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Abstract:  A linear closed-form solution followed by Jacobian optimization is proposed to solve AX=XB for 
hand-eye calibration. Our approach does not require A,B satisfying rigid transformation rather than the classic 
ones based on quaternion algebra or screw rule. We firstly give the detailed proof of the optimal orthonormal 
estimation for an arbitrary scale matrix. With the theorem, a linear closed solution based on singular value 
decomposition (SVD) and the rule of optimal rotation estimation, is presented, followed by the nonlinear 
optimization with the proposed Jacobian recursive formula. Detailed deduction and demonstration are given 
based on matrix theory. Since our approach is applicable for non-rigid transformation rather than the classic 
ones, our technique is more flexible. Plenty of computer simulation and real data implementation indicate that: 
(1) In computation of initial value, our technique has higher precision and more robustness. (2) As more 
equations are added, initial value will converge to final value gradually, which shows it credible to regard 
initial value as final solution when many equations are supplied.  
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1 Introduction 
Robots are in use throughout industry [1,2] and 
Hand-eye calibration is the basis of robot off-line 
programming. The calibrated hand-eye helps to 
robot realizing precise location and metric 
reconstruction, which is important particularly for 
precision manufacturing industry [3,4]. Hand-eye 
calibration problem, which is to determine the 
transformation from camera to robot coordinate 
system, virtually yields a homogeneous matrix 
equation of the form AX = XB. Several closed-form 
solutions [5~8] were proposed in the past to solve 
for X as well as a nonlinear optimization method. 
Tsai [5] and Shiu [6] presented the linear algorithms 
based on the screw theory respectively, here, Tsai 
analyzed the error elaborately in detail, and 
proposed very practical calibration scheme to 
improve the calibration accuracy and robustness. 
Their algorithms are described at the geometric 
insight [8] and are self-integrated in theory, but their 
deduction procedures are quite complicated. To 
overcome this deficiency, Zhuang et al. [7] used 
quaternions to solve the equation and simplified the 
problem. Chou and Kamel [9] presented the form-

closed solution based on quaternions, subsequently, 
horaud and Dornaika [10] implement the 
optimization to their solution. Zhao [11] employed 
the screw theory with quaternions to solve the 
calibration problem.  

However, the forementioned algorithms have a 
common limitation that they all require A, B 
satisfying rigid transformation, for they are based on 
quaternions or screw theory. For example, Tsai’s 
algorithm [5] and Zhuang’s algorithm [7] are well 
known for the precision and robustness, and cited in 
many textbooks and literatures, we call their 
algorithms generally as classic approaches in our 
paper. Although Tsai’s algorithm is different from 
Zhuang’s in theory, their solving formulas are 
approximately the same. In classic algorithms, also 
called two-stage algorithm, the first step is to solve 
the rotational axis of X linearly according to the 
rotational axes or quaternion vectors of A, B, and the 
next step is to apply the result in the first step to 
solve the translation vector linearly. This algorithm 
has a main deficiency that rotation estimation errors 
at first step can propagate to the translation 
computation directly. Zhuang [7] hence proposed 
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one-stage algorithm to implement a non-linear 
optimization to alleviate the drawback. Not only is 
this algorithm less sensitive to noise, furthermore, 
this algorithm is easy to understand and use. With 
synthetical analysis, we think the classic algorithms 
have complete theory analysises and deductions 
based on quaternions or screw theory, and solve for 
the initial value linearly, However, the main 
disadvantages for the classic algorithms are two fold: 
(1) The required conditions are too rigorous, that is, 
to use quaternions or screw theory, it requires that A, 
B are rigid transformations. In fact the given A or B 
might be the approximate rigid transformations, it 
needs rigid transformation estimation on A, B, and 
this will produce cumulative errors. (2) The classic 
algorithms doesn’t consider the condition of 
rotational deviations between A,B. In fact though 
A,B can satisfy the rigid transformations, the 
rotational angles of A and B are not equal generally, 
and small deviations between the rotational angles 
will cause the classic algorithms comparative big 
errors.    

