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Abstract: - The use of expert systems gained importance with the growing amount of data that the current plants 
generate automated, in this paper, the development and tests of a specialist system based on data mining and that 
possesses the learning capacity is presented. The referred system was termed as NESISES (Neural System of 
Integration for Supervisory and Expert Systems). It operates in real time with industrial automation supervisory 
systems and whose aim is to minimize the frequent knowledge engineering procedures for constantly updating 
the base of knowledge of an Expert System (ES). NESISES was validated in both the laboratory as well as in an 
automation plant. 
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1   Introduction 
Expert systems (ES) operating in real time with 
Supervisory Systems (SS) [1], are a powerful tool to 
aid and optimize the human operators’ action within 
large and complex automated industrial plants such 
as: Seaports, Steel industry, Petrochemical industry, 
Automotive industry, etc. However, specialist 
systems depend on knowledge engineering to be 
updated as along the time the group of variables and 
equipment of automated complex plants go through 
some alterations. This article presents the 
development and the validation tests of NESISES 
(Neural System of Integration for Supervisory and 
Expert Systems) performed in both a laboratory and 
in a seaport automation application at Santos (Brazil). 
It is show a data mining approach to get useful 
knowledge from huge data bases generated for 
industrial plants. 
Figure 1 depicts the required functionality of an ES 
operating in real time with a SS that has learning 
ability.  Figure 1 - NESISES functionality along the 

time. 
 
It can be seen that from period 1 to period n, the 
knowledge elicitation is automatic. Conventional 
expert systems do not have this characteristic, thus, 
they must be constantly updated by the knowledge 
engineering [3] so as not to become obsolete.  
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As shown in Fig. 2, NESISES is an ES (Expert 
System) with learning ability which operates in real 
time with industrial automation SSs (Supervisory 
Systems). The learning ability of NESISES uses one 
of the artificial intelligence science techniques called 
DM (Data Mining) [4].  
The DM algorithm used at NESISES is the Tertius 
algorithm [6]. Tertius makes use of heuristic 
approaches so as to make the searching rules more 
efficient. Through an A* type algorithm [6], a search 
in the space of possibilities of the association rules is 
done. The heuristic used is actually a data “fit” 
utilizing a Qui squared distribution χ2 that supplies 
an association type rule, i.e. A => B (α, ß). The 
algorithm objective was to apply a best-first search 
(in this case A*) finding the most confirmed k 
hypotheses and also including a refinement of non-
redundant operators and so detach unnecessary 
searches. Consequently, very efficient searches are 
obtained. 
 
 

2   Architecture of the NESISES 
Hardware and Software 
Figure 2 broadly shows the operation and 
connectivity between NESISES and the plant’s 
automation system. Notice that the several process 
signals get to the SS through controllers which often 
are PLCs (Programmable Logical Controllers). 

 
Figure 2 - Operation and connectivity between 
NEISISES and an automation system of the industrial 
plant. 
 
The NESISES operability and architecture is depicted 
in Figure 3. NESISES accesses the plant’s data in real 
time via an interface with the SS. This interface is 
provided by the MISS (Module of Interface of the 
Supervisory System) [1]. MISS delivers the necessary 
data to both the tags of the SISES (System of 
Integration of the Supervisory and Specialist 
Systems) and to the observatory module. The 
observatory module checks the SISES’s outputs that 

can be affecting the plant and also establishes 
communication with the analytical module. 

 
Figure 3 - Operation & connectivity and software 
architecture between NESISES and the plant’s 
automation system. 
 
In turn, the analytical module establishes 
communication with the decision module which has 
the incumbency of deciding on whether modify or not 
any rule parameter of the ES knowledge base. 
 
2.1 Module interface to supervisory 
systems (MISS ) 
The MISS is the communication module of Expert 
System (ES) with the SS. Like most current SS 
operates with the Windows ® operating system, and 
also as the SS was chosen Rockwell Software 
RSView ®, the SISES was prepared in order to be 
compatible with these significant products of the 
world market. However, the scientific foundations 
and methodological SISES can be applied and 
developed for other operating environments, and SS. 
The development environment chosen SS SISES to 
operate with this research work provides several ways 
to communicate with Windows. However, more 
efficient communication is done by (DLLs) Dynamic 
Link Library Specific RsvApplication.dll and 
RsvProject.dll. This fact occurs because any other 
form of communication with RSView indirectly uses 
these same DLLs, and therefore adds more steps in 
communication with SISES RSView [7]. 
Figure 4 illustrates how the various interactions occur 
and RSView SISES, highlighting the functionality of 
MISS that is represented by the bond of 
communication RSView - Objects VCL and Delphi. 
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Figure 4 – Communication between the expert 
system and the supervisory system 
 
