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Abstract: - Aircraft dynamics are in general nonlinear, time varying, and uncertain. A control system (classical control 

systems) designed for a flight condition, may not provide the desired stability and performance characteristics in case 

of deviation from the equilibrium point. There are numerous studies regarding flight control in the literature. One of 

them is fuzzy flight control system. Fuzzy logic controllers (FLCs) from their inception have demonstrated a vast 

range of applicability to processes where the plant transfer function is not defined but the control action can be 

described in terms of linguistic variables. FLC's are also being used with improved performance instead of “classical" 

controllers where the plant transfer function is known. Most of the applications about the design of fuzzy flight control 

are in simulation level. In this study, the design of fuzzy and classical PD controller for the pitch rate damping system 

is analyzed and the results for a two-engined jet fighter aircraft are evaluated in a MATLAB coded program. 
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1   Introduction 
The aim of a flight control system (FCS) of an 

aircraft is to maintain a safe and economic operation. 

Thus, the desired flight missions can be accomplished 

even under unexpected events.  In the early days of 

flight, safety was the main concern of a flight control 

system. Since the number of flights and number of 

people using planes for travel has increased, safety is 

even more important.  

Aircraft dynamics are in general nonlinear, time 

varying, and uncertain. Generally, the dynamics are 

linearized at some flight conditions and flight control 

systems are designed by using this linearized 

mathematical model of the aircraft. However, some 

aerodynamic effects are very difficult to model resulting 

in uncertainties in the aircraft dynamics and the dynamic 

behavior of an aircraft may change in a short period of 

time as a result of internal and/or external disturbances. 

Thus, a control system designed for a specific flight 

condition may not be suitable if the conditions change 

from this flight condition. In this case, the performance 

of the aircraft may be unsatisfactory Moreover, 

unexpected situations such as changing weather 

conditions and system failures are difficult to model and 

thus difficult to translate into appropriate classical 

control designs [1,2,3].  

As the complexity of aircrafts increase, classical 

methods become unsatisfactory to yield acceptable 

performance [2] and come to its limits when controllers 

for MIMO (Multi-Input Multi-Output) systems with high 

internal coupling are to be designed. For a higher-

number passenger aircraft or a new supersonic 

commercial transport, powerful and robust techniques 

are required [4]. 

"Fly by Wire" allows the pilot to control the aircraft 

states, as an alternative to the conventional direct control 

of the engines and control surfaces. It gives new 

opportunities to increase the overall level of safety 

through the flexibility offered by the control laws. For 

example, error-tolerant control laws provide flight 

envelope protection, and help the pilot to recover from 

unusual attitudes and successfully achieve critical 

manoeuvres. The use of modern FCS can be beneficial 

from an economic point of view. For certain types of 

aircraft, fuel consumption can be reduced by allowing 

relaxed static stability, counteracted by the application of 

active control. Another advantage related to fuel 

consumption is that for large aircraft the weight of Fly 

by Wire systems is smaller than that of conventional 

systems. Most importantly, modern FCS has contributed 

to improved dynamical behavior. For civil aircraft, 

performance can be increased by application of active 

systems, for example to provide gust suppression and 

auto-trimming, in order to achieve improved ride quality. 

The performance benefits achieved have the penalty of 

tremendous costs involved in the development of an 

advanced FCS [4]. 

There are numerous studies regarding flight control 

in the literature such as adaptive control [5,6], µ 

synthesis control [7,8,9], H∞ control [10,11,12], multi 
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model control [13,14], neural control [15], adaptive 

neural control [16,17], gain scheduling control [18], 

control system with a genetic algorithm optimization 

process [19,20]  and fuzzy control [21,22].  

These methods have many different features. A 

common feature is that each of them is developed to 

achieve advantages over classical techniques. The 

classical approach in which each mode and flight 

condition is treated as a separate problem has led to 

mode proliferation and the need for complex algorithms. 

To avoid functional integration at the end of the FCS 

design, which is too late, an all encompassing and 

consistent design strategy is necessary. Throughout the 

design process a "systems approach" strategy should be 

applied, supported by good requirements, design tools 

and design models. Application of advanced techniques 

promises a significant reduction of design time because 

it would remove the time-consuming classical "one-

loop-at-a-time" approach and reduce the number of 

design points for which a controller has to be designed 

[4]. 