We propose a new linear method to solve the 
rotational part of A, B through SVD, which doesn’t 
need to decompose A, B for the screw vectors or 
rotational axes, therefore, our approach doesn’t need 
to consider whether A, B satisfy the rigid 
transformation or their rotational angles are equal, 
so it can widely satisfy general situation. As the 
solution by this linear method mayn’t satisfy 
rotational transformation, we estimate the optimal 
rotational matrix by maximum likelihood method, 
then we employ the same approach as the class ones 
to solve the translation part linearly. To alleviate the 
cumulative errors, we establish the objective 
function of optimization, and derivate the iterative 
Jacobian formula, and implement the non-linear 
optimization with Gauss-Newton method or 
Levenberg-Marquet method. Our technique has 
complete theoretical basis with rigorous 
demonstrations and deductions, in addition, the 
theoretical part, lemmas and formulas of the 
approach are a good reference for the other studies 
or applications. Both Simulations and real data 
implementation have been done to compare our and 
classic approaches. 
 
2 Closed-Form Solution 
In this section we will mainly elaborate the linear 
method based on SVD, the estimation of rotational 
matrix and its derivation procedure. 

2.1  About Hand-Eye Calibration 
In general hand-eye system, the sensor is mounted 
on one joint of robot. Though sometimes sensor is 

not mounted onto the robot, but fixed above the 
workbench unmovable, yet it can also be seen as 
hand-eye system, for this case can be seen as the 
sensor is mounted onto the robot base joint. Now 
we’ll take this case as the following analysis, and 
the other cases can be analyzed similarly. The figure 
shows the case that robot take the planar move in 
front of the cameras to do the calibration.  

 
Fig. 1. hand-eye calibration 

 

 
Fig. 2. various coordinate transformations 

Here, c->b->g(i) -> t(i) ->c and c->b->g(j) -> t(j) -
>c form a closed loop separately, then we’ll have 
the following identity [12]: 

   (1) 
(1) can be wrote as:    Cij Htg = Htg Dij

                     (2) 
similarly get the other equation:  

          Eij Hcb = HcbFij                      (3) 
where Htg and Hcb are also called poses from pattern 
to robot gripper and from camera to robot base, 
respectively. 

So, to solve for Hcb or Htg is equavilent to solve 
AX=XB for X. 

Though A,B,X might not satisfy rigid 
transformation, they are all homogeneous matrices, 
and can be denoted as: 

            
0 1 0 1 0 1

a a b b x xR T R T R T
A B X⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

       (4) 

Then AX=XB can be represented as: 

( ) ( )( ) 1 ( ) 1[ ] [ ]j ji i
tg tggb gb tc tcH H H H H H− −

• • • •=
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 Ra Rx=Rx Rb                          (5) 
(Ra-I )Tx=RxTb-Ta                     (6) 

To solve AX=XB is equivalent to solve (5)(6). 

2.2  About Hand-Eye Calibration 
General linear algorithms take Ra Rx as rotational 

matrix and assume their rotational angles equal. On 
the contrary, our algorithm can be widely applicable 
for general cases, it doesn’t require Ra Rx satisfying 
rotational transformation. 
Lemma 1: Equation (5) can represented as:   

(Ra⊗ I3 - I3⊗Rb
* ) vec(Rx)=0                     (7) 

Proof:  Use kronecker product to Expand (5):   
(5)  Ra Rx I3 - I3 Rx Rb = 0  (7) 

Where vec is an operator, which stretches a matrix 
as row’s direction, then transpose of it, ⊗ is 
kronecker product operator. The general form of (7) 
is the equation AX=0, and the solution of AX=0 is 
equivalent to the identical norm least square 
solution to the equation.  
Lemma 2: The identical norm least square 
solution for AX=0 is the identical eigenvector 
corresponding to the minimal eigenvalue of A*A. 
Proof:  The identical norm least square solution is: 
                   (8) 
Use Lagrange's formula to transform the above 
constrained problem into the unconstrained:  

        (9) 

w h e n  ( )*=2 2 0f A A X X
X

λ∂
+ =

∂
,  t h e r e  e x i s t s 

extremum for f(X), here, –λ is the eigenvalue of A*A 
a n d  X  i s  t h e  e i g e n v e c t o r  o f  A * A . 

Decompose A with SVD:  A=USV*, A*A=VSSV*, 
where U,V are all unitary matrices. Let V=[v1, 
v2, …], diag(SS)=[s1,s2,…], where diag is a set of 
the diagonal elements of a matrix.   

