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Abstract: - Control design for an underactuated system is complicated, as feedback linearization cannot be 

applied directly. This issue can be addressed by using partial feedback linearization with appropriate coordinate 

transformations. Unfortunately, this often results in leaving the core system non-affine. Design of a control law 

for a non-affine system is quiet difficult due to lack of mathematical tools needed. The Inertia Wheel Pendulum 

is a benchmark example of such non-affine systems. The under actuation property, posing problems in exact 

feedback linearization makes design of the control law for this a challenging task. Although Partial feedback 

linearization reduces a part of the system to linear but leaves the core system non-affine in nature. A novel 

nonlinear controller design fusing recently introduced Sliding Surface Control technique with Implicit Control of 

the nonlinear core is presented to tackle the issue. The task of the nonlinear controller is not only to stop the 

wheel but also to stabilize the pendulum at its unstable upright equilibrium in such a way that the inertial wheel 

stops rotating. The design procedure is simpler and more intuitive than currently available sliding surfaces, 

integrator backstepping or energy shaping designs. Stability is analyzed by decomposing the system into a 

cascade of linear and nonlinear sub-systems. Stability and advantages over existing controller designs are 

analyzed theoretically and verified using numerical simulations. 

 

 

Key-words: - Inertia Wheel Pendulum, Implicit control, Multiple Sliding Surfaces, Underactuated Mechanical 

Systems, Backstepping 

1 Introduction 
It is known that a large class of dynamical systems in 

control theory can be modeled using Euler 

Lagrangian or Hamiltonian equations of motion, 

Nijmeijer [1]. This class of systems is called 

Mechanical Nonlinear Control Systems. Control of 

mechanical system is one of the longest living 

dreams of mankind. Mechanical systems can be 

classified into two broader classes from actuation 

point of view. A Mechanical system is called fully 

actuated mechanical system if the number of control 

inputs is equal to the dimension of the Configuration 

Manifold or the Degrees Of Freedom. An 

underactuated system is one with fewer independent 

controls than the no of degrees of freedom, Oriolo, 

G. and Nakamura [2].  

These systems are ubiquitous in nature. These 

systems arise in real life applications, such as space 

and undersea vehicles and Different robots.  

 

 

 

 

Figure 1 Inetia Wheel Pendulum  

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Nadeem Qaiser, Saleh Bin Tariq, Naveed Haq, Tariq Aziz

ISSN: 1991-8763 591 Issue 7, Volume 5, July 2010



These include mobile robots, snake-type and 

swimming robots, acrobatic  robot, flexible robots, 

walking, brachiating, and gymnastic robots and very 

recently in Micro Electro mechanical Systems.A 

mechanical system may be underactuated in several 

ways. The most obvious reasons can be listed as 

following 

− Natural dynamics of the system (e.g. aircraft, 

spacecraft, helicopters, underwater vehicles, 

locomotive systems without wheels), Fantoni, R. 

Lozano [5].  

− By design for reduction of the cost for some 

practical purposes (e.g. satellites with two 

thrusters and Flexible-link robots),  

underactuated systems also arise in mobile robot 

systems, for example, when a manipulator arm is 

attached to a mobile platform or a space 

platform, M. W. Spong [7].  

− For achieving efficiency, an interesting example 

of achieved efficiency is the locomotion of 

animals. There is considerable experimental 

evidence that a great part of the swing phase in 

this locomotion is passive and the leg swings 

through like a jointed pendulum, T. A. 

McMahon [8]. This use of inertia and gravity 

coupled with the elastic energy stored and 

recovered from tendons, muscles, and bones, 

helps to account for the efficiency of animal 

locomotion. The study has been applied to 

design of passive walking bipeds, T. McGeer 

[9]. 

− Actuator failure, especially in space and marine 

vehicles. It is also interesting to note that certain 

control problems for fully actuated redundant 

robots are similar to those for underactuated 

robots, A. De Luca. [10]. 

− Imposed artificially to create complex low-order 

nonlinear systems for the purpose  of gaining 

insight in control of high-order underactuated 

systems (e.g. the Acrobot, the Pendubot, the 

Beam-and-Ball system, the Cart-Pole system, the 

Rotating Pendulum, the TORA system). 

