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Abstract: This paper deals with the Permanent Magnet Synchronous Motor (PMSM) observability problems and
proposes a simple and effective solution to improve the rotor speed and position estimation for Surface PMSM
(SPMSM). In fact, the problem of loss of observability at low frequency range is always recognized in experimental
settings. Nevertheless, there are no sufficient theoretical observability analyses for the PMSM. In the literature,
only the sufficient observability condition has been presented. Therefore, the current work is aimed specially to the
necessary observability condition analysis. In order to improve the rotor speed and position estimation in the case
of SPMSM, a special attention is given to Model Reference Adaptive System (MRAS). MRAS based techniques
are one of the best methods to estimate the rotor speed and position due to its performances and straight forward
stability approach. In this paper, we propose a new robust MRAS scheme based on sliding mode techniques
to estimate the rotor speed of a SPMSM. Furthermore, an Estimator/Observer swapping system is designed to
overcome position observability problems at zero speed which is an unobservable state point. The stability of
the proposed MRAS observer is also presented and discussed. Various tests are carried out in simulation using
MATLAB/SIMULINK to illustrate the obtained theoretical results.

Key–Words: Permanent magnet synchronous motor, Observability analysis, Model reference adaptive system,
Observer, Sliding mode

1 Introduction

Industries concerned by PMSMs are continuously
seeking for cost reductions in their products. These
reductions often impose the minimization of number
of sensors used for control purposes because they sub-
stantially contribute to increase the complexity and
cost of the full installation (additional cables, mainte-
nance, etc.) and the default probability. This imposes
the use of observers in order to realize sensor-less con-
trol design. Since many observers for PMSM sensor-
less control are available, as the extended Kalman fil-
ter [1], the full order and the reduced order observers
[2], the LMI based methods [3], the high-frequency
signal injection methods [4,5], the sliding mode ob-
servers [6,7] and so on, the main research stream has
been focused on searching for reliable speed and po-
sition estimation methods with the aim to replace the

mechanical sensors with the observer in the control
system [8-11]. However, the current problems to suc-
cessfully apply sensor-less control for PMSM are the
existence of operating regimes for which the observer
performances are remarkably deteriorated due to the
difficulties in estimating correctly the motor position.
The failure of sensor-less schemes in some particular
operating conditions has been always recognized in
experimental setting. In the case of induction motors,
the observability has been studied by many authors
[12,13]. Nevertheless, there are no sufficient theoreti-
cal observability studies for the PMSM. Only the suf-
ficient observability condition has been presented in
literature. For instance, in [14], observability is an-
alyzed in the case of constant high speed operation.
In [15] and [16], the author gives only the sufficient
observability condition (not necessary) of the PMSM
in the particular case of constant speed. The current
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work is aimed specially to the necessary observability
conditionanalysis. In [17] and [18], we have given
the sufficient condition of loss of observability for the
SPMSM. In this paper, observability of both the In-
terior PMSM (IPMSM) and the SPMSM is studied
and discussed at different operating conditions then
the necessary and sufficient observability condition is
presented.
In order to illustrate the observability problems shown
in the case of SPMSM and try to find solutions, an
observer should be designed. In a sensor-less PMSM,
the speed can be estimated by various techniques. A
speed estimate can be directly obtained using the ma-
chine’s model equations. However, the accuracy is not
very good. Other techniques are available: the Ex-
tended Kalman Filter method and the Luenberger ob-
server construct full order estimators based on the ma-
chine model. Both approaches tend to depend heav-
ily on the machine parameters and are generally dif-
ficult to implement. Compared with other methods,
MRAS based techniques are one of the best meth-
ods to estimate the rotor speed due to its performance
and straight forward stability approach. The MRAS
system is well-known in the sensor-less control of In-
duction Motors and has been proved to be effective
and physically clear [19, 20, 21]. However, MRAS
techniques using conventional PI controllers still sen-
sible to parameter variations [22, 23]. To overcome
this problem, sliding mode techniques can be intro-
duced to the MRAS structure to ensure robustness
and accuracy of the observer. In this paper, we pro-
pose a new robust MRAS structure based on sliding
mode techniques [24] which have attractive advan-
tages of robustness to disturbances and insensitivity to
parameter variations when the sliding mode happens
[25, 26, 27]. The reference model used in the pro-
posed MRAS system is a Second Order Sliding Mode
(SOSM) observer. This reference model is a speed-
independent observer which computes the estimated
Back Electro-Motive Forces (BEMFs). The proposed
model reference based on Higher Order Sliding Mode
(HOSM) techniques is designed in order to ensure the
robustness of the observer and to reduce the chatter-
ing phenomenon [28, 29, 30, 31]. Therefore, the out-
put signals of the reference model are smooth enough
to be used directly as reference BEMFs. A speed-
dependent model is designed as adjustable model
which computes the estimated BEMFs. Outputs of the
reference and the adjustable model are then fed into an
adaptive sliding mode mechanism ensuring the con-
vergence of the estimated speed to the real speed. The
proposed MRAS observer is of high robustness and
accuracy compared to other MRAS based techniques
presented in the literature. The stability of the de-
signed observer is presented and discussed. The rotor

position is obtained from the phase of the estimated
BEMFs. Since the position can not be calculated at
very low frequencies, because the BEMFs are prac-
tically non existent, an Estimator/Observer swapping
system is proposed to ensure rotor position estimation
in all frequencies range. Tests are carried out at vari-
ous operating conditions to illustrate the effectiveness
and the high robustness of the proposed estimation de-
sign.
This paper is organized as follows: In section two, the
mathematical model of both IPMSM and SPMSM are
presented. In section three, the nonlinear observability
is recalled. Observability analysis of both IPMSM and
SPMSM is presented is section four. The proposed ro-
bust MRAS speed observer based sliding mode tech-
niques is given in section five. Simulation results are
illustrated in section six. Finally, some concluding re-
marks are drawn in the last section.