2.2 Module Construction Systems 
Specialists (MCSE) 
The MCSE is an environment where has built the ESs 
The Figure 5 illustrates the organization of the 
MCSE, which is composed of three modules: 
• Knowledge base: the set of rules obtained by the 
knowledge engineer and stored on file SISES; 
• Editor bases: is the tool that allows you to edit and 
change Knowledge Base; 
• Machine inference: SE module that performs the 
inferences and conclusions about the knowledge base. 
In the Machine Inference SISES operates using the 
backward chaining algorithm (backward chaining) 
[10] 

 
Figure 5 – Basic Architecture os ESs generated 
in MCSE 
 

2.3 Module Cognitive Meta SISES 
The Figure 6 illustrates the software architecture of a 
cognitive module meta SISES.  
This module will be divided into three sub-modules:  
• Observatory Module (O.M.). The observatory 
module must have the ability to observe the outputs 
of the SE and / or plan and enroll them temporarily 
change the indexed and boundary conditions of the 
plant;  
• Analytical Module (A.M.). The module makes 
analytical comparisons and measurements between 
the desired values and the values obtained over time. 
Thus, the MA will receive the information from the 
MO and perform analytical accounts;  
• Actuator Module Editor Decision Making 
(A.M.E.D.). This module, according to the results 
obtained from the AM decides which rule or 
consideration of the knowledge base should be 
changed. The actuator module, in turn, is composed 
of two modules: the decision module and the module 
editor's online knowledge base. 
 

 
 
Figure 6 – Software Architecture of cognitive 
module meta SISES 
 
The functionality and flow of information and actions 
of NESISES is illustrated in Figure 3. Note that the 
plant feeds the SISES online data through the MISS 
(Supervisory System Interface Module), the MISS in 
turn provides the data needed for the tags SISES and 
also for the module observatory. The module checks 
the outputs of the observatory SISES that may be 
affecting the plant, and also communicates with the 
analytical module.  
The analytical module in turn communicates with the 
module that is making the task of deciding whether or 
not the change of some parameter of rule knowledge 
base, and the variation of performance automatically. 
 
 

3   Methodology for the NESISES 
simulation and field tests 
In order to carry out the NESISES validation tests, it 
was used the methodology proposed by the IEEE 
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standard [8] and adapted to the specifications of this 
research work. 
This norm could be seen in the figure 7. 
 

 Figure 7 – Methodology for the NESISES 
simulation and field tests 
 
The NESISES validation tests were divided in three 
stages: 

� Validation tests to determine its effectiveness 
or degree for reaching the targets. 

� Simulation tests of the automated process. 
� Field tests. 

 
a) Simulation tests to determine the degree of 

effectiveness 
The Tertius algorithm complexity [6] does not allow, 
in a simple way, to theoretically determine the 
statistical confidence degree of the response obtained 
by Tertius. So, it was generated a mass of data 
relating Boolean variables, two by two, whose logical 
correct result was previously known. The objective 
for proposing this type of test was to create logical 
reference patterns through which the level of logical 
success obtained by NESISES can be checked.  
The mass of data received by the analytical module of 
NESISES was created by a ladder language program 
specifically developed, so that the supervisory system 
could acquire the data and transfer them to NESISES. 
Approximately 10000 different data were recorded. 
Tables 1, 2 and 3 show the reference logical patterns 
embedded in the automatically generated mass of 
data. 
 

Table 1– First group simulated with 
variables 2 by 2  

Variable V1 V2 
V1 = 1 30% of times V2 = 1 
V1 = 0 70% of times V2 = 1 

 
Table 2– Second group simulated with 

variables 2 by 2 
Variable V4 V5 
V4 = 1 50% of times V5 = 1 
V4 = 0 50% of times V5 = 1 

 
Table 3 – Third group simulated with 

variables 2 by 2 
Variable V7 V8 
V7 = 1 70% of times V8 = 1 
V7 = 0 30% of times V8 = 1 

 
NESISES delivered the results identified as 
correlation rules among variables V1 and V2, V4 and 
V5, V7 and V8 (Table 4). 