− Another way that underactuated systems arise is 

due to the mathematical model used for control 

design as, for example, when joint flexibility is 

included in the model, M.W Spong [11]. 

Inertia Wheel Pendulum is one such benchmark 

example. The control theory for fully actuated 

system is very matured and systematic now. 

However generally applicable techniques to handle 

underactuated systems still lag behind. The major 

issue with such system is their denial to feedback 

linearization. Partial feedback linearization can be 

used to tackle the issue but this results in part of the 

system appearing in non-affine form. In fact, it is 

impossible to handle the control problem of the non-

affine nonlinear system directly because, in general, 

even if it is known that the inverse of the involved 

vector field function  exists, it is impossible to 

construct it analytically. A nonlinear controller 

design for stabilization of benchmark nonlinear 

underactuated mechanical system: Inertia Wheel 

Pendulum (IWP) is presented with stability analysis. 

The system posses non-affine nonlinear cores in 

addition to the underactuated nature of the system 

complicating considerably the control law design.  

 The presented design uses implicit controller 

design technique after decomposing the system into 

simpler cascades that reduces the controller design 

procedure significantly. This decomposition presents 

a way to solve the issues presented by the 

underactuated nature of the system. Stability is 

analyzed using the theory of cascaded systems. To 

the best of our knowledge it is the first of its type 

stabilization controller for IWP type Underactuated 

Mechanical Systems (UMS) 

IWP first introduced by Spong et al. [3] is a 

Benchmark nonlinear UMS, mainly for Energy 

Shaping and Damping Injection based approaches. In 

[3] a supervisory hybrid/switching control strategy is 

applied to asymptotic stabilization of the inertia-

wheel pendulum around its upright equilibrium 

point. First, a passivity-based controller [4] swings 

up the pendulum. Then, a balancing controller, 

obtained by Jacobian linearization or (local) exact 

feedback linearization stabilizes the pendulum 

around its upright position.  

Global stabilization of IWP system using 

Integrator Backstepping procedure (IBS) is already 

known. IBS, based on results obtained by Sontag and 

Sussman 0, is a powerful step-by-step design tool. 

However it suffers the problem of “explosion of 

terms” besides putting stringent condition on certain 

system functions (being nC at least) 0. The resulting 

control laws are usually very lengthy and with higher 

degree terms. Implementation of such law is costly 

regarding computation efforts. Multiple Sliding 

Surfaces (MSS) control [12], a procedure similar to 

IBS, avoids this issue but falls short of integrator 

backstepping in terms of theoretical rigor, as the 

need for analytical differentiation is pushed to a 

numerical one.  

Concept of Dynamic Surface Control (DSC), a 

dynamic extension to MSS, introduced by Swaroop 

et al. 0 resolves these issues by using low pass filters. 

A fusion of DSC and Control Lyapunov Method has 

been used successfully for stabilization of IWP and 

other under actuated systems successfully by authors 

[15], [16],[17] and [18]; however this system has 

another challenge present in its non-affine nonlinear 
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core nature as the involved function is not invertible. 

We have used Implicit controllers techniques [19] to 

stabilize IWP and show the design method resulting 

in a less complicated control law. The designed 

controller is simpler than the IBS design and doesn’t 

require a supervisory controller like the one by 

Spong et al [3] and presents a straightforward 

approach to the problem of non-affine control input 

present in nonlinear core.  

The paper opens formally with Section II, 

containing the dynamical model of IWP along with 

necessary coordinate transformations, making the 

note self contained. Controller design and stability 

discussion that is the major topic of this note appears 

in section III. Section IV presents simulation results 

comparing controller performance to existing 

designs with study of initial condition effects on the 

system stability followed by concluding remarks in 

Section V. 

