of time-varying multi-input multi-output stochastic systems 
and develop a generalised minimum variance controller. The system to be controlled is described using a multi-
input multi-output time-varying autoregressive moving average model that has multiple delays between the 
output and input.  The controller minimises the sum of output tracking error variances and squared current con-
trol variables. 
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1 Introduction 
The multi-input multi-output (MIMO) generalised 
minimum variance controller (GMVC) minimises a 
generalised minimum variance cost functional for 
stochastic optimal control.  It is based on a MIMO 
controlled autoregressive moving average 
(CARMA) model and extends the MIMO minimum 
variance controller (MVC) by adding quadratic con-
trol variables to the minimum variance cost func-
tional for a generalised minimum variance cost 
functional.  Although making the output tracking 
suboptimal the inclusion of the control variables in 
the cost functional improves the stability of the 
closed-loop control system by penalising large con-
trol actions.  Consequently, large fluctuations in 
control variables are reduced and the controller is no 
longer restricted to systems with a stable inverse. 

The MIMO GMVC for linear time-invariant 
(LTI) systems was developed by Koivo [1].  It ex-
tends the MIMO minimum variance controller of 
Borisson [2] from minimum phase systems to non-
minimum phase systems. This LTI GMVC extends 
also the LTI GMVC of Clarke and Gawthrop 
[3], [4] from single-input and single-output (SISO) 
case to MIMO LTI systems. Both the SISO and 
MIMO LTI GMVCs are very useful and have seen 
many applications in stochastic adaptive control. 

The basic difficulty in extending the SISO LTI 
GMVC to MIMO LTI GMVC is the noncommuta-
tivity of MIMO transfers functions. A pseudocom-
mutation technique is used for the development of 
the MIMO LTI GMVC for overcoming noncommu-
tativity. This technique was developed by Wolovich 

[5] and was introduced to the design of stochastic 
optimal controllers by Borisson [2].  The pseu-
docommutation has seen many applications in 
analysis and design of MIMO LTI systems. 

There are many industrial systems that have 
time-varying dynamics [6], [7].  In this paper we 
will develop a generalised minimum variance con-
troller for MIMO linear time-varying (LTV) sys-
tems.  Noncommutativity is also an obstacle for ex-
tending a GMVC from SISO LTI plants for SISO 
LTV systems.  A pseudocommutation technique 
was developed for SISO LTV transfer operators in 
the previous work [8] on minimum variance predic-
tion of SISO LTV systems.  Based on this technique 
the SISO LTI GMVC was extended for SISO LTV 
plants under a generalised cost functional that uses 
time-varying filters and weighting functions [9].  
However, a pseudocommutation technique is un-
available for MIMO LTV transfer operators for ex-
tending the SISO LTV GMVC for MIMO LTV 
plants. 

An LTV GMVC was developed without using 
the pseudocommutation for an exponentially stable 
SISO LTV CARMA model [10].  However, when 
the LTV filters are involved in the cost functional 
the pseudocommutation cannot be avoided 
[11], [12].  An MIMO LTV GMVC [13] was re-
cently developed for MIMO LTV systems as an ex-
tension of the LTV MIMO MVC [14], [15].  How-
ever, this LTV GMVC can only be applied to the 
MIMO CARMA model with a uniform single delay 
and cannot be used for the MIMO plants that have 
different delays between the inputs and outputs. 
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It is very common that MIMO processes have 
multiple delays and cannot be controlled using a 
MIMO GMVC that has a uniform single delay.  In 
this paper, we extend the LTV GMVC for MIMO 
LTV plants from the uniform delay case for multiple 
delay systems.  We consider the case where the de-
lay can be described using a diagonal matrix such 
that each output can have a different delay to its in-
puts. 

The reminder of this paper is organised as the 
following.  Section 2 describes the MIMO LTV 
CARMA model, the LTV operators, the multiple 
time delays and the generalised minimum variance 
cost functional. Section 3 develops the MIMO LTV 
GMVC, analyses its closed-loop stability and com-
pares it with other LTV GMVCs.  Section 4 presents 
design and simulation examples followed by a con-
clusion in Section 5. 