2 Synchronous Motor Models

2.1 Interior Permanent Magnet Case

The mathematical model of the IPMSM in the (d-q)
rotating coordinate is given by equations (1) and (2)
[32].

(

did
dt
diq
dt

)

=

(

− R
Ld

Lq

Ld
Pω

−Ld
Lq

Pω − R
Lq

)

(

id
iq

)

+

(

1
Ld

0
0 1

Lq

)

(

ud

uq

)

+

(

0
−Pφm

Lq
ω

)

(1)

dω
dt

=
P
J
[(Ld −Lq)id +φm]iq−

fv
J

ω −
Tl

J
(2)

where
ω is the rotor speed.
R is the stator resistance.
Ld, Lq are the (d-q) stator inductance components.
P is the pair pole number.
J is the moment of inertia.
φm is the rotor flux.
fv is the viscous friction.
Tl is the load torque.
[id iq]T , [ud uq]

T are the (d-q) stator current and
voltage vector respectively.
Transforming the model given by (1) on the(α,β )
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fixed coordinate, (3) is derived [32]:
(

uα
uβ

)

=

(

R+sLα sLαβ
sLαβ R+sLβ

)(

iα
iβ

)

+ ωeKe

(

−sin(θe)
cos(θe)

)

(3)

where
Lα = L0 +L1cos(2θe)
Lβ = L0−L1cos(2θe)
Lαβ = L1sin(2θe)

L0 =
Ld+Lq

2

L1 =
Ld−Lq

2
ωe = P.ω is the electric rotor speed.
s is the differential operator.
Ke is the BEMF constant.
The used inverse Park’s transformation is:

(

xα
xβ

)

=

(

cos(θe) −sin(θe)
sin(θe) cos(θe)

)(

xd

xq

)

(4)

With L0 and L1 terms, the equation system (3) be-
comes:
(

uα
uβ

)

= R

(

iα
iβ

)

+sL0

(

iα
iβ

)

+ ωeKe

(

−sin(θe)
cos(θe)

)

(5)

+ L1ωe

(

−2sin(2θe) 2cos(2θe)
2cos(2θe) 2sin(2θe)

)(

iα
iβ

)

+ L1

(

cos(2θe) sin(2θe)
sin(2θe) −cos(2θe)

)

s

(

iα
iβ

)

Therefore, the dynamic model of the IPMSM in the
(α ,β ) fixed coordinate is given by equation (6) and
(7):

(

i̇α
i̇β

)

= Γ−1
[(

uα
uβ

)

−

(

R−2L1ωesin(2θe) 2L1ωecos(2θe)
2L1ωecos(2θe) R+2L1ωesin(2θe)

)(

iα
iβ

)

−ωeKe

(

−sin(θe)
cos(θe)

)]

(6)

ω̇e =
P
J
[2L1(cos(θe)iα +sin(θe)iβ )+φm](−sin(θe)iα

+ cos(θe)iβ )−
fv
J

ωe−
Tl

J
(7)

whereΓ−1 = 1
L2

0−L2
1

×

(

L0−L1cos(2θe) −L1sin(2θe)
−L1sin(2θe) L0 +L1cos(2θe)

)

2.2 Surface Mounted Permanent Magnet
Case

In the SPMSM we haveLd = Lq thenL1 = 0.
Thus, from equation (6) and (7), we can deduce the
dynamic model of the SPMSM:

(

i̇α
i̇β

)

=
1
L0

[(

uα
uβ

)

−R

(

iα
iβ

)

−ωeKe

(

−sin(θe)
cos(θe)

)]

(8)

ω̇e =
P
J

φm(−sin(θe)iα +cos(θe)iβ )−
fv
J

ωe

−
Tl

J
(9)

3 Nonlinear Observability

In this section, the nonlinear observability is recalled
[33]. We consider systems of the form:

∑ :

{

ẋ = f (x,u)
y = h(x)

(10)

Wherex ∈ X ⊂ Rn is the state vector,u ∈ U ⊂ Rm is
the control vector,y∈ Rp is the output vector,f andh
areC∞ functions.

Definition 3-1(Indistinguishability and observ-
ability)
Consider the system∑ and letx0 andx1 be two points
of the state space X.
The pair x0 and x1 are indistinguishable (de-
noted x0Ix1) if (∑,x0) and (∑,x1) realize the same
input-output map, i.e., for every admissible input
(u(t), [t0 t1])

∑
x0

(u(t), [t0, t1]) = ∑
x1

(u(t), [t0, t1])

IndistinguishabilityI is an equivalence relation on X.
∑ is said to be observable atx0 if I(x0) = x0 and∑ is
observable ifI(x) = x for everyx∈ X.

Definition 3-2(Locally weak observability)
Consider the system∑ and letx0 be a point of the state
space X.