 

2 Dynamical Model 
The IWP as depicted in Figure 1is a planar inverted 

pendulum with a rotating wheel on the end. The joint 

on the base is unactuated thus; the pendulum is to be 

controlled only through wheel rotation. The 

controller task is to stabilize the pendulum in its 

upright unstable equilibrium position while the 

wheel stops rotating. The specific angle of rotation 

of the wheel is not important. Dynamic model of 

IWP can be obtained easily by Euler Lagrange 

method [20]. Using configuration variables as shown 

in Figure 1the Lagrangian for IWP is  

 
1

1
( , ) ( )

2

TL q q q Mq V q= −ɺ ɺ ɺ

 (1) 
the potential energy function is given as  

1 1

1 1 2 1

( ) cos( )

 : ( )

V q w q

where w m l m L g

=

= +
 

IWP is a Flat Underactuated Mechanical Systems 

with kinetic symmetry thus all the Christoffel Symbols 

associated with M vanish and the inertial matrix M is 

constant and    ( )
d L L

Q q u
dt q q

∂ ∂
− =

∂ ∂ɺ
 gives equations of 

motion as 

 

2 2
11 1 2 1 1 2 2

22 2

1sin( ) 0
                            

0

qm l m L I I I

qI I

w q

τ

 + + +  
   

  
−   

+ =   
   

ɺɺ

ɺɺ

 (2) 

Where 

 

I1, Moment of inertia of the pendulum  

(Kg m
2
) 

 I2 Moment of inertia of  the wheel (Kg m
2
) 

m1 Mass of the Pendulum (kg) 

m2  Mass of the wheel (kg) 

L1      Length of the Pendulum (m) 

l1       Distance to the center of the mass (m) 

q1      Angle that the Pendulum makes with the 

vertical  

q2      Angle of the wheel  

τ  Input Torque applied on the Wheel (Nm) 

 

Underactuated property denies use of feedback 

linearization so to simplify the model for controller 

design collocated partial feedback linearization is 

employed using the following change of control [21]  

      uτ α β= +     (3) 

where   

22 21 12 11( / )m m m mα = −  

21 11 1( / ) sin( )m w m qβ =  

 

The coordinate transformation used is 

 

1 11 1 12 2

2 1

3 2

z m q m q

z q

z q

= +

=

=

ɺ ɺ

ɺ

                             (4) 

 

This renders the system as 

 1 2sin( )z w z=ɺ           (5) 

                             
12

2 1 3

11 11

3

1 m
z z z

m m

z u

= −

=

ɺ

ɺ

 (6) 

 

q2 doesn’t play any important role in dynamics 

of system thus is not included as a state variable.  

 

2.1 Remarks 
System after coordinate transformation is a cascade 

interconnection of a linear double integrator 

subsystem (5) and a nonlinear core subsystem (6), in 

strict feedback form. This form is more amenable to 

several standard controller design techniques like 

IBS, MSS and DSC. Carefully note that the 

nonlinear part has a virtual input appearing from 

linear system in non-affine manner. The function is 

not invertible making the control law design very 

difficult. In next section we demonstrate how this 
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problem can be circumvented using implicit control 

design technique. 

 

3 Controller design and satbility 

analysis 

 

3.1 Inner subsystem Controller design 
We first design the controller for the inner sub 

system i.e. the non-affine nonlinear core (5) using 

the technique of implicit controllers, which in fact is 

the main emphasis of this paper and then design 

MSS controller for the lower part(6).  

Core dynamics of inertia wheel pendulum after 

the coordinate transformation are given as following  

      1 2sin( )z w z=ɺ           (7) 

 

Assuming 2z as the virtual control input let 2dz  

is the required control law that stabilizes (7). Note it 

enters in a non-affine fashion with the vector field 

noninvertible globally. Let us consider the first order 

non-affine nonlinear systems as 

 1 2 1sin( ) ( , )z w z f z u= =ɺ  (8) 

 

where 1z  and u R∈  are the state and input 

respectively. In genral  1 1 1( , )Tz z u Rθ ϕ= ∈  is a non-

affine function of both 1z  and u , θ  and ϕ  being 

dimensionally compatible constant parameters and 

known regressor,  respectively. To find a stabilizing 

control add and subtract bu on the right hand side of 

equation  (8) 

 1 1 1( , )Tz z u bu buθ ϕ = − + ɺ  (9) 

 

Consider the implicit control u given by 

 1 1 1

1
( , ) ,  0Tu z u Kz u K

b
θ ϕ = − + + >   (10) 

 

Where b is a design constant.  From (10), we 

know that u  is actually solved by 

 1 1 1( , ) 0T z u Kzθ ϕ + =  (11) 

 

Accordingly, we have 1 1z kz= −ɺ , which shows 

that the closed-loop system is stable and 1z  will 

exponentially converge to zero. In theory, the 

existence of the solution for u  is guaranteed as the 

controllability condition is satisfied, S.S. GE and 

Spong [19].  The scheme is especially suitable for 

discrete time controllers where the u  and x at right 

hand side of the equation are available from last 

clock sample, as shown for IWP. 