Table 4– Rules found by NESISES 
Referred 
to Table 

Rule Confirmation Frequency 
of counter-
examples 

Rule found 

1 

1 /* 0.332298  0.0027857 
*/ 

V2(true) -> 
V1(true) 

/* 0.332298  0.0027857 
*/ 

V1(false) -> 
V2(false) 

2 /* 0.339633  0.0034568 
*/ 

V2(false) -> 
V1(false) 

/* 0.339633  0.0034568 
*/ 

V1(true) -> 
V2(true) 

2 

3 /* 0.009803 
0.483092*/ 

V5(false) -> 
V4(true) 

/* 0.009803 
0.483092*/ 

V4(false) -> 
V5(true) 

4 /* 0.009803 
0.507246 */ 

V5(true) -> 
V4(false) 

/* 0.009803 
0.507246 */ 

V4(true) -> 
V5(false) 

3 

5 /* 0.745586 
0.014928 */ 

V8(false) -> 
V7(false) 

/* 0.745586 
0.014928 */ 

V7(true) -> 
V8(true) 

6 /* 0.745584 
0.015174 */ 

V8(true) -> 
V7(true) 

/* 0.745584 
0.015174 */ 

V7(false) -> 
V8(false) 

 
It can be seen that NESISES was able to identify that 
variable V2 was equal to 1 during 33% of the times 
when variable V1 was equal to 1 (rules 1 and 2). It 
was also able to identify that V4 was equal to 1 
during 50% of the times when V5 was equal to 1 
(rules 3 and 4). Further, NESISES was able to 
identify that V7 was equal to 1 during 74% of the 
times when V8 was equal to 1 (rules 5 and 6). The 
rules found and presented in Table 4 differ slightly 
from the rules inserted in the mass of data. The 
maximum difference showed to be 4%. So, it can 
empirically be concluded that the reliability of 
NESISES is in the order of 95%. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
Alexandre Acacio De Andrade, Sergio Luiz Pereira, 
Eduardo Mario Dias, Caio Fernando Fontana

ISSN: 1991-8763 416 Issue 6, Volume 5, June 2010



By using the same methodology, it was also tested 
the effectiveness of the algorithm for three different 
variables, the results reached showed approximately 
2.3% of accuracy [3] in relation to the probability 
established in the simulation. 
 

b) Simulation tests of the automated process  
In this stage, an SS previously developed for a Nylon 
manufacturing plant [2] was used. Figure 8 shows the 
architecture of the simulation tests. 

 Figure 8 - Basic architecture of the nylon 
manufacturing process simulation tests 
 
The simulated system that produced the field 
variables operates automatically generating a great 
mass of data. However, it has been programmed to 
create situations and certain logical correlations 
amidst a great amount of random data. NESISES was 
able to identify relevant patterns programmed within 
the mass of data. It was considered as effective 
learning the capability of NESISES to alter or suggest 
relevant rules for the operation of the automated 
system. 
Therefore, it was previously necessary establishing 
that every automated system obeys to an explicit 
automation algorithm determined in an earnest way 
(or not) by the automation engineer in charge of 
programming the control logics (discreet or dynamic) 
in the PLCs, SDCDs, PACs and the Supervisory 
Systems. However, the automation of any industrial 
plant does not always obtain directly all the 
descriptive features and interactions among the 
various devices and processes of the plant, for 
example:  
In the nylon production process studied [2], valves V-
20, V-32, V-33 and TCV-1 have an associated 
interlocking logic, as the opening of valves V-20, V-
32 characterizes the cooling process whereas the 
opening of valves V-33 and TCV-1 characterizes the 
heating process. Should both heating and cooling 
valves be simultaneously opened, physical damages 
will occur in this specific process which may lead to 
a stoppage of the production. The interlocking of the 
valves is properly programmed within the PLC that 
controls the process; however, there is a cause-effect 
relationship not programmed which is: once switched 
on the cooling process (valves V-20, V-32 opened) 
the cooling water starts heating, this in turn connects 
an additional compressor (along with another one 
already working) in order to maintain the cooling 

water cool. The connection of the additional 
compressor occurs some seconds after the valves’ 
sequence process, although this relationship is not 
directly programmed in the ladder.  
Table 5 shows the programmed logic patterns within 
the PLC emulator. Each sequence is generated by the 
emulator so that seven Boolean variables are 
simultaneously modified in each sequence. 
Those seven variables are recorded by the SS, each 
one being tags: V-20, V-32, V-33, PV-15, V-53, AP-
2, V-20.  
Each of the SS tags is mirrored by a NESISES 
variable termed as: V1, V2, V3, V4, V5, V6, V7. 
The NESISES variables are associated the SS tags 
which in turn are associated to the seven variables 
controlled by the PLC emulator. Sequence 1 is 
automatically altered to sequence 2 and so forth until 
sequence 6 is reached, which is altered back to 
sequence 1.  
 