2 Problem Formulation 
The MIMO LTV plants to be controlled is described 
by the LTV CARMA model 

1 1 1( , ) '( ) ( , ) ( ) ( , ) '( )A k q Y k B k q U k C k q W k    , (1) 

where W'(k) is a p1 vector of zero mean independ-
ent Gaussian processes that represent the stochastic 
disturbances.  The variance of W'(k) is time varying 
and uniformly bounded away from infinite.  U(k) 
and Y'(k) are the plant input and output. They are all 
p1 vectors.  In the CARMA model, q is the one-
step-advance operator and 
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are LTV moving average operators (MAO's) with 
Ai(k), Bj(k) and Cr(k), i=1, 2, ..., n,  j=0, 1, ..., m,  
r=1, 2, ..., h being pp matrices whose elements are 
uniformly bounded away from infinite. It is also as-
sumed that the determinant of B0(k) is uniformly 
bounded away from zero. In the CARMA model the 
signal vectors 
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 (3) 

are used, where the superscript denotes matrix 
transpose, di  1, i=1, 2, …, p, represent the multiple 

time delays between the plant inputs and outputs.  
The above equation shows that the CARMA model 
allows each output to have a different delay with re-
spect to the inputs.  Without losing generality it is 
assumed that di  di+1.  Letting 

 1 2( ) diag , ,..., pdd dD q q q q  (4) 

be a diagonal matrix for description of the multiple 
time delays in terms of the one-step-advance opera-
tor.  The LTV CARMA model can be expressed as 

1

1 1

( , ) ( ) ( )

( , ) ( ) ( , ) ( ) ( )

A k q D q Y k

B k q U k C k q D q W k



  
 (5) 

where 
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 (6) 

When all the delays are equal the CARMA model 
(5) reduces to the uniform single delay LTV 
CARMA model in [13]. 

The inverse of an LTV MAO is called an LTV 
autoregressive operator (ARO) and is denoted as  
A-1(k,q-1) whose stability is defined using the stabil-
ity of the state transition matrix 

1 2 3 1( ) ( ) ( ) ( ) ( )

( 1, )
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k k
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 (7) 

where I and 0 are identity and zero matrix of appro-
priate dimension. The LTV ARO is exponentially 
stable if and only if there are constants C > 0 and 
c > 0 such that 

( )( , ) c k sk s Ce    (8) 

for all k  s  0.  The maximum of all possible c is 
called the rate of exponential stability for the LTV 
ARO. When the LTV ARO is exponentially stable it 
leads to the cancellation rules 

1 1 1

1 1 1

( , ) ( , ) ( ) ( )

( , ) ( , ) ( ) ( ) ( )

A k q A k q X k X k

A k q A k q X k X k k

  

  



 
 (9) 

where (k)satisfies 
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1( , ) ( ) 0A k q k  . (10) 

It is a zero input solution to the above autoregres-
sive equation and will decay to zero exponentially 
when A-1(k,q-1) is exponentially stable. In this paper 
we assume that both A-1(k,q-1) and C-1(k,q-1) are ex-
ponentially stable and all the plant parameters in the 
MIMO LTV CARMA model are known. 

The reference vector for the LTV GMVC to fol-
low has the form 

T

1 1 2 2'( ) ( ) ( ) ( )

( ) ( )

p pS k s k d s k d s k d

D q S k

     



 (11) 

Given the uniformly bounded reference vector the 
generalised minimum variance control objective is 
to minimise the cost functional 

T

T

( ) {[ '( ) '( )] ( )[ '( ) '( )]

( ) ( ) ( ) | ( )}

J k E Y k S k P k Y k S k

U k R k U k Data k

  


 (12) 

using a sequence of control vectors, U(k), U(k-1), 
U(k-2),….  In the control objective (12) Data(k) is 
the set of input and output data up to and including 
time k, both P(k) and R(k) are uniformly positive 
definite matrix that are uniformly bounded away 
from infinite. 

In comparison with the LTI GMVC the assump-
tion on exponential stability of A-1(k,q-1) is addi-
tional and the others are simple and natural exten-
sions of those from the LTI case for LTV plants.  In 
addition, the degrees of the LTV MAO's in the LTV 
CARMA model are time varying because the time 
varying matrices Ai(k), Bj(k) and Cr(k), i=1, 2, ..., n,  
j=1, 2, ..., m, r=1, 2, ..., h, are allowed to become 
zero.  Noting (3) we know that this objective in-
cludes the generalised minimum variance control 
cost functional in [13] as a special case by introduc-
ing multiple time delays for the plant outputs. 