Design of control law follows directly from 

results obtained as (10) and the desired virtual 

control is given by  

[ ]
2 2 1 2

1
( 1) sin( ( )) ( ),  0

d d d
z k w z k Kz z k K

b
+ = − + + >  (12) 

 
3.2 Outer subsystem controller design 

 

To stabilize (5) 2z  is required to follow the 

trajectory given as(12). Applying MSS technique, 

we design a control law for the linear subsystem that 

generates the desired trajectory. It’s trivial to verify 

that necessary assumptions [12] for MMS are 

satisfied by (6) regarding the system and by (12) 

regarding the trajectory i.e. 

 

 f is a 1C function in it’s arguments 

 The desired trajectory is bounded and sufficiently 
smooth  

 System has no uncertainties 

Design procedure: 

Take the first sliding surface 1S as the error in 

generation of stabilization function (12) by 2z  then 

 1 2 2: dS z z= −  (13) 

12
1 2 2 1 3 2

11 11

1
d d

m
S z z z z z

m m
= − = − −ɺ ɺ ɺ ɺ  (14) 

 

Now 3z  is chosen as next virtual control to drive 

1S  to zero i.e. 

 11
3 1 1 1 2

12 11

1
( )d d

m
z K S z z

m m
= + − ɺ  (15) 

 

Similarly defining the second surface 2S  as  

 2 3 3: dS z z= −  (16) 

 2 3 3 3 2 2d dS z z u z K S= − = − = −ɺ ɺ ɺ ɺ  (17) 

 

As the control law chosen to derive 2S to zero 
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 3 2 2du z K S= −ɺ  (18) 

 

The resulting architecture is shown in  

0Controller forces linear part to generate the desired 

trajectory with the derivatives of the desired 

trajectory being calculated numerically. Keeping in 

view the partial feedback linearization and 

coordinate transformation this control is then used to 

calculate the required torque for the motor. 

Notice that the direct calculation of 2 ( )dz tɺ  and 

3 ( )dz tɺ  required at this step by the conventional 

backstepping design procedure leads to complexity 

due to “explosion of terms”. Motivated by MSS 

technique this problem is dealt by numerical 

differentiation, i.e.  

 
 ( )( 1) ( ) /xd xd xdz z k z k T= + − ∆ɺ

 

 

With modern high speed digital electronics the 

processing speed can be set very high as compared to 

the slowly evolving dynamics of the mechanical 

system.  

 

3.3 Stability analysis 
It is very hard to find a Liapunov function directly 

for the resulting closed loop system. So for stability 

analysis we will be decomposing the system to a 

cascade of driving Linear and driven nonlinear part. 

Suppose the following holds 

H1: The numerical error in generation of 

required derivatives can be bounded arbitrarily. 

H2: Assuming zero input the driving system LΣ  

is globally asymptotically stable. 

H3: The driven system NΣ  (the nonlinear non 

affine part) with zero input from driving system LΣ  

i.e. 1 0S = , is globally Lipschitz. 

Though we see H1 is a stringent condition but it 

holds for our system trivially. H2 has already been 

shown holding, (12). Olfati Saber (2002). Intuitively 

the numerical error is expected to be bounded if a 

very small time step for numerical calculation of the 

derivatives is used. We prove as following that H3 

also holds. 

Proof for H1: Error bounds for numerical 

differentiations can be calculated using many 

techniques. Here we use central difference formula. 

We have already assumed that 2dz  is sufficiently 

smooth  i.e. 3

2d Cz ∈ . 