Among these methods, fuzzy systems have different 

kinds of applications (regulating the  velocity of a freight  

train, optimization trip time and energy consumption of a 

high-speed railway, helicopter flight control sytem, 

control of heating, ventilating and air conditioning 

systems, hi-tech filming devices (photo and recording 

cameras), washing machines, micro wave devices, 

industrial control systems, high performance medical 

instruments, railway vehicle control systems, 

autonomous vehicle control, such as trajectory tracking, 

or obstacle avoidance etc.) in many areas 

[23,24,25,26,27]. 

Fuzzy control depends on the fuzzy algorithm 

between the information of process and control input. 

Fuzzy controllers from their inception have 

demonstrated a vast range of applicability to processes 

where the plant transfer function is not defined but the 

control action can be described in terms of linguistic 

variables. Fuzzy controllers are also being used to 

improve the performance of a system where the plant 

transfer function is known [28,29]. 

In the literature, there are different applications of 

fuzzy systems in aviation. Most of the applications about 

the design of fuzzy flight control are in simulation level. 

NASA developed a training simulator where a fuzzy 

control is used for STA (Shuttle Training Aircraft) that is 

modified from a Gulf Stream II business jet. When the 

STA was first developed in 1975 conventional linear 

control systems were used. Although these systems 

performed well, there were areas that could be improved. 

The use of fuzzy control was investigated with the 

conclusion that implementing it in the STA would 

improve the control system performance. It also allows 

for a design based on the physical characteristics of the 

plant, or STA, as opposed to the previous design based 

on an approximate mathematical model of the plant. 

This, plus the inherent structure of fuzzy control, allows 

for an easier implementation of a complex nonlinear 

control system. The nonlinear characteristic of fuzzy 

control systems is the biggest advantage over the old 

linear control system. In the end, the fuzzy control 

system’s overall performance is better; it is more than 

the original linear control system. The fuzzy control has 

improved the simulation fidelity of the STA and 

consequently astronaut training [21]. 

An approach based on a fuzzy logic controller was 

implemented to control and regulate the atmospheric 

plasma spray processing parameters (arc current 

intensity, total plasma gas flow, hydrogen content) to the 

in-flight particle characteristics (average surface 

temperature and velocity) [22].  

Researchers at the U.S. Bureau of Mines, University 

of Alabama, and the U.S. Army, have developed a fuzzy 

system for controlling the flight of UH-1 helicopters 

through various maneuvers. A genetic algorithm is used 

to discover rules for effective control of the helicopter. 

The performance of the controller is tested both in 

simulation and in actual flight. The developed fuzzy 

controller architecture is general enough to be applicable 

to a variety of rotorcraft. Moving the controller to a new 

helicopter simply requires discovering rules for the fuzzy 

controller [24].  

Schram and Verbruggen, members of the Group for 

Aeronautical Research and Technology in Europe 

(GARTEUR) designed a fuzzy controller for the landing 

control of a two-engine civil aircraft and got successful 

simulation results [3]. A fuzzy controller is designed for 

landing of an unmanned aircraft [30]. A fuzzy-logic 

"performance control" system, providing envelope 

protection and direct command of airspeed, vertical 

velocity, and turn rate, was evaluated in a reconfigurable 

general aviation simulator (configured as a Piper 

Malibu) at the FAA Civil Aerospace Medical Institute. 

Performance of 24 individuals (6 each of high-time 

pilots, low-time pilots, student pilots, and non-pilots) 

was assessed during a flight task requiring participants to 

track a 3-D course, from take-off to landing, represented 

by a graphical pathway primary flight display. Baseline 

performance for each subject was also collected with a 

conventional control system. All participants operated 

each system with minimal explanation of its functioning 

and no training. Results indicated that the fuzzy-logic 

performance control reduced variable error and 

overshoots, required less time for novices to learn (as 

evidenced by time to achieve stable performance), 

required less effort to use (reduced control input 

activity), and was preferred by all groups [31].  
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2 Fuzzy PD Control 
Fuzzy logic is a method of rule-based decision 

making used for expert systems and process control that 

emulates the rule-of-thumb thought process used by 

human beings. The basis of fuzzy logic is fuzzy set 

theory which was developed by Lotfi Zadeh in the 

1960s. Defining a fuzzy controller, process control can 

be implemented quickly and easily. Many such systems 

are difficult or impossible to model mathematically, 

which is required for the design of most traditional 

control algorithms. In addition, many processes that 

might or might not be modeled  mathematically are too 

complex or nonlinear to be controlled with traditional 

strategies. However, if a control strategy can be 

described qualitatively by an expert, fuzzy logic can be 

used to define a controller that emulates the heuristic 

rule-of-thumb strategies of the expert. In other words, 

fuzzy controllers allows imprecise and qualitative 

information to be expressed in a quantitative manner. 