3 Controller 
Left dividing (5) using A(k,q-1) we have 

1 1 1

1 1 1

( ) ( ) ( , ) ( , ) ( )

( , ) ( , ) ( ) ( )

D q Y k A k q B k q U k

A k q C k q D q W k

  

  




 (13) 

In order to divide the noise term on the far right 
hand side of the above equation into past and future 
component left dividing C(k,q-1)D(q) by A(k,q-1) 
gives 

1 1 1

1 1 1

( , ) ( , ) ( ) ( , )

( , ) ( , )

A k q C k q D q F k q

A k q G k q

  

  




 (14) 

where 

1

0 1 1( , ) ( ) ( ) ( )p p

p

d d
dF k q F k q F k q F k q

     (15) 

is the quotient and G(k,q-1) is the remainder.  The 
maximum power of q in G(k,q-1) is zero.  Substitut-
ing (14) into (13) we have 

1 1 1

1 1 1

( ) ( ) ( , ) ( , ) ( )

( , ) ( )

( , ) ( , ) ( )

D q Y k A k q B k q U k

F k q W k
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



 (16) 

The LTV CARMA model can be rewritten as 

1 1 1

1 1 1

( ) ( ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( , ) ( )

D q Y k F k q W k

A k q B k q U k

A k q G k q W k

  
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





 (17) 

Letting k being the current time we have the plant 
output and future noise on the left hand side of the 
above equation because both LTV MAO’s, D(q) and 
F(k,q), have positive power of at least one in the 
one-step-advance operator q.  On the right hand side 
we have the current and past plant input and noise 
because A(k,q-1) is monic and the maximum powers 
of both G(k,q-1) and B(k,q-1) are zero.  As a result, if 
the noise up to and including the current time k can 
be estimated we can use (17) as a predictor for the 
plant output because the future noise is of zero 
mean.  Letting 

ˆ '( ) '( ) ( , ) ( )Y k Y k F k q W k   (18) 

be the output prediction of the CARMA model and 
noting (17) and (4) we have 

1 1 1

1 1 1

ˆ '( ) ( , ) ( , ) ( )

( , ) ( , ) ( )

Y k A k q B k q U k

A k q G k q W k

  

  




 (19) 

Substituting this predictor into the generalised 
minimum variance cost functional we have the fol-
lowing GMVC. 

GMVC Theorem 
If the LTV AROs A-1(k,q-1) and C-1(k,q-1) are expo-
nentially stable, the LTV GMVC for the MIMO 
LTV CARMA model is given by 
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1 1 1 1

1
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  
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1 1

1 1 T
0

( , ) ( , )

( , ) ( ) ( ) ( )

T k q B k q

A k q P k B k R k

 

  




 (22) 

where ˆ ( )W k  is the estimate of W(k). 

Proof 
Substituting the minimum variance prediction (19) 
into the cost functional (12) we have 

 

T

T

T

ˆ ˆ( ) [ '( ) '( )] ( )[ '( ) '( )]

( ) ( ) ( )

[ ( , ) ( )] ( )[ ( , ) ( )]| ( )
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From (1), (2), and (18) it can be verified that 

0

ˆ '( ) '( )
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Y k Y k
B k

U k U k

 
 
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and 

2
T
0 02

( )
2 ( ) ( ) ( ) 2 ( )

( )

J k
B k P k B k R k

U k


 


. (26) 

Because the second derivative is uniformly positive 
definite there exists optimal control U(k) such that 
the generalised minimum variance cost functional 
(12) is minimised.  From (25) we know that the op-
timal control U(k) can be determined from 

1 T
0

ˆ( ) ( ) ( ) '( ) '( )P k B R k U k S k Y k    . (27) 

It follows from (19) that 

1 T
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 
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
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 (28) 

Solving for the control variable we have 

1 1 T 1
0

1 1

[ ( , ) ( ) ( ) ( , )] ( )

( , ) '( ) ( , ) ( )

A k q P k B R k B k q U k

A k q S k G k q W k
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 



 
 (29) 

In order to use this equation to determine the opti-
mal control we need the estimate of the noise W(k).  
The estimator (20) can be rewritten as follows 

1 1

1

ˆ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( )

C k q D q W k A k q D q Y k

B k q U k

 






 (30) 

Comparing the above equation with the CARMA 
model (5) we have 

1( , ) ( ) ( )C k q D q W k  0 , (31) 

where 

1ˆ( ) ( ) ( ) ( ) '( )W k W k W k D q W k     (32) 

is the estimation error.  Equation (31) shows that the 
error will decay exponentially due to exponential 
stability of C-1(k,q-1). Replacing the noise term in 
(29) using its estimate obtained by (20) and noting 
(4) we have (21), which can be further expressed as 