Using a second degree Taylor series expansion  

NONAFFINE 

CORE

MSS

u
Zd

z

z
( ) ( )

( ) d d
d

z t z t
z t

T

−
=

∆
ɺ

dzɺ

2  ( )   ( , )q u q qτ α β= + ɺ

τ

 

Figure 2 Proposed controller architecture 

 (3) 3(2) 2

1

( )

( )( )
( ) ( )

2! 3!

f x h

f c hf x h
f x f x h

+ =

′+ + +
 (19) 

and 

 

(3) 3(2) 2

2

( ) ( ) ( )

( )( )
                

2! 3!

f x h f x f x h

f c hf x h

′− = − +

−
 (20) 

 
Subtracting (20) from (19) 

  

 

(3) (3) 3

1 2

( ) ( )

( ( ) ( ))
2 ( )

3!

f x h f x h

f c f c h
f x h

+ − − =

+
′ +

 (21) 
and using mean value theorem to obtain  

 
(3) (3)

(3) 1 2( ) ( )
( )

2

f c f c
f c

+
=  (22) 

  yields  

 

2

(3) 2

( ) ( )
( ) ( )

2

( )
         

3!

f x h f x h
O h f x

f c h

+ − − ′= −

=

 (23) 

 
Now if the third derivative doesn’t change 

rapidly then the numerical error goes to zero, as 

does 2h , which is expressed by using the 2( )O h  

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Nadeem Qaiser, Saleh Bin Tariq, Naveed Haq, Tariq Aziz

ISSN: 1991-8763 595 Issue 7, Volume 5, July 2010



notation and given as  
2

2

3( )
6

h
O h M≤   where 

 (3)

3 max ( )a x bM f x≤ ≤= . 

With modern high speed digital electronics the 

processing speed can be set easily very high as 

compared to the slowly evolving dynamics of the  

mechanical system. Thus by keeping :h T= ∆  

sufficiently small the error can practically be made 

very close to zero.  

After justifying the assumptions to hold we show 

that the driving system LΣ  is globally exponentially 

stable. 

Taking the  function 

 

 2 2

1 1 2 2

1
( )

2
sV K S K S= +  

 

as a Lyapunov function candidate for LΣ . Then  

cV
ɺ  is given as 

 

1 1 2 2

2 2

1 1 2 2 0

 

s

s

V S S S S

V K S K S

= +

= − − ≤

ɺ ɺɺ

ɺ  (24) 

Inequality (24) holds for positive values of 1K  

and 2K . 

This shows the system (24) is Globally 

Asymptotically Stable (GAS) but theorem 4.11 

Hassan K. Khalil, shows that for linear systems 

asymptotic stability of the origin is equivalent to 

exponential stability shows that for linear systems 

asymptotic stability of the origin is equivalent to 

exponential stability. It is very important to see that 

the derivative cancellation of 2dzɺ  in (14) and that of 

next surface can never be exact due to two major 

reasons 

 Numerical errors  

 Parametric uncertainties 

the dynamics of (24) are exponentially stable 

and the boundedness of the numerical error is shown 

arbitrarily controllable in (23) and can be made to 

vanish at origin using controller parameters. 

Application of theorems for vanishing perturbations 

shows that the perturbed system retains the property 

of being exponentially stable if min

max

( )
0

2 ( )

Q
h

P c

λ
λ

< < , 

where P  is the solution of the Lyapunov equation. It 

is trivial to show that composition NΣ - LΣ  satisfies 

all the conditions to avoid peaking as The map 

2

1( , ) :f z S R R→  is 1C , The driven system NΣ  is 

globally Lipschitz and globally asymptotically stable  

 

 The driving system LΣ  is globally exponentially 

stable. 

 The map 2

1 1( , ) :f z S R R→ is 1C , and we have 

already shown after (11) that the driven system is 

Globally exponentially Stable and globally 

Lipschitz.  

Thus it is trivially shown that composition 

satisfies all the conditions to avoid peaking, and the 

origin of the composition is globally asymptotically 

stable, Sussman H.J. et al. [24]. □  

A comparison to existing designs [3] and [22] 

reveals the ease of design and simplicity of obtained 

control law. This simplicity results in 

implementation ease. The numerical nature of MSS 

is also very useful for a digital implementation that is 

pretty obvious with cheap availability of digital 

controllers with built in ADC and DACs. 