• ∑ is locally weakly observable atx0 if there ex-
ist an open neighborhoodV of x0 such that for
every open neighborhoodv of x0 contained inV,
Iv(x0) = x0 and is locally weakly observable if
it’s so at everyx∈ X.
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• ∑ is locally regularly weakly observable atx0 if
it is locally weakly observable atx0 and then−1
derivatives outputs are sufficient to locally ob-
serve the system.

Now in order to recall the well known rank
criterion, the following Lie-B ¨acklund derivative is
presented:

According to system (10), we denote by


































































L f h =
∂h
∂x

f

L2
f h =

∂L f h

∂x
f +

∂L f h

∂u
u̇

L3
f h =

∂L2
f h

∂x
f +

∂L2
f h

∂u
u̇+

∂L2
f h

∂ u̇
ü

...

Lp
f h =

∂Lp−1
f h

∂x
f +∑p−2

i=1

∂Lp−1
f h

∂u(i−1)
u(i)

whereu(i) is theith derivative ofu.

Rank Criterion
A sufficient locally regularly weakly observable con-
dition atx0 of (10) is that there exists(u,u̇, ...,) such
that:

rank(J) |x0= rank























dh
dLf h
dL2

f h
.
.
.

dLn−1
f h























|x0= n (11)

Remark 3-1

1. The notion of locally regularly weakly observabil-
ity is introduced in order to design an observer of
dimension equal ton.

2. The condition (11) depends on(u,u̇, ...) and this
is an implicit justification of the universal inputs
introduced in [34].

4 Observability Study of the PMSM

To determine conditions under which it is possi-
ble to compute rotor speed and position information
from measured output, let’s consider the state vec-
tor x = [iα , iβ , θe, ωe]

T and the output vector

y = [iα , iβ ]T . Voltages and currents are assumed to
be measurable. The order of the state vector of the
PMSM isn = 4. Thus, according to the observability
rank criterion mentioned earlier, the PMSM is locally
regularly weakly observable atx0 for (u,u̇, ...) if the
following condition is fulfilled:

rank(J)|x0,(u,u̇,...) = 4 (12)

4.1 Observability analysis of the IPMSM

Consider the system (6) and (7) as:









ẋ1

ẋ2

ẋ3

ẋ4









=
1

L2
0−L2

1









Λ11γ1 +Λ12γ2

Λ21γ1 +Λ22γ2

x4

Te−mx4− τ









(13)

Where

Λ =

(

L0−L1cos(2θ) −L1sin(2θ)
−L1sin(2θ) L0 +L1cos(2θ)

)

Λi j is theith row of the j th column of the matrixΛ
γ1 = vα −(R−2L1x4sin(2x3))x1+2L1x4cos(2x3)x2+
x4Kesin(x3)
γ2 = vβ −(R−2L1x4sin(2x3))x2−2L1x4cos(2x3)x1−
x4Kecos(x3)
Te = P

J [2L1(cos(x3)x1 + sin(x3)x2) +
φm](−sin(x3)x1 + cos(x3)x2) is the electromag-
netic torque. Let

f (x) =
1

L2
0−L2

1









Λ11γ1 +Λ12γ2

Λ21γ1 +Λ22γ2

x4

Te−mx4− τ









andh(x) = y.

Then, look at the vector of information generated from
the output and its only first derivatives:

O1 =









h1

h2

L f h1

L f h2









(14)

The associated observability matrix is:

J1 =
∂
∂x

O1 (15)
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This gives:

J1 =













1 0 0 0
0 1 0 0

∂L1
f h1

∂x1

∂L1
f h1

∂x2

∂L1
f h1

∂x3

∂L1
f h1

∂x4
∂L1

f h2

∂x1

∂L1
f h2

∂x2

∂L1
f h2

∂x3

∂L1
f h2

∂x4













(16)

The computation of the corresponding determinant
gives:

∆1 =
∂L1

f h1

∂x3
.
∂L1

f h2

∂x4
−

∂L1
f h2

∂x3
.
∂L1

f h1

∂x4
(17)

The previous equation leads to:

∆1 = [[2L1sin(2x3)γ1 +(L0−L1cos(2x3))
∂γ1

∂x3

− 2L1cos(2x3)γ2

− L1sin(2x3)
∂γ2

∂x3
].[−L1sin(2x3)

∂γ1

∂x4
(18)

+ (L0 +L1cos(2x3))
∂γ2

∂x4
]− [−2L1cos(2x3)γ1

− L1sin(2x3)
∂γ1

∂x3
−2L1sin(2x3)γ2

+ (L0−L1cos(2x3))
∂γ2

∂x3
][(L0−L1cos(2x3))

∂γ1

∂x4

− L1sin(2x3)
∂γ2

∂x4
]]/(L2

0−L2
1)

where

∂γ1

∂x3
= 4L1x4(cos(2x3)x1−sin(2x3)x2)+x4Kecos(x3)

∂γ2

∂x3
= 4L1x4(sin(2x3)x1−cos(2x3)x2)+x4Kesin(x3)

∂γ1

∂x4
= 2L1(sin(2x3)x1 +cos(2x3)x2)+Kesin(x3)

∂γ2

∂x4
= −2L1(cos(2x3)x1−sin(2x3)x2)−Kecos(x3)