Therefore, fuzzy logic can be used to control a process 

that a human can control manually with expertise gained 

from experience. The linguistic control rules that a 

human expert can describe in an intuitive and general 

manner can be directly translated to a rule base for a 

fuzzy logic controller. [25,32] 

Fuzzy Logic Controllers can be used to realize the 

closed-loop control actions directly, i.e. replace 

conventional closed-loop controllers, or they can 

complement and extend conventional control algorithms 

via supervision, tuning or scheduling of local controllers 

[4]. A general fuzzy controller consists of four modules: 

a fuzzy rule and data base, a fuzzy inference engine, and 

fuzzification /defuzzification modules. The 

interconnections among these modules and the 

controlled process are shown in Figure 1. Most of the 

systems use fuzzy controller is PD type controller. In 

this type controller, error and change of error 

knowledges are used in fuzzification and rule base 

modules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuzzy PD controller calculates the appropriate 

control at the input of the system according to the error 

and change of error at the input. While developing such 

a system the most important process is encoding the 

knowledge base of fuzzy controller. The knowledge base 

of the fuzzy PD controller consists of data and rule 

bases. Membership function distributions of system 

input and output variables are defined in data base. 

Determining of appropriate knowledge base is a rather 

difficult process. For most applications, personal 

intuition, logic and experiences are used to constitute 

knowledge base.   

At this point, it is necessary to have adequate and 

proper knowledge. However, in some situations, it is 

impossible to get enough knowledge. At this time, it can 

be based on some algorithmic or logical operations. The 

following list provides some of the methods described in 

the literature to assign membership values or functions 

to fuzzy variables. Intuitions, inference, rank ordering, 

angular fuzzy sets, neural networks, genetic algorithms, 

inductive reasoning, soft partitioning, meta rules and 

fuzzy statistics. 

Membership functions of error and change of error 

are shown in Figure 2 and 3, respectively.  Membership 

functions may be selected as a triangular, trapezoid or 

other appropriate forms. Base values of these forms must 

be intersected with each other. The reason of selecting 

triangular form is that these membership functions can 

be identified with minimum parameters. These 

parameters are the projection of bases and top points of 

triangle on the e and eɺ  axes. The number of 

membership functions changes depending on the 

problem. The number of these linguistic variables 

specifies the quality of control, which can be achieved 

using fuzzy controller. As the number of linguistic 

variables increases, the quality of control increases at the 

cost of increased computer memory and computational 

time. 
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Therefore, a compromise between the quality of 

control and computational time is needed to choose the 

number of variables. In Table 1, for Sugeno type 

controller, as the A1, A2………..An values are real 

numbers and shows rule weight values, error and change 

of error membership functions are denoted with, 

C2,….Cn, D1, D2,….Dn. According the table, number of 

rules will be n
2
 [28,33,34,35]. These rules are; 

 

If   =  C1  and  = D1 then   = A1   

If   =  C1  and  = D2 then   = An+1 

  

 

 

If   =  Cn  and  = Dn then   = An
2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 1 Rule weight table 

 

 

 

 

 

 

 

 

 

 

3 Classical PD control 
PD type controller used in this study because the D 

effect ensures a rapid response, increases damping and 

decreases rise time and settling time. As shown in Figure 

4 the controller output is equal to 
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Classical Control methods are also rigorously 

analysable, and therefore they can be readily certified, 

and since they contain relatively few components, the 

effects of failure of some of those components can be 

assessed relatively easily. There is a great deal of 

experience concerning their use and implementation 

available within most vendors and airframe 

manufacturers. 

Their principal disadvantage is the time taken to 

perform the design process. It is common in industry for 

an existing autopilot design to be modified to suit a new 

aircraft, as opposed to a completely new design being 

performed, and this reduces the design time. A 

significant amount of knowledge concerning aircraft and 

their characteristics is also required to support the design 

procedure since the optimisation of the controller 

depends on the knowledge and intuition of the designer 

and not a computer algorithm [4]. 