 So:     -λ∈{s1,s2,…},  X∈{v1, v2, …} 
For A*A is positive or semi-positive definite, its 

eigenvalue and eigenvector satisfy:  A*Avi = visi 
When get extremum, X is a identical 

eigenvector of A*A, let X=vi and substitute into (8):
 1

* * 2| min ( ) ,   1,2i i iv v A Av i
⎧ ⎫⎡ ⎤⎪ ⎪= ⋅⋅⋅ =⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

1
* 2| min ( ) ,   1,2i i i iv v v s i

⎧ ⎫⎡ ⎤⎪ ⎪= ⋅⋅⋅ =⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

{ }| min ,   1, 2i iv s i⎡ ⎤= ⋅⋅ ⋅⎣ ⎦
 

Let
ks represent the minimal element of the set 

{
1s ,

2s ,…}, then 
ks is the minimal singular value 

of A, yet is the square root of the minmal eigenvalue 
of A*A, and the corresponding eigenvector vk can 
minimize ||AX||. 
Lemma 3: There always exists real eigenvector 
corresponding to real eigenvalue for arbitrary 
real square matrix. 

Proof: Let A be an arbitrary real square matrix, λi be 
a real eigenvalue of A and ui be the corresponding 
eigenvector. Since A, λi are all in real field, then 
(A-λi)ui=0                           and                          (10) 
where Re, Im are operators separately exacting the 
real part and imaginary part from a complex matrix, 
and the extracted matrices are all real matrices, yet 
the same size as the complex matrix.   

The above equations indicate that the basis of 
the kernel of A-λi in complex field is equivalent to 
the basis of kernel in real field. Then the eigenvector 
of A-λi in complex field can be completely 
represented by the eigenvector in real field, and also 
corresponding to the same eigenvalue λi. 
Lemma 4: As a supplement of Lemma 2, if A is a 
real matrix, it can be decomposed by SVD in real 
field, that is to say both of unitary matrices U,V 
got by SVD can belong to real field. 
Proof:  Decompose A by SVD:  

A=USV*  => (AV)* (AV)=SS=D => (A*A)V= VD 
Where D is a diagonal matrix and the diagonal 
element set are {d1, d2, …}, U is composed of 
vectors {u1, u2, …}, and V is composed of 
eigenvectors {v1, v2, …} of A*A. Since A is a real 
matrix, A*A is real semi-positive definite or real 
positive definite, then it is diagonalizable and all its 
eigenvalues {d1, d2, …} are always greater than and 
equal to zero, and from Lemma 3, {v1, v2, …} can 
all belong to real field, so V is a real matrix. 
With SVD,                  .  because dj>0 and A,V 
belong real field, uj also belongs to real field. Since 
Hilbert space is complete for real field, so the 
orthonormal system of Hilbert space, from the 
above U is sure to be found in real field. Then we 
must get real U,V from SVD of a real matrix. 
Lemma 5: By SVD of nonzero matrix Q: 
Q=USV*, then the orthonormal matrix most 
approximated to a scale matrix λQ, is determined 

by R=±UV*, and here, 
*

tr( )
tr( )

S
QQ

λ = ± , and 

operators +,- between the two expressions are 
one-to-one correspondence.  
Proof: the optimal estimation should satisfy:   

R={R : min||λQ – R||F}                       (11) 

2* 2 *
*

* *

|| ||  = tr[(   )* (   )]                    

tr( ) tr ( )                = 3 tr( ) 0
tr( ) tr( )

FB R Q R Q R

Q R Q RQQ
QQ QQ

λ λ λ

λ

− − −

⎡ ⎤
+ − − ≥⎢ ⎥

⎣ ⎦

    (12) 

Since tr(Q*Q)>0 and (11)≥0, to minimize (11), the 
following must be satisfied.  

*

*

tr( )
tr( )

Q R
QQ

λ =  2 *

*

tr ( )and   Max
tr( )

Q R
QQ

           (13) 

Then:      
(11)={R: 2 *max tr ( )Q R⎡ ⎤⎣ ⎦ }={R : max[tr2(ZS)]}  (14) 

( ) ( )* * *( ) 1            f X X A A X X Xλ= + −

( ){ }2 2
| min : 1X AX X =

( )( )j
j ju d AV=

( ) ( )Re 0i iA u− =λ ( ) ( ) Im 0i iA u− =λ
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where Z=U*RV and Z is an orthonormal matrix. Let 
Zi be the ith column of Z, Zii be the diagonal element 
in the ith column. since || Zi ||=1, |Zii|≤1.   