Case 1: IPMSM at zero speed
It is important to note that for interior permanent mag-
net synchronous motorL1 is always different from 0,
consequently theJ1 determinant at zero speed (x4 = 0)
is:

∆1 = [[2L1sin(2x3)(uα −Rx1)−2L1cos(2x3)(uβ

− Rx2)].[−L1sin(2x3)(2L1sin(2x3)x1 (19)

+ 2L1cos(2x3)x2 +Kesin(x3))+(L0

+ L1cos(2x3))(−2L1cos(2x3)x1

− 2L1sin(2x3)x2−Kecos(x3))]]/(L2
0−L2

1)

Remark 4-1
Looking at the previous expression (19), we remark
that at zero speed operation∆1 depends on current and
voltage. Therefore, we have always the opportunity to
find again the observability property by injection of
a continue current. Thus, we can conclude that the
IPMSM is always observable.

4.2 Observability analysis of the SPMSM

In this section, we present the observability analysis
of the SPMSM and we give a sufficient condition of
loss of the observability property.
In this case, we haveLd = Lq thenL1 = 0. Therefore,
the expression of determinant ofJ1 given in (18) be-
comes:

∆1 = −K2
ex4 (20)

Remark 4-2
The determinant∆1 is dependent only onx4. Thus, for
the considered output and only its first derivative the
SPMSM is locally weakly observable atx0 if x4 6= 0.
This condition is independent on the considered input
uα,β .
Now the question is to look if higher derivatives of
output overcome the observability singularity at zero
speedx4 = 0.
For that, let’s consider the model of the SPMSM given
by equations (8) and (9) in the form of (10) where

f (x,u) =









ax1 +bx4sin(x3)+cuα
ax2−bx4cos(x3)+cuβ

x4

kt(−sin(x3)x1 +cos(x3)x2)−mx4− τ









and h(x) = [x1,x2]
T , with a = −R

L0
, b = Ke

L0
, c = 1

L0
,

kt = pφm
J , m= fv

J andτ = Tl
J .

Let’s look to the following vector of information
generated from:

O2 =

















h1

h2

L f h1

L f h2

L2
f h1

L2
f h2

















(21)

The associated observability matrix is:

J2 =
∂
∂x

O2 (22)

Condition (12) can be tested by searching for a regular
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matrix constructed from any four rows of matrixJ2.
Let’s consider only the 1st, 2nd, 5th and the 6th rows of
J2 as.

J2 =













1 0 0 0
0 1 0 0

∂L2
f h1

∂x1

∂L2
f h1

∂x2

∂L2
f h1

∂x3

∂L2
f h1

∂x4
∂L2

f h2

∂x1

∂L2
f h2

∂x2

∂L2
f h2

∂x3

∂L2
f h2

∂x4













(23)

The computation of the corresponding determinant
gives:

∆2 =
∂L2

f h1

∂x3
.
∂L2

f h2

∂x4
−

∂L2
f h2

∂x3
.
∂L2

f h1

∂x4

= b2[−a2 +am+2kt(−cos(x3)x1 (24)

− sin(x3)x2)]x4−2b2x3
4−b2(a−m)ẋ4

From equation (24) the observability loss for the con-
sidered output and only its first and second derivatives
is ∆2 = 0. The associated manifold of unobservability
is given byΩ̄ = {x : ∆2(x) = 0 and∆1 = 0}.

Remark 4-3 In (24), at zero speedx4 = 0, it is
obvious that the SPMSM is locally weakly observable
for ẋ4 6= 0. This is less restrictive than condition∆1 =
0 given by (20).

Case 2: SPMSM at zero speed and accelera-
tion
The problem now is to consider the particular case
whereẋ4 = x4 = 0 (zero speed and acceleration), and
to look if possible to recover the observability of
SPMSM by using the higher order derivatives (greater
than 2) of the output.
First: consider zero acceleration (̇x4 = 0)
The model of the SPMSM used in this case is given by
(8)-(9) in the form of (10) where the functionf (x,u)
is replaced by

f0(x,u) =









ax1 +bx4sin(x3)+cuα
ax2−bx4cos(x3)+cuβ

x4

0









andh(x) = [x1,x2]
T ,

Consider now the vector of information generated
by the output and its first, second and third derivatives:

O3 =



























h1

h2

L f0h1

L f0h2

L2
f0

h1

L2
f0

h2

L3
f0

h1

L3
f0

h2



























(25)

The associated observability matrix is:

J3 =
∂
∂x

O3 =

























1 0 0 0
0 1 0 0
a 0 bx4cos(x3) bsin(x3)
0 a bx4sin(x3) −bcos(x3)
a2 0 c5 d5

0 a2 c6 d6

a3 0 c7 d7

0 a3 c8 d8

























(26)

with

c5 = abx4cos(x3)−bx2
4sin(x3)

d5 = absin(x3)+2bx4cos(x3)

c6 = abx4sin(x3)+bx2
4cos(x3)

d6 = −abcos(x3)+2bx4sin(x3)

c7 = a2bcos(x3)x4 +(−absin(x3)x4−bx2
4cos(x3))x4

d7 = a2bsin(x3)+abx4cos(x3)−bx2
4sin(x3)

+ (abcos(x3)−2bx4sin(x3))x4

c8 = a2bsin(x3)x4 +(abcos(x3)x4−bx2
4sin(x3))x4

d8 = −a2bcos(x3)+abx4sin(x3)+bx2
4cos(x3)

+ (absin(x3)+2bx4cos(x3))x4

Remark 4-4 In (26), at zero acceleration ˙x4 = 0, it is
obvious that the SPMSM is locally weakly observable
for x4 6= 0.