1 1

1 1

( , ) ( ) ( , ) ( ) ( )

( , ) ( ) ( , ) ( )

T k q U k A k q D q S k

G k q W k G k q W k

 

 



 
 (33) 

  

Noting (1), (31), (32) and (33) we have the closed-
loop system of the LTV GMVC as follows 

1

1 1 1

1 1

1 1

1

( , ) '( )

( , ) ( ) ( , ) ( )

( , ) ( , ) '( )

( )
( , ) ( , ) ( )

( )
( , ) ( )

C k q W k

G k q D q T k q U k

B k q A k q Y k

W k
G k q A k q D q

S k
C k q D q



  

 

 



   
      
      

 
          

0 0
0

0

0 0

0



(34) 

Remarks: 
a) The left most matrix in the above equation is the 

LTV ARO matrix for the closed-loop system.  It 
is a lower triangle matrix.  Its stability is deter-
mined by the three diagonal elements, A-1(k,q-1), 
C-1(k,q-1) and T-1(k,q-1). The exponential stability 
of B-1(k,q-1) is not necessary for stability of the 
closed-loop system because it is not a diagonal 
element unless the weighting matrix for the con-
trol variable R(k) is zero.  Thus, the stable in-
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vertability condition of the LTV MVC [8] is re-
moved. 

b) Among the three diagonal elements both 
A-1(k,q-1) and C-1(k,q-1) are exponentially stable. 
Therefore, the closed-loop system is exponen-
tially stable if T-1(k,q-1) is exponentially stable. 
From (22) it is known that stability of T-1(k,q-1) 
depends on the choice of P(k) and R(k).  Be-
cause A-1(k,q-1) is exponentially stable we can 

choose 1 T
0( ) ( ) ( )P k B k R k    I with   being a 

very large positive number in order for the sta-
bility of A-1(k,q-1) to dominate the stability of 
T-1(k,q-1). 

c) The equations (34) and (22) show that stability 
of the closed-loop system is independent on the 
time delay of the system because all the three 
diagonal elements of the LTV ARO for the 
closed-loop system do not include the delay op-
erator D(q).  This agrees with the stability re-
sults for the LTV MVCs and LTI GMVCs. 

d) The estimator (20) is introduced for the estima-
tion of the current process noise from the plant 
input and output.  The estimation error depends 
on the initial conditions used in the estimator.  
When the initial conditions are accurate the es-
timator will produce accurate estimate right 
from the beginning for all the time and the per-
formance of the LTV GMVC will be optimal all 
the time.  When the initial condition is inaccu-
rate there will be an estimation error that decays 
exponentially to zero according to equation (31).  
As a result, the performance of the LTV GMVC 
will converge exponentially to the optimal per-
formance specified by (12).  The rate of the ex-
ponential convergence is faster than or equal to 
the rate of the exponential stability of the LTV 
ARO C-1(k,q-1) as is shown by the error equation 
(31). 

e) This GMVC includes the LTV GMVC for 
MIMO CARMA models with a uniform single 
delay [13] as a special case.  When all diagonal 
elements in the delay operator D(q) are equal the 
generalised minimum variance control cost 
functional (12) becomes the cost functional for 
the LTV MIMO CARMA models with a uni-
form single delay and the LTV GMVC becomes 
the LTV MIMO GMVC of [13]. 

f) This GMVC includes also the LTV MVC for 
MIMO CARMA models with multiple delays as 
a special case.  When the time-varying input 
weighting matrix R(k) is set to zero the general-
ised minimum variance cost functional (12) be-
comes the minimum variance cost functional of 
[14] and the LTV GMVC becomes the LTV 

MVC for MIMO LTV systems with multiple de-
lays. 

g) This GMVC also includes our LTV GMVC for 
SISO LTV systems [10] as a special case.  
When the LTV CARMA model (1) reduces to 
an LTV SISO system the cost functional (12) 
reduces to that for the SISO LTV CARMA 
models of [10] and the MIMO LTV GMVC re-
duces to the SISO LTV GMVC.  However, it 
cannot include our flexible LTV GMVC [11] 
for LTV SISO CARMA models as a special 
case.  Time-varying filters for the plant input 
and output were used in the flexible GMVC cost 
functional in [11].  They were dealt with using 
the pseudocommutation for the development of 
the flexible SISO LTV GMVC.  However, the 
pseudocommutation is unavailable for MIMO 
LTV systems. 