2 2 2
2tr ( )            (15)

n n n

ii ii ii ii ii
i i i

ZS Z S Z S S⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ≤ ≤ ±⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

To maximize the above, Zii must be ±1, thereby, 
Z=±I, then±I=Z =U*RV =>R=±UV*, and substitute 
R into (13), we will acquire:  

*

tr( )
tr( )

S
QQ

λ = ± . 

With lemma 5 we can acquire the orthonormal 
matrix, but a 3×3 orthonormal matrix may not be a 
rotational matrix, the following will elaborate the 
estimation of a rotational matrix based on lemma 5.  
Definition 1: For any odd real square matrix, 
define: 

  det( ) 0
det( ) 0

A A
A

A A
>=⎧

= ⎨− <⎩
       (16) 

From the above, det(|A|) is always greater than or 
equal to zero. 
Lemma 6: By SVD of nonzero real matrix Q3×3: 
Q=USV*, then the rotational matrix most 
approximated to a scale matrix λQ, is exclusively 
determined by R=|UV*|. 
Proof: As a rotational matrix in right hand 
coordinate system, R must be orthonormal and 
satisfy: r3=r1×r2, where ri are the ith column vector 
of R, thereby, det(R) = r3·(r1×r2) =1.Then That R is 
orthonormal and det(R) =1 are equivalent to that R 
is rotational. Once R∈{±UV*} and det(R) =1, R must 
be the optimal rotational matrix. Now we’ll prove 
‘R∈{±UV*} and det(R) =1  R=|UV*|’. 

Since B3×3 is a real matrix, from lemma 4, both 
U,V can belong to real field, then det(UV*) is real. 
Then:  
I=(UV*)(UV*)*=>1=det2[(UV*)]=>det(UV*)=±1  (17) 

For both U, V are 3×3 square matrix, -det(UV*)= 
det(-UV*): 

(17)  det(±UV*)=1  det(|UV*|)=1        (18) 
From (18), only R=|UV*|, then det(R)=1, thereby 

R is rotational, and R∈{±UV*} or {±|UV*|}, for 
{±UV*}={±|UV*|}. Synthetically, the optimal 
rotational matrix R is exclusive. 
Lemma 7: If both A,B are rotational, it is 
necessary to solve for rotational part of X by at 
least two consistent equations. 
If both A,B are rotational, Zhuang and Shui have 
proved the lemma in detail. Moreover, since (10) is 
linear, obviously, it is robust to use multi-equations 
to solve. However, A,B might not be rotational, 
through lemma 1 in book[13], the sufficient and 
necessary condition that there exists solution is that: 

some eigenvalue of A is equal to some eigenvalue of 
B. 

2.3  Linear Solution to the translation part 
By Lemma of Zhuang, if Ra is rotational, it requires 
at least two consistent equations as (6) to solve for 
Tx, and multi-equations will enhance the robustness 
of solution. Obviously, QR or SVD, which are all 
good linear algorithms, can be used to solve (6) for 
Tx. 

2.4  Brief Summary 
Lemma 3~4 are the basis of the other lemmas, and 
of our algorithms, as they ensure the algorithms are 
closed in real field. Since in calibration A,B are 
from various coordianate transformations, A,B are 
physically in real field. The other lemmas provide 
the necessary theoretical support for estimation of 
the optimal rotational matrix, yet provide the 
detailed resolving apporoch, and the resolving steps 
in computer are given as follows. Note that multi-
equations will ensure the solution robust. 
(1) According to lemma 1~2, solve (7) to get a 

particular real solution and fold it into a square 
matrix B.  

(2) According to Lemma 5~6, the optimal rotational 
estimation most approximated to λQ is: 
R=|UV*| 

(3) Solve (6) for the translation part with QR or 
SVD. 

 
3 Jacobian Optimization 
In this section we will establish the objective model 
of optimization and elaborate the derivation of the 
Jacobian formula, finally, the executive steps of the 
algorithm will be given. 