Second: consider alsox4 = 0 (this corresponds
to zero acceleration and speed)
In this case the observability matrixJ3 (26) becomes:

J4 =

























1 0 0 0
0 1 0 0
a 0 0 bsin(x3)
0 a 0 −bcos(x3)
a2 0 0 absin(x3)
0 a2 0 −abcos(x3)
a3 0 0 a2bsin(x3)
0 a3 0 −a2bcos(x3)

























(27)

Remark 4-5
From the equation (27) a recurrence relation can be
obtained

∂
∂x

Lk
f0hi = a

∂
∂x

Lk−1
f0

hi |x4=0 (28)

k = 2,3, i = 1,2. and can be generalized for
higher derivatives.
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Thus, the higher derivatives of the output greater than
threedo not recover additional information.
Remark 4-6
Equations (27) and (28) show that for the considered
output (currents) and its derivatives at any order, the
condition ẋ4 = x4 = 0 (zero speed and acceleration)
generates a structural subset of indistinguishability
{x : x4 = 0 and ẋ4 = 0}.
A physical interpretation is related to have the Back
Electromotive Forces (BEMFs) equal to zero at any
time for x4 = ẋ4 = 0, then any information with re-
spect to the SPMSM rotor position is in the dynamics
of stator currents.

5 Robust MRAS Speed Observer

It has been shown in the last section that in the case
of IPMSM, we have always the opportunity to find
the observability even at zero speed operation. How-
ever, in the case of SPMSM, the observability is lost
when the motor operates at zero speed and acceler-
ation. In this section, a new MRAS speed observer
with an improved zero-speed position estimation de-
sign is proposed for the SPMSM. The structure of the
proposed MRAS speed observer is shown in Fig. 1.
This structure is made up of a reference model, an ad-
justable model and an adaptation mechanism. In this
structure the mechanical speed is considered slowly
variable with respect to electrical dynamics. This as-
sumption is a usual one for synchronous motor.

Figure 1: Structure of the MRAS Speed Observer
basedSliding Mode

5.1 The reference model

The reference model consists in designing a second
order sliding mode observer (Super Twisting Algo-
rithm) which computes the reference BEMFs ˆeα,β =

[êα êβ ]T using only measured stator currents and
voltages. This reference model does not depend on
the velocity.
The general form of the Super Twisting Algorithm
(STA) is defined as follows [29]:

u(e1) = u1 +λ1|e1|
1
2 sgn(e1)

u̇1 = α1sgn(e1) (29)

with e1 = x1 − x̂1, λ1, α1 > 0 are the observer
parameters,u1 is the output of the observer,x1 is the
estimated variable and:

sgn(e1) =







1 i f e1 > 0
−1 i f e1 < 0

∈ [−1 1] i f e1 = 0

Let eα andeβ be the BEMFs andx = [iα iβ ]. Con-
sider only current dynamic equations of the SPMSM,
we can write:

{

ẋ1 = ax1−beα +cuα
ẋ2 = ax2−beβ +cuβ

(30)

with
{

eα = −ωesin(θe)
eβ = ωecos(θe)

(31)

Let

[xa xb] = −b[eα eβ ] (32)

be the vector of unknown variables. Using (32), equa-
tion (30) becomes:

{

ẋ1 = ax1 +xa +cuα
ẋ2 = ax2 +xb +cuβ

(33)

Currents and voltages are assumed to be measurable.
Applying the STA (29) to system (33), we obtain sys-
tems (34) and (35):

{

˙̂x1 = x̃a +ax1 +cuα +λ1|e1|
1
2 sgn(e1)

˙̃xa = α1sgn(e1)
(34)

{

˙̂x2 = x̃b +ax2 +cuβ +λ2|e2|
1
2 sgn(e2)

˙̃xb = α2sgn(e2)
(35)

Where
e1 = x1− x̂1, e2 = x2− x̂2 andλ1,λ2,α1,α2 are posi-
tive constants that will be given later. ˜xa andx̃b are the
estimated values of the unknown variablesxa andxb.
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According to equations (33), (34) and (35), error dy-
namicsof the observer are given by:

{

ė1 = ea−λ1|e1|
1
2 sgn(e1)

ėa = f1(xb)−α1sgn(e1)
(36)

{

ė2 = eb−λ2|e2|
1
2 sgn(e2)

ėb = f2(xa)−α2sgn(e2)
(37)

With ea = xa− x̃a, eb = xb− x̃b, f1(xb) = ωexb and
f2(xa) = −ωexa

Following the results proposed in [30] and [31]
with respect to the super twisting algorithm (29)
dedicated to the observer design given by equations
(34) and (35), we set:

Corollary: For any initial conditionsx(0), x̂(0),
there exists a choice ofλi and αi such that the
observer state ˆx converges in finite time tox, i.e.
x̂1 7−→ x1 and x̂2 7−→ x2 then e1, e2, ė1 and ė2
converges to zero and by consequence ˜xa 7−→ xa and
x̃b 7−→ xb.