The whole cycle, repeated perpetually, was 
programmed during the tests and it lasts 
approximately 20 minutes. 
 
 

Table 5– Simulated patterns for the 
nylon fabrication processo 

SS variable V-
20 

V-
32 

V-
33 

PV-
15 

V-
53 

AP-
2 

V-
70 

NESISES variable V1 V2 V3 V4 V5 V6 V7 
Sequence 1 1 1 0 1 1 1 1 
Sequence 2 0 1 1 0 1 1 1 
Sequence 3 1 0 1 0 0 1 1 
Sequence 4 0 0 1 0 0 0 1 
Sequence 5 1 1 0 1 0 0 1 
Sequence 6 0 1 1 1 1 0 0 

 
Table 6 is actually an extension of Table 5. It clearly 
shows the behavior pattern among variables PV-15, 
V-33 and V-70 present in sequences 2, 3 and 4, 
respectively. It can be noticed that there is a 
formation rule of this pattern. Such a formation rule 
states: whenever PV-15 is 0 then variables V-33 and 
V-70 will be equal to 1. 

Table 6– Main simulated rule for 
NESISES  

SS variable PV-15 V-33 V-70 
NESISES variable V4 V3 V7 
Sequence 2 0 1 1 
Sequence 3 0 1 1 
Sequence 4 0 1 1 

 
Initially, the patterns shown were not simulated 
during the NESISES validation tests for about 594 
hours as each 24 hours a new file was generated by 
the SS. During the 24-hour period this file had 
approximately 9474 lines and 7 columns. Each line 
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represented a sequence whereas each column 
represented one of the tags. 
Table 7 shows the 6 more probable rules found in the 
database generated by the simulation. Notice the two 
numbers at the first column of the table; the first one 
represents the confirmation probability so that the 
rule becomes true, whereas the second one represents 
the frequency of counterexamples found. In other 
words, they represent the confirmation degree of the 
rule and its frequency of counterexamples. Notice 
also that in this paper’s context, a counterexample 
refers to data contradicting the rule found.  
Table 7 also shows that the rules are sorted in 
descending order with respect to the confirmation 
degree. By analyzing this table, it can be seen that 
NESISES was able to effectively deduce the explicit 
rule presented in Table 6. Further analyzing Table 7, 
it can be concluded that the first rule found represents 
the explicit rule of Table 6 with approximately 99% 
of certainty. Note that each rule presented is unique; 
thus; there cannot be other rule(s) contradicting it.  
Hence, it can be concluded that there was an effective 
learning of the plant’s behavioral patterns simulated 
by NESISES [3]. 
 
 

Table 7– Main rules found by 
NESISES 

Rule Confirmati
on 

Frequency of 
counter 
examples 

Rule found 

1 /* 
0.992298 0.003750 */ 

pv_15 = 0 :- v_33 = 1 and 
v_70 = 1. 

/* 
0.992298 0.003750 */ 

v_33 = 0 or v_70 = 0 :- 
pv_15 = 1. 

2 /* 
0.878195 0.003750 */ 

v_33 = 0 :- pv_15 = 1 and 
v_70 = 1. 

/* 
0.878195 0.003750 */ 

pv_15 = 0 or v_70 = 0 :- 
v_33 = 1. 

3 /* 
0.875885 0.003750 */ 

v_33 = 0 or pv_15 = 1 or 
v_53 = 1 :- v_32 = 1. 

/* 
0.875885 0.003750 */ 

v_32 = 0 :- v_33 = 1 and 
pv_15 = 0 and v_53 = 0. 

4 /* 
0.875717 0.003864 */ 

v_32 = 0 :- pv_15 = 0 and 
v_53 = 0. 

/* 
0.875717 0.003864 */ 

pv_15 = 1 or v_53 = 1 :- 
v_32 = 1. 

5 /* 
0.872376 0.006137 */ 

v_32 = 0 :- v_33 = 1 and 
v_53 = 0. 

/* 
0.872376 0.006137 */ 

v_33 = 0 or v_53 = 1 :- 
v_32 = 1. 

6 /* 
0.691482 0.000114 */ 

ap_2 = 1 or v_70 = 0 :- 
v_53 = 1. 

/* 
0.691482 0.000114 */ 

v_53 = 0 :- ap_2 = 0 and 
v_70 = 1. 