The above steps in section 2 has the same 
deficiency as the classic approaches, for the rotation 
errors will propogate to the following solution for 
the translation part, and they are amplified by ||TB|| 
approximately via estimation. It is necessary to 
implement an optimization solving the translation 
and rotation simultaneously to alleviate this 
cumulative errors. According with the aim of our 
technique, the following objective function and 
Jacobian optimal formula also don’t require A,B 
satisfying rigid transformation or equivalent 
rotational angle. 

3.1  Objective Function of Optimization 
Obviously, the objective function is:  

( ) min ( ) ( ) F
i

L X A i X XB i= −∑                     (19) 

Where i represents the sequence number of 
equations as AX=XB and which is equivalent to the 
combination of (10) and (9):  
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( )
( )

2*
3 3

2
3

( ) ( ) vec( )
( ) min

( ) ( ) ( )

a b x

i
a x x b a

R i I I R i R
L X

R i I T R T i T i

⎡ ⎤⊗ − ⊗ +⎢ ⎥= ⎢ ⎥
⎢ ⎥− − +⎣ ⎦

∑    (20) 

Since rigid, X consists of the rotation and translation, 
of which the rotation can be determined enough by 
three angles such as RPY-angles. Therefor, six 
parameters is enough to determine X, which can be 
represented by the rotation c=[c1, c2, c3]T and the 
translation t=[t1, t2, t3] T separately. Let:  

( )*
3 3( ) ( ) ( ) vec( )a b xF i R i I I R i R= ⊗ − ⊗             (21)      

( )3( ) ( ) ( ) ( )a x x b aG i R i I T R T i T i= − − +              (22) 

F(i),G(i) are vectors of 9×1 and 3×1 separately, then 
the final function of optimization is:  

L(c , t )= 2 2min ( ) ( )
i

F i G i⎡ ⎤+⎣ ⎦∑      (23) 

3.2   Jacobian Formula  
The Jacobian formula for the objective function (23) 
is: 

J(i)=
T TT T

T T T T T

9 3
( ) vec(x)( ) ( ) 0

vec(x)
( ) ( ) ( ) vec(x) ( )

vec(x)

dF i ddF i dF i
d dd d

dG i dG i dG i d dG i
d d d d d

×
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

cc t

c t c t

 (24) 

where the initial translation t0 is the solution of (6) 
clearly, and the initial rotation c0 is RPY-angle 
corresponding to the initial rotation. If the derivation 
of RPY-angle is ill-conditioned badly, though 
singularly, By Rodrigues formula, yet you can 
obtain a more robust RPY-angle. 

3.3   Optimization  
Multi-equations such as (21~22) can be represented 
as follows: 

(1)
(1)
(2)
(2)
...

F
G

H F
G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
(1)
(2)
...

J
J J

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  χ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

c
t

    (25) 

then the iterative formula for optimization: 
-J Hχ =           (26) 

 ( 1) ( )n nχ χ χ+ = ∆+                   (27) 
where ∆χ can be solved by the quickly algorithm 
QR or more precise but slowly SVD. According to 
(24), you can also take the more robust but slower 
Levenberg-Marquet as the iterative formula:   

( )T T-J J I J Hµ χ+ =                       (28) 

3.4   Brief Summary  
The above algorithm for optimization also doesn’t 
require A,B satisfying the rigid transformation, and 
can solve the translation part and rotational part of 

X simultaneously, so it alleviates the cumulative 
errors. Now we’ll conclude the steps as follows: 
(1) Solution for initial value  

As described in section 2.4, the initial rotation 
and translation are determined in turn. Then solve 
the initial rotation for the RPY-angles and take the 
solved RPY-angles and the translation as the initial 
value. 
(2) Optimization 

1. Solve Jacobian formula (20) for J;  
2. Solve (21~22) for F(i),G(i) and obtain H;  
3. Use (26)(27) or (28)(27) to implement the 

iterative optimization.  
 

4  Simulation 
To compare our approach with classic algorithm, we 
assume A,B to be rigid. We firstly generate X and A 
randomly, then B according to formula B=X-1AX, 
then we add white noise to A,B to generate all 
noised A,B, which are the data of the equations in 
simulation really. 