Proof: Consider system (36). To show the con-
vergence of(x̂1, x̃a) to (x1,xa) (ie., (e1,ea) → (0,0))
let consider the system’s dynamic ¨e1

ë1 = f1(xb)−α1sign(e1)−
λ1

2
|e1|

− 1
2 ė1 (38)

with d|x|
dt = ẋsign(x)

Equation (38) leads to

ë1 ∈
[

− f +
1 , f +

1

]

−α1sign(e1)−
λ1

2
|e1|

− 1
2 ė1 (39)

where
f +
1 = max( f1(xb)),

Figures 2 and 3 illustrate the finite time conver-
gence behavior of the reference model. In what fol-
lows we will give the error trajectory for each quad-
rant in the worst cases.
First quadrant: e1 > 0 andė1 > 0
Starting from point A of Fig. 2 the trajectory of
ė1 = f (e1) is in the first quadrante1 ≥ 0 andė1 ≥ 0.
The rising trajectory is given by ¨e1 = −(α1− f +

1 )
By choosingα1 > f +

1 we ensure that ¨e1 < 0 and hence
ė1 decreases and tends towards the y-axis, correspond-
ing to ė1 = 0 (point B in Fig. 2).

Figure 2: Finite time convergence behavior of the pro-
posedobserver : The majoring curve for the finite time
convergence.

Let e1(0) be the intersection of this trajectory with
ė1 = 0; thus

e1(0) =
1

2(α1− f +
1 )

ė2
1(0) (40)

Then, the rising trajectory fore1 > 0 andė1 > 0 can
be given by the following expression:

ė2
1 = 2(α1− f +

1 )(e1(0)−e1) (41)

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−300

−200

−100

0

100

200

300

400

500

600

e1

de
1/

dt

Figure 3: The trajectory ˙e1 = f (e1): Finite time con-
vergence.

Second quadrant:e1 > 0 andė1 < 0
In this case, ¨e1 = − f +

1 −α1sign(e1)−
λ1
2 |e1|

− 1
2 ė1 be-

comesnegative(ë1 < 0) on making a good choice of
α1 which leads to(α1 + f +

1 ) > −λ1
2 |e1|

− 1
2 ė1

So, the rising trajectories as illustrated in Fig. 2 are
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given ase1 = e1(0) with 0≥ ė1 ≥
−2
λ1

(α1 + f +
1 )e1/2

1

and ė1 = ė1(1) = −2
λ1

(α1 + f +
1 )e1/2

1 (0) with ė1 >
−2
λ1

(α1 + f +
1 )e1/2

1 (whereė1(1) corresponds to the in-

tersection of ˙e1 = −2
λ1

(α1+ f +
1 )e1/2

1 ande1 = e1(0) (de-
noted by point C in Fig. 2)).
Hence, if |ė1(1)|

|ė1(0)| < 1 which means thatλ1 > (α1 +

f +
1 )

√

2
α1− f +

1
, we can state that

α1 > f +
1 and λ1 > ( f +

1 +α1)

√

2
α1− f +

1

(42)

are sufficient conditions guaranteeing the state conver-
gence (i.e. the states(e1, ė1) tend towardse1 = ė1 = 0

and in consequence the full convergence of
∞
∑

i=0
|ė1(i)|).

Now we will consider the system (37). Following the
same procedure, we can state that

α2 > f +
2 and λ2 > ( f +

2 +α2)

√

2

α2− f +
2

(43)

are sufficient conditions guaranteeing the state
convergence (i.e. the states(e2, ė2) tend towards
e2 = ė2 = 0 and in consequence the full convergence

of
∞
∑

i=0
|ė2(i)|).

Where

f +
2 = max( f2(xa)),

Now, in order to prove the finite time convergence, it
is necessary to know the time passed in following the
trajectory in each quadrant.
In the first quadrant, the rising trajectory is given by
ë1 =−(α1− f +

1 ) . So, by integration, we can find that
ė1 = −(α1− f +

1 )t +ctewith cte= ė1(0) . Hence the
necessary time for going fromA to B is

t1(0) =
1

(α1− f +
1 )

ė1(0) (44)

In the second quadrant, we can find the rising trajec-
tory leading to a much longer time. This is given by
ë1 =− f +

1 −α1−
λ1
2 |e1|

− 1
2 ė1 . Then, as previously, we

can write that ˙e1 = (−α1 − f +
1 )t − λ1e1/2

1 + cte with

cte= λ1e1/2
1 (0)because at B we havet = 0 andė1 = 0.

Now in C we have ˙e1(1) = (−α1 − f +
1 )t1(1) +

λ1e1/2
1 (0) ; then the necessary time for going fromB

to C is t1(1) =
−ė1(1)+λ1e1/2

1 (0)

α1+ f +
1

which can be expressed

as a function of ˙e1(0) as:

t1(1) =
2(α1 + f +

1 )+λ 2
1

λ1(α1 + f +
1 )

√

2(α1− f +
1 )

ė1(0) (45)

Following the same procedure and using the property
of symmetry of the first and the third quadrant, we
can find the time for going fromC to D which can be
given byt1(2) = −1

(α1− f +
1 )

ė1(1), and expressed also as

function ofė1(0) as

t1(2) =
2

λ1

√

2(α1− f +
1 )

ė1(0) (46)

and for the second and fourth quadrants, the time

for going from D to E is t1(3) = ė1(2)+λ1|e1(1)|1/2

α1− f +
1

;

sinceė1(2) =
2(α1− f +

1 )