 

4  Aircraft Pitch Rate Damping System 
Aircraft pitch rate control system shown in Figure 5. 

It can be seen from the Figure 5 that, elevator angle   

(
cEδ )(deltaec) at the output of the controller is 

calculated such that the output of system pitch rate (q) 

follows the reference pitch rate value (qd). The input of 

actuator provides the change of elevator angle of the 

input of aircraft dynamic via actuator transfer function. 

Controller calculates the appropriate elevator angle at the 

input of the actuator. In this study, the design of fuzzy 

and classical PD controller for the pitch rate damping 

system is analyzed and the results for a two-engined jet 

fighter aircraft are evaluated in a MATLAB coded 

program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Fuzzy PD Controller Application 

and Simulation Results 
The proposed fuzzy PD controller applied to a two-

engined jet fighter aircraft data. The flight parameters 

of selected aircraft are height 10650 m, Mach no 1.2, 

the dynamic pressure ( q  ) 24090 Nm
-2

. Also in Figure 

5, actuator dynamic is 0.01745, sensor dynamic is 5.73, 

and aircraft dynamic for the above flight condition is 

given in Equation 1 [36]. 

 

          (1) 

 

In this study, type of the designed fuzzy controller is 

Sugeno. So there are 25 weight values. According to 

intuition method, list of linguistic rules is shown in 

Table 2. In Table 2, for Sugeno type controller, as the 

A1, A2………..An values are real numbers and shows 

rule weight values, error and change of error 

membership functions are denoted with NVS (negative 

very small), NS (negative small), ZE (zero), PB 

(positive big) and PVB (positive very big). According 

the table, number of rules will be 25. 

 

Table. 2 Rule weight values 
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 NVS 2 1.7 1.8 1.2 0 
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 PB 1 0 -1.3 -1.6 -1.9 
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function forms for change of error are determined which 

are shown in Figure 6 and Figure 7. Borders of both 

function varies between ±5 rad/sn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In coded MATLAB 7.0 based program, in fuzzy PD 

controller simulation results 

( ),(),,()),(,(),,( qtfqtfdeltaectfetf Ec
ɺδ ) shown in 

the Figures 8-15 respectively are obtained in case of ±1 

rad/sn  pitch rate change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 2.5 0 -2.5 -5 

PVB PB NS ZE NVS 

 eɺ    

1 

( )eɺµ

Fig.7 Change of error membership functions  

5 2.5 0 -2.5 -5 

PVB PB NS ZE NVS 

    e   

1 

( )eµ  

Fig.6 Error membership functions  

0 2 4 6 8 10 12 14 16
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t (sn)

e
 (
ra
d
)

Fig. 8 time vs. error  

0 2 4 6 8 10 12 14 16
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

t (sn)

d
e
lt
a
e
c 
(r
a
d
)

Fig. 9 time vs. elevator angle  

 

Fig. 11 time vs. change of pitch rate 
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As shown in Figures 8-15, responses obtained with a 

fuzzy PD controller for the pitch rate have some oscillation, 

overshoot is not short but rise times and settling times of 

responses are also short. By changing the rule weights in rule 

table and borders of membership functions, it is possible to 

get different responses.  

 

4 Classical PD Controller Application 

and Simulation Results 
In classical PD controller Kp=-0.0008 and Kd=-0.0005 

are chosen and the simulation results 

( ),(),,()),(,(),,( qtfqtfdeltaectfetf Ec
ɺδ ) shown in 

the Figures 16-23 respectively are obtained in case of 

±1 rad/sn  pitch rate change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 time vs. elevator angle  
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Fig. 18 time vs. pitch rate 
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5 Conclusion 
In this paper, the design of fuzzy and classical PD 

controller for the aircraft pitch rate damping system is 

analyzed and the results for an aircraft are evaluated in 

a MATLAB coded program. As shown in simulation 

results, responses obtained with fuzzy and classical PD 

controller are a good bit smooth and quite similar in 

both cases.  Furthermore when fuzzy PD controller 

applied, the settling time of responses is shorter than 

classical PD controller and overshoot is smaller. Fuzzy 

controllers from their inception have demonstrated a 

vast range of applicability to processes where the plant 

transfer function is not defined but the control action 

can be described in terms of linguistic variables. Fuzzy 

controllers are also being used to improve the 

performance of a system where the plant transfer 

function is known. Using different methods (Intuitions, 

inference, rank ordering, angular fuzzy sets, neural 

networks, genetic algorithms, inductive reasoning, soft 

partitioning, meta rules and fuzzy statistics) in 

developing membership functions and rule weights, 

performance of the fuzzy controller can be improved. 
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