The simulation principals: 1. Simulation data 
should cover all the area of all the probably real data; 
2. Simulation data should be distributed uniformly 
in whole data space. According to the principals, we 
randomly generate 100 X in the supposed solution 
space, and 25 pairs of A,B for each X , as add 21 
levels of uniformly distributed noises to A,B, here, 
the noise levels are [0,0.05,0.1,…,1] in turn.  
Various Error Statistics 

( )
1

1avg( ) ( )                                29
mn

i
F F i

mn =
= ∑   

( )
1

1avg( ) ( )                               30
mn

i
G G i

mn =

= ∑  

( ) ( )2

1

1std( ) ( ) avg( )                   31
1

mn

i
F F i F

mn =

= −
− ∑  

( ) ( )2

1

1std( ) ( ) avg( )                  32
1

mn

i
G G i G

mn =

= −
− ∑  

( ) ( )
1
22 2

m
1 ( ) ( )                 32

mn

i
H F i G i

mn
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

∑  

where m is the number of X, n is the number of 
equations for one X, so there are m×n pairs of || F(i) 
||,|| G(i) || for (21~22), corresponding to the above 
five statistics separately named mean of rotation 
error norm, mean of translation error norm, std of 
rotation error norm, std of translation error norm, 
and mean residual norm in turn, where std is the 
abbreviation of standard derivation. 

We have implemented plenty of simulations to 
test our approach, and also compared the technique 
with the classic technique, and we get the similar 
results as follows. 
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4.1  Simulation for Initial Value  
(1) Simulation error with the proposed algorithm on 
various number of equations 

 
(a) analysis of Rotation error        

 
(b) analysis of Translation error 

Fig. 3.  The error in relation to the noise level and 
number of equations 
(2) Error between the proposed and the classic on 

various number of equations 

 

 

Fig. 4 (a)   Rotation error in comparison with the 
classic algorithm on noise level 0.5 

 

Fig. 4 (b) Translation error in comparison with the 
classic algorithm on noise level 0.5 

 

  

Fig. 4 (c) Rotation error in comparison with the 
classic algorithm on noise level 1 
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Fig. 4 (d) Translation error in comparison with the 
classic algorithm on noise level 1 

4.2  Simulation for Final Optimal Value  

  

    

Fig. 5. The residual norm comparison for the 
proposed algorithm 

4.3  Analysis of Simulation  

We have implemented plenty of simulations, and 
obtained similar results as above. We find: 
(1) When the number of equations is few, both of 

approaches have comparatively big error, but 
the error of the classic approach is still much 
bigger than of ours.  

(2) Figure 3 shows a plane bevel when the number 
of equations is greater than 3, which indicates 
that the error is proportional to the noise level in 
the condition. It seems very interested, and the 
reason will be elaborated in another paper. 

(3) Figure 3 also indicates that when the number of 
equations is few the solution is not robust and is 
sensitive to noise, however, as the number 
increases, the calibration result will converge 
stability quickly, even when the noise level is 
much high, and it shows our approach very 
robust. 

(4) Simulation Comparison shows that the average 
error of our approach, as well as the error 
oscillation, is generally smaller than of the 
classic one, which shows our approach is more 
robust, as can be seen from the comparison of 
std(F),std(G) in above figures. 

 
5  Real Data Implementation 
The real experimental environment is showed in 
figure 1. From the theoretical analysis, three images 
from different orientations are enough to do the 
calibration, but more images will ensure the 
robustness of the computation. For the calibration of 
the camera, Yet there are some fast linear methods 
[14], but we would rather use the planar-pattern-
calibration [15] to acquire more precision, moreover, 
we can determine the rigid transformation Htc from 
the planar pattern to the camera, then we can use 
robot joint angle to calculate the Hgb, then with Htc 
and Hgb, use formula (1) to calculate C,D, similarly, 
calculate E,F, then use our technique to solve (2)(3) 
for Htg and Hcb respectively.  

We have implement many real experiments, and 
obtained similar results, too. The following is the 
result of one real experiment. In the experiment, we 
use binocular cameras to do calibration. For left 
camera, number of the available images is 31, for 
right camera, is 33, so there are 30 equations for left 
camera, 32 equations for right camera. Now we’ll 
use these 30 equations and 33 equations respectively 
to solve for the poses from pattern to gripper (Htg), 
theoretically, Htg obtained through two groups of 
equations respectively should be equal, but for 
various errors, the practical results will deviate from 
each other. In the following section we’ll show the 
convergence degree of these two Htg, as it also 
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reveals the precise degree of our calibration 
technique. 