4 Examples 
We present the design and simulation of our LTV 
GMVC using a two-input and two-output LTV plant 
described by the CARMA model 

1 1

2 2

1 1

2 2

1 1

2 2

( 1) ( )
( )

( 2) ( 1)
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( )
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       

   
       

   
        

y k y k
A k

y k y k

u k u k
B k

u k u k

w k w k
C k

w k w k

 (35) 

where both noises are independent Gaussian proc-
esses with zero mean and unit variance.  Specifying 
the delays using the one-step-advance operator we 
have 

2( ) diag( , )D q q q  (36) 

The system can then be represented using the LTV 
CARMA model (5) where 

1 1

1 1

1 1

( , ) ( )

( , ) ( )

( , ) ( )

 

 

 

 

 

 

A k q I A k q

B k q I B k q

C k q I C k q

 (37) 

Example 1 
In this example we study the performance of our 
LTV GMVC using constant weighting functions.  
They have the forms 
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6 0
( )

0 1

0.7 0
( )

0 0.03

 
  
 
 

  
 

P k

R k

 (38) 

The time-varying parameter matrices are 

0.2( 1)

0.7sin(0.1 ) 0.1cos(0.3 )
( )

0 0.7sign[cos(0.2 )]

1.1 2.5sin(0.5 )
( )

0 0.1sign[cos(0.6 )]

1
0.6 0.5(1 )sin(0.6 )

( ) 5

0 0.4sin(0.2 0.2)

 

 
  
 
 

  
 

    
 

k

k k
A k

k

k
B k

k

k
e k

C k k
k

 (39) 

Equations (37) and (39) show that B-1(k,q-1) is expo-
nentially unstable because B(k) is a triangular matrix 
and the absolute value of its first diagonal element is 
uniformly greater than unit. However, both A-1(k,q-1) 
and C-1(k,q-1) are exponentially stable because they 
are upper triangular and the absolute values of their 
diagonal elements are uniformly less than unit.  

Applying the LTV GMVC the estimator (20) has 
the following form 

2 21 1 22 2

2 21 1

22 2

2 21 1

22 2

1 11 1 12 2

1 11 1

12 2

1

ˆ ˆ ˆ( ) ( 2) ( 2) ( 2) ( 1)

( ) ( 2) ( 2)

( 2) ( 1)

( 2) ( 2) ( 3)

( 2) ( 3)

ˆ ˆ ˆ( ) ( 1) ( 1) ( 1) ( )

( ) ( 1) ( 1)

( 1) ( )

( 1)

w k c k w k c k w k

y k a k y k

a k y k

u k b k u k

b k u k

w k c k w k c k w k

y k a k y k

a k y k

u k

     
   
  
    
  

    
   
 
  11 1

12 2

( 1) ( 2)

( 1) ( 2)

b k u k

b k u k

  
  

 (40) 

where aij(k) are the elements of A(k) on the ith row 
and jth column.  The same applies to B(k) and C(k).  
The controller (21) has the form 

1 11 1

2 2

11

2

( ) ( 1)
( , ) ( , )

( ) ( 2)

ˆ ( )
( , )

ˆ ( )

u k s k
T k q A k q

u k s k

w k
G k q

w k

 



   
      

 
  

 

 (41) 

where 

1 1 1 0.1167 0
( , ) ( , ) ( , )

0 0.03
    

   
 

T k q B k q A k q  (42) 

and 

1 1 1 1( , ) ( , ) ( ) ( , ) ( , )    G k q C k q D q A k q F k q . (43) 

The reference inputs are square waves.  Fig. 1 and 
Fig. 2 show that the LTV GMVC is able to drive the 
MIMO CARMA model to follow both square wave 
references.  However, there are steady-state tracking 
errors in both outputs.  This is typical for LTV 
GMVC as a result of the tradeoff between the output 
tracking performance and stability by introducing a 
penalizing term of control variables into the mini-
mum variance cost functional.  The plant parameters 
are shown in Fig. 3 to Fig. 5.   
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Fig. 1 Example 1 first output. 
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Fig. 2 Example 1 second output. 
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Fig. 3 Example 1 plant parameters of A(k). 
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Fig. 4 Example 1 plant parameters of B(k). 
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Fig. 5 Example 1 plant parameters of C(k). 