λ 2
1

√

α1+ f +
1

α1− f +
1

ė1(0) and|e1(1)|1/2 =

1
λ1

√

α1+ f +
1

α1− f +
1

ė1(0) , one easily obtains

t1(3) =
2(α1− f +

1 )+λ 2
1

λ 2
1 (α1− f +

1 )

√

α1 + f +
1

α1− f +
1

ė1(0) (47)

Let Td(1) be the necessary time interval for going
from A to E; then

Td(1) = t1(0)+t1(1)+t1(2)+t1(3) = K̄ė1(0) (48)

where

K̄ =
1

(α1− f +
1 )

+
2(α1 + f +

1 )+λ 2
1

λ1(α1 + f +
1 )

√

2(α1− f +
1 )

(49)

+
2

λ1

√

2(α1− f +
1 )

+
2(α1− f +

1 )+λ 2
1

λ 2
1 (α1− f +

1 )

√

α1 + f +
1

α1− f +
1

and thus the convergence time for this step can be, in
the worst case, given as

T1 =
∞

∑
i=1

Td(i) = K̄ė1(0)+K̄Wė1(0)+K̄W2ė1(0)

+ K̄W3ė1(0)+... (50)

which gives

T1 =
1

1−W
K̄ė1(0)

With W =
2(α1− f +

1 )

λ 2
1

√

α1+ f +
1

α1− f +
1

< 1 and whereλ1 is

given by (42), and by consequence, we can finally
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conclude on the finite time convergence of(x̂1, x̃a)
towards(x1,xa).
The same procedure is followed to demonstrate the
finite time convergence of(x̂2, x̃b) towards(x2,xb).

Having x̃a and x̃b we can easily deduce the esti-
mated BEMFs ˆeα,β using (32).

5.2 The adjustable model

The adjustable model is tunable by the estimated ve-
locity and it computes the estimated BEMFs ˜eα,β =

[ẽα ẽβ ]T from the following equation:

˙̃eα,β = ω̂eJẽα,β +G(ẽα,β − êα,β ) (51)

whereω̂e is the estimated velocity (the output of the
MRAS observer (show fig. 1)) and

J =

(

0 −1
1 0

)

(52)

For convergence, a feedback loop is introduced and
the feedback gain is:

G = g

(

1 0
0 1

)

(53)

whereg is a positive constant.

5.3 The adaptation mechanism

If the velocity estimation error exist, it will lead to the
estimated BEMFs estimation error :

ε = êα,β − ẽα,β (54)

Then, this error together with the estimation model’s
outputẽα,β is used to construct the manifoldSas :

S = εTJẽα,β (55)

The estimated velocity is :

ω̂e = Msgn(S) (56)

Note that the speed estimate is a discontinuous func-
tion of the manifold andM is a positive constant. The
BEMFs êα,β computed by the reference model will
converge in finite timeT1 to eα,β . After this time
(t > T1), the BEMFs used in the reference model are
also satisfied the following equation:

˙̂eα,β = ωeJêα,β (57)

To show that the sliding mode can be enforced in the
manifold S= 0, we need to show that there existM
sufficiently high such that the manifold is attractive:

SṠ< 0 (58)

After differentiating (55) and replacing the derivative
of the BEMFs from (51) and (57), the following ex-
pression is obtained:

Ṡ = f (ωe, êα,β , ẽα,β )

− M(ẽT
α,β êα,β )sgn(S) (59)

where f is a function of the reference and estimated
BEMFs and speed. Since this term is greater than
zero when the motor is exited andf has a positive
upper value, it’s clear from (59) that sufficiently high
M can be selected such that condition (58) is fulfilled.
Thus, sliding mode is enforced in the manifoldSand
after sliding mode begins, we haveS= 0. The bound-
ary layer method described in [25] is used to find the
equivalent controlωe,eq. Once sliding mode occurs,
we can also assumėS= 0 along withS= 0. The ex-
pression of the equivalent control becomes:

ωe,eq[ẽ
T
α,β êα,β ] = ωe[ẽ

T
α,β êα,β ]+gεTJẽα,β(60)

From (60) when the manifold converge to zero (S=
εTJẽα,β = 0), the equivalent speed tends to the real
speed. The equivalent speed represents the low-
frequency component of the discontinuous term (56).
Thus, while the high-frequency switching function is
fed into the observer, its low-frequency component
can be obtained by Low-Pass Filtering (LPF) and rep-
resents the speed estimate.

5.4 The Rotor Position Estimation Design

The estimated rotor position is obtained simply from
the phase of the estimated BEMFs as follows:

θ̂e = arctan2(
−êα

êβ
) (61)

However, it is shown in section four that the
SPMSM is not observable at zero speed. To over-
come this problem, un Estimator/Observer swapping
system is proposed to ensure position estimation in
all speed range and to overcome position observabil-
ity problems at very low frequencies. The estimator is
obtained by integrating the estimated speed as:

θ̂e =
∫ t

0
ω̂edt+cte (62)

The initial value of the estimated position (θ̂e(0) =
cte) is equal to the last value computed by the observer
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(61) before swapping to the estimator. Thus, since
the speed is always observable, there is no problem
of observability using this position estimator. So, the
position is equal to the observer (61) when the motor
operate at high frequencies and swap to the estimator
(62) since the speed becomes less than a defined very
low value.