 

4 Simulation Results 
Numerical simulations were performed to study 

stability and controller performance. For fair 

performance comparisons we use same system 

parameters as R. Olfati [22]  and Spong [3] i.e. 

 
3

11 4.83 10m −= ×  
6

12 21 22 32 10m m m −= = = ×  
3379.26 10w −= ×  

 

Following controller parameters were used for 

simulations 1 2b = , 3K = ,  1 4K = , 2 6K =  

and =0.001T∆ . As obvious from analysis, iK can be 

set moderately high for faster convergence rates.  

Contrary to conventional iK  tuning external layer is 

not needed to converge faster than the internal 

necessarily. Filter time constant T∆ controls 

boundary layer error hence it must be set as low as 

possible. However, DAC/ADC sample time and 

actuator saturation must be kept in mind as smaller   

As depicted Figure 3 the nonlinear controller 

aggressively stabilizes pendulum from its downward 

stable equilibrium point to its upright unstable 

equilibrium point with negligible transients, while 

wheel stops rotating, Figure 5 Swing up is faster than 

the design by R. Olfati [22]  that requires more 

coordinate transformations and IBS exhibiting the 

phenomenon of explosion of terms. The structure is 
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also simpler than spong’s design [3] as it requires 

different controllers for swing up and local 

stabilization with a supervisory switching controller. 

Control effort peaks are around 0.6 Nm. As shown in 

Figure 4 . The wheel attains higher rotation rates as 

visible in Figure 5 thus motors with good rpm values 

are needed. A less aggressive response can be used 

when higher rpm motors are not available. Phase 

portrait depicted in Figure 6 Clearly indicates a 

smooth behavior. The design involves cancellation 

of undesired terms involving 11m  and 12m . When the 

parameter identification errors exist, this can affect 

the accuracy and stability of the method. To check 

these aspects simulations were also done with 

parametric errors. Although the controller was 

designed without robustification in mind yet it was 

able to stabilize system with variations up to 20% in 

system parameters around nominal values at which 

controller was designed. However severe effects on 

transient behavior of the system were observed as 

shown in Figure 7. This results for the extra gains 

that have to be added to the sliding part of the 

control to make it robust against errors in 

cancellation of derivatives. This also results in higher 

velocity demands for the wheel and more control 

effort. Simulations are also done to study the effect 

of a very small time step. Apparently it reduces error 

in derivative calculation but as depicted in Figure 8. 

It tends to increase control peaks in start and error in 

steady state.  

 

5  Conclusions 
A novel controller design is presented for 

stabilization of IWP. The control scheme employs a 

fusion of Implicit Controller design method with 

multiple sliding surface technique. The presented 

architecture demonstrates the potential of implicit 

controllers handling the non-affine structures 

appearing in Underactuated Mechanical Systems. 

Before application of control strategy collocated 

partial feedback linearization is applied and Model is 

brought to strict feedback form, more amenable to 

Multiple sliding surface control. Stability of the 

system is analyzed theoretically by considering it as 

a cascaded connection of two exponentially stable 

systems. Design simplicity is shown and Controller 

performance is compared to existing designs through 

both theoretically and simulation studies.  

Variations in parameters were also introduced to 

check robustness and system was found robust with 

20% uncertainty in parameter values. System is also 

studied for introducing a very high sampling rate in 

derivative calculation and contrary to normal notion 

it is found that a very small time constant results in 

noise in control and steady state error. 

It is concluded that the presented controller 
architecture with a simpler design procedure while  

leading to a less complicated Control Law, 

achieves faster stabilization and presents a straight 

forward method for handling non-affine systems.  

Further improvements envisioned are 

establishment of robustification on theoretical 

grounds.  
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Figure 3 Pendulum angle and Velocity 
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Figure 4 Control effort 
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Figure 5 Wheel velocity 
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Figure 6 Phase portait 
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Figure 7 Stabalization with 20± % uncertainity in parameters 
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Figure 8 Simulation results for very small time step 
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