Fig. 6 shows the two control variables produced 
by the LTV GMVC.  While the second control vari-
able is quite smooth the first fluctuates a lot over a 
wide range.  As a result, the first output is also more 

oscillatory than the second as shown in Fig. 1 and 
Fig. 2.  This is partly due to the stably uninvertible 
nature of the system as is characterised by the top 
left element in the LTV MAO B(k,q-1).  It has the 
form 

1 1
11( , ) 1 1.1b k q q    (44) 

This LTV property is corresponding to the non-
minimum phase characteristics in LTI case.  When 
the coefficient of the second term in the above equa-
tion is changed from 1.1 to 0.9 the LTV CARMA 
model becomes stably invertible.  The plant outputs 
and control variables of this modified example are 
shown in Fig. 7 to Fig. 9.   
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Fig. 6 Example 1 control variables. 
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Fig. 7 Modified example 1 first output. 

Fig. 9 shows that the oscillation in the first con-
trol variable is reduced from a range of -900 to 1400 
in Fig. 6 to that of -500 to 700 in Fig. 9 when the 
system changes from stably uninvertible to stably 
invertible.  Consequently, the oscillation in the first 
plant output is also reduced significantly as shown 
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in Fig. 7.  However, there are very little changes in 
the second plant output and second control variable.  
The reasons can be seen from the triangular form of 
the equations (37) and (39). They show that the sec-
ond equation in the LTV CARMA model (35) is in-
dependent of the first one. 
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Fig. 8 Modified example 1 second output. 
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Fig. 9 Modified example 1 control variables. 

Example 2 
The first example shows that the output of the con-
trol system can be quite oscillatory due to the stably 
uninvertible nature of the system.  The choice of the 
weighting functions can also influence the tradeoffs 
between the tracking performance and stability.  In 
this example we study the affects of time-varying 
weighting functions.  The structure of the system 
remains the same as in the first example and the 
plant parameters are the following. 

0.2( 1)

0.5cos(0.3 ) 0.2cos(0.2 )
( )

0.3sign[cos(0.5 )] 0

1.1 2.5sin(0.5 )cos(0.05 )
( )

0 0.1sign[cos(0.5 )]

1
0.3 0.6(1 )sin(0.5 )

( ) 5

0 0.7sin(0.3 0.3)

k

k k
A k

k

k k
B k

k

k
e k

C k k
k

 

 
  
 
 

  
 

    
 

 (45) 

The weighting matrices are chosen as 

2 2 ( 65) 0
( )

0 1 0.5 ( 65)

0.7 0
( )

0 0.5 0.49 ( 35)

   
     
 

     

1
1

1

k
P k

k

R k
k

 (46) 

where 

0 0
( )

1 0


  

1
t

t
t

 (47) 

is the step function.   
The nonzero weightings are shown in Fig. 10 and 

the plant output, input and parameters are shown in 
Fig. 11 to Fig. 16.  Fig. 11 shows oscillatory track-
ing in the plant first output.  The weighting function 
P11(k) is doubled and P22(k) is halved on k=65 in or-
der to divert more emphasis on the tracking accu-
racy of the first plant output in the LTV GMVC.  
However, this causes large oscillation in the first 
control variable as shown in Fig. 13 and the tracking 
performance in the first plant output does not im-
prove after the weighting changes.  This illustrates 
the difficulty in accurate tracking for stably unin-
vertible systems. 

Fig. 12 shows a significant tracking error in the 
second plant output in the early stage.  This error 
jumps at about the same time as the time-varying 
plant parameters a21(k).  The weighting function 
R22(k) is reduced to 0.1 on k=35 in order to allow 
large control actions to reduce this error and the per-
formance improvement is significant.  After k=65 
the tracking accuracy degraded a little due to the 
changes made in the output weighting matrix P(k). 
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Fig. 10 Example 2 nonzero elements of the weight-
ing functions. 
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Fig. 11 Example 2 first output. 
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Fig. 12 Example 2 second output. 
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Fig. 13 Example 2 control variables. 
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Fig. 14 Example 2 plant parameters of A(k). 
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Fig. 15 Example 2 plant parameters of B(k). 
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Fig. 16 Example 2 plant parameters of C(k). 

5 Conclusion 
Generalised minimum variance control has been 
studied for MIMO LTV systems with multiple de-
lays and an LTV GMVC has been suggested.  It ex-
tends the previous MIMO LTV GMVC [13] from a 
uniform single delay case for multiple delay LTV 
CARMA models.  It extends also our previous LTV 
MVC for MIMO systems [14], [15] with multiple 
delays by adding a penalised term for the control 
vector to the minimum variance cost functional and, 
thus, removes the stable invertability condition for 
closed-loop stability. 
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