6 Simulation Results

The used motor in the simulation testing is a three-
phase SPMSM. The specifications and parameters are
listed in Table 1. Parameters of the MRAS observer
are given in Table 2. The observer is tested in open
loop. Using current and voltage signals, the BE-
MFs are estimated using the proposed SOSM ob-
server which is used as the reference model in the
MRAS structure. This observer does not depend on
the speed. The adjustable model is tunable by the es-
timated speed and it is implemented using equation
(51) ( the output of the MRAS observer (ω̂e) is used
as a feedback to adjust the adjustable model as shown
in Fig. 1).
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Figure 4: Benchmark trajectories: (a) Reference rotor
speed(rad/s), (b) Load torque (N.m)

Dedicated Benchmark. The proposed observer is
tested to the benchmark trajectories [35] presented in
Fig. 4. In this benchmark, two reference trajecto-
ries are defined: The reference rotor speed (Fig. 4(a))
and the load torque (Fig. 4(b)). Initially, the motor is
started to run from zero and increase to 40 rad/s and
still constant until t=1.5s. The load torque is applied at
t=0.5s and removed at t=1s. This first phase permit to
test and evaluate the performance and the robustness
of the observer at low frequencies with application of
the load torque. At t=1.5s, the motor is accelerated un-
til high frequency (157 rad/s). Then, the load torque is
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Figure 5: Nominal Case: (a) Real and estimated ro-
tor speed (rad/s), (b) Real and estimated rotor position
(rad)

applied again at t=3s. This second phase permit to test
the robustness of the observer at high frequency oper-
ating conditions. After that, the motor is decelerated
to 0rad/s and still constant (zero speed and accelera-
tion) until t=6s. This last phase permit to illustrate the
observability problems of the SPMSM at zero speed
and acceleration. Finally, the motor is controlled out
of the unobservable conditions. So the motor is tested
at nominal case (Fig. 5 and 6). Robustness to inter-
nal disturbances is then tested by variation of +50% of
stator resistance (Fig. 7), +15% of stator inductance
(Fig. 8) and +15% of rotor flux (Fig. 9).
Speed Estimation.From these tests, we remark that
the estimated speed mach the real one with very small
steady-state error and good dynamics. The proposed
observer is of high accuracy and robustness against
internal disturbances (parameter variations) and ex-
ternal disturbances (load torque). Nevertheless an er-
ror occurs at fast changed speed time (for example in
Fig. 5 at t=1.6 s) because in this case the speed is not
slowly variable compared to the electrical dynamic.
Obviously this behavior is not a physically one. It is
done only to show the limit performances of the pro-
posed control.
Rotor position Estimation. For rotor position esti-
mation, two tests are carried out. In the first test, we
use only the observer ( Fig. 5). Fig. 5(b) shows the
estimated position which reach the real one with good
accuracy and robustness. However, at zero speed and
acceleration, the rotor position is not observable. In
the second test, we use the Estimator/Observer swap-
ping system (Fig. 6, Fig. 7, Fig. 8 and Fig. 9). Thus,
in these figures, we show that the rotor position can
be obtained at all range of frequencies. However, in
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Figure 6: Estimator/Observer Swapping: Nominal
Case:(a) Real and estimated rotor speed (rad/s), (b)
Real and estimated rotor position (rad)

the unobservable region, we remark in Fig. 6 that the
estimated position is sensitive only to stator resistance
variation. This is due to the use of the estimator in this
region and not the observer.
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Figure 7: Estimator/Observer Swapping: +50% vari-
ation of stator resistance: (a) Real and estimated ro-
tor speed (rad/s), (b) Real and estimated rotor position
(rad)

7 Conclusion

In this paper, the observability analysis of both the
SPMSM and the IPMSM has been presented and dis-
cussed at different operating conditions. A necessary
and sufficient observability condition has been pre-
sented. It has been shown that in the case of IPMSM,
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Figure 8: Estimator/Observer Swapping: +15% vari-
ationof stator inductance: (a) Real and estimated ro-
tor speed (rad/s), (b) Real and estimated rotor position
(rad)

we have always the opportunity to find the observabil-
ity even at zero speed operation. However, in the case
of SPMSM, the observability is lost when the motor
operates at zero speed and acceleration. Furthermore,
a new robust MRAS scheme based sliding mode tech-
niques is proposed for high accuracy and robustness
rotor speed estimation of a SPMSM. The stability of
the proposed MRAS system has been studied and dis-
cussed. High performance estimation of the rotor po-
sition has been obtained using an Estimator/Observer
swapping system and permit to overcome the problem
of observability at low speed. Selected simulation re-
sults has been presented to illustrate the performance
and the robustness of the proposed speed and position
estimations design.
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Table 1: PMSM characteristics

Rated PowerPn 1.7kW
Rated speedωn 157rad.s−1

Rated voltageUn 380V
Rated currentIn 3.8A

Number of pole pairs P 3
Stator inductanceL0 0.027H
Stator resistance R 3.3Ω

Rotor fluxφm 0.341
Rotor inertia J 0.0026kg.m2

Viscous friction fv 0.0034kg.m2.s−1

Table 2: Parameters of the Observer.

α1 5.105

λ1 580
α2 5.105

λ2 800
g 100
M 1500
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