5.1  Real Experimental Results 
(1) Solution to the initial poses from pattern to 
gripper (Htg) via two cameras respectively 

 

 
(a) Comparison of rotation error vs. the number of 

equations (left camera) 

 

 
(b) Comparison of rotation error vs. the number of 

equations (right camera) 
 

 

 
(c) Comparison of translation error vs. the number 

of equations (left camera) 

 

 
(d) Comparison of translation error vs. the number 

of equations (right camera) 
Fig. 6. Comparison of errors in initial value 

computation between two algorithms (right camera) 
(2) Solution of final optimal pose from pattern to 
gripper (Htg) via two cameras respectively 
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(a) The residual norm comparison (left camera) 

 
(b) The residual norm comparison  (right camera) 

Fig. 7. The residual norm comparison between 
initial value and final value vs. the number of 

equations 
(3) The convergence degree of two Htg solved via 
two cameras respectively for our algorithm 

 
(a) Comparison of rotation 

 
 

(b) Comparison of translation 
Fig. 8. The comparison of the final optimal Htg 

solved via two cameras respectively 
 
Then the final Htg that the pose from pattern to 
gripper can be calculated as:  

(right) (left)

2
tg tg

tg

H H
H

+
=  

5.2  Analysis of Real Experiment   
(1) As that in simulation, the calibration results 

converge stability as the equations or calibration 
images increase, more than 3 equations or 4 
images are necessary, otherwise the errors will 
be big, as seen from figure 6. 

(2) Comparisons indicates the mean errors of our 
approach are generally smaller than of the 
classic one, and the same case the error 
oscillation. It reveals our approach is more 
robust. 

(3) Figure 7 shows the general tendency that the 
initial value gradually approaches the final 
value as the number of equations increases, so it 
is available directly taking the initial value as 
the final result for the not very precise 
application. 

(4) The comparison also indicates it is necessary to 
implement optimization when the equations are 
few. 

(5) Figure 8 shows the calibration results (Htg) for 
the two cameras converges gradually as the 
number of equations increases, which reveals 
more equations help to increasing the precision 
and robustness of calibration. 

 
6  Conclusions 
The issue of robot hand-eye calibration is to solve 
AX=XB. We present our approach. Compared with 
the classic approach, it has the following 
characteristics: 
(1) In solution of the initial value, our approach is 

based on directly linear method, and doesn’t 
need to decompose matrices A,B to get the 
screw vectors, therefore, doesn’t need to 
concern on the problem whether A,B satisfy the 
rigid transformation, in addition, in the 
following Jacobian optimization, it needn’t 
concern on the problem, too. That is to say our 
approach is fit for the situation of non-rigidness 
of A,B. 

(2) After solution of (7) with SVD, the following 
step is to estimate the optimal rotational matrix, 
we firstly give proof of the optimal orthonormal 
estimaion of any rank matrix, then elaborate the 
proof of the optimal rotational matrix. Moreover, 
we also give the proof of that all computations 
in our approach is closed in real field, which 
ensures our technique robust in theory. 

(3) Our approach is based on rigorous deduction 
and integral theory, furthermore, the theoretical 
part, derivation and formula of the approach are 
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good references for the other study and 
application. 

Simulation and real data implementation show 
that: 
(1) For computation of the initial value, the mean 

errors of our approach are smaller than of 
classic one, and the error oscillation of our 
approach also, which indicate our approach is 
more robust and precise. 

(2) Optimization will improve the solution, 
specially when only a few equations, 
optimization is prerequisite. 

(3) With the equations increasing, the initial value 
converges to the final value gradually, and the 
computation is stable, when a number of 
equations, it is credible to regard the initial 
value as the final value for not very precise 
application. 

Our approach is more precise and robust, the 
reason is that: the classic approaches require the 
rotational angles of A,B equal in solution of initial 
value, and doesn’t consider the deviation between 
the angles, which cause its sensibility to deviation, 
for deviation always exists, it leads the classic 
approaches not as robust as our approach. On the 
contrary, our approach considers various deviations 
of A,B, furthermore, it fits for the situation of non-
rigidness of A,B. In summary our approach is robust, 
precise and flexible. 
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