 
 

c) Field tests at Santos Seaport (Brazil) 
The main objective of the field tests were the 
validation of NESISES in real operative conditions 
within an industrial atmosphere and whose dynamics 

and inherent characteristics often extrapolate the 
limits that the simulations are able to check. 
The automated process corresponds to a terminal with 
solid grain storing and delivery systems at Guarujá 
seaport terminal (Santos seaport, Brazil). This seaport 
has complex characteristics that make of it suitable 
for the NESISES field tests. The analyzed process has 
the following main parts: three warehouses, a storage 
patio, four granary containers for truck loading and 
two granary containers for railway wagons, totaling 
approximately 6000 automation points. 
The automated process was characterized by the vast 
use of communication networks. A big number of 
input and output points are communicated with the 
PLCs through data communication networks, namely: 
ControlNet, DeviceNet, Modbus and Profibus.  
Figure 9 shows both the general architecture of the 
process and its most important components. 

 
Figure 9 - General architecture showing the seaport 
automated process 
 
The main section of this process is the reception of 
materials that is carried out through the marine 
terminal. In other words it considers the necessary 
components needed to unload the ships to 
subsequently store the goods in a warehouse or yard. 
The other main section is the delivery division from 
which the stored material in the warehouse or patio is 
delivered to the trucks or wagons. The latter section 
is represented in the hardware architecture. Both the 
reception and the delivery section have independent 
PLCs.  
During the field tests NESISES should at least learn 
the simple logics of the process, for instance, should 
transporting conveyor TC-105 be working, the other 
assisting conveyors should also be working (i.e. TC-
104, TC-102 and TC-101). Aside of learning the 
simple rules, the system should also be able to learn 
non trivial rules of the process.  
 
1) Data Analysis at the Reception (Warehouse 4): 
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Once selected the variables pertaining to warehouse 
4, it was set Table 8 which has the most probable 8 
rules. 

Table 8– Rules found by NESISES for 
the variables of warehouse-4 

(Reception) 
Ru
le 

Confirmation Frequency 
of counter-
examples 

Rule found 

1 
/* 0.976151 0.004942 */ 

TC_102_L(true) OR TC_401_L(true) -
> TC_104_L(true) 

/* 0.976151 0.004942 */ 
TC_104_L(false) -> TC_102_L(false) 
AND TC_401_L(false) 

2 
/* 0.976029 0.000000 */ 

TC_105_L(true) OR TC_401_L(true) -
> TC_104_L(true) 

/* 0.976029 0.000000 */ 
TC_104_L(false) -> TC_105_L(false) 
AND TC_401_L(false) 

3 

/* 0.971303 0.004550 */ 

TC_103_L(true) OR TC_104_L(false) 
-> TC_102_L(false) AND 
TC_401_L(false) 

/* 0.971303 0.004550 */ 

TC_102_L(true) OR TC_401_L(true) -
> TC_103_L(false) AND 
TC_104_L(true) 

4 
/* 0.969299 0.010119 */ 

TC_102_L(true) OR TC_105_L(true) -
> TC_104_L(true) 

/* 0.969299 0.010119 */ 
TC_104_L(false) -> TC_102_L(false) 
AND TC_105_L(false) 

5 /* 0.969140 0.000052 */ TC_104_L(true) -> TC_102_L(true) 
/* 0.969140 0.000052 */ TC_102_L(false) -> TC_104_L(false) 

6 /* 0.969128 0.015402 */ TC_104_L(false) -> TC_102_L(false) 
/* 0.969128 0.015402 */ TC_102_L(true) -> TC_104_L(true) 

7 
/* 0.967766 0.000000 */ 

TC_101_L(false) OR 
TC_104_L(false) -> TC_102_L(false) 

/* 0.967766 0.000000 */ 
TC_102_L(true) -> TC_101_L(true) 
AND TC_104_L(true) 

8 
/* 0.963946 0.015009 */ 

TC_102_L(true) -> TC_103_L(false) 
AND TC_104_L(true) 

/* 0.963946 0.015009 */ 
TC_103_L(true) OR TC_104_L(false) 
-> TC_102_L(false) 

 
In order to make more relevant the analysis, 
segmented tests were carried out, firstly with the 
complete database and then using variables chosen 
from pertinent areas, as it was previously known that 
both warehouses operated independently one to 
another, but were dependent of the reception.  
By analyzing the rules presented in Table 8, it can be 
noticed that the three more probable rules (1, 2 and 3) 
relate the reception transporting conveyors to 
warehouse 4 main conveyor (TC-401).  
An analysis on rule 1 leads to establish that, if 
TC_104 would be operating then, there is 97% of 
certainty that either TC_102 or TC-401 should also 
be operating. The first two rules relate TC-102 and 
TC-104 (reception) to the main conveyor (feeder) of 
warehouse 4. Also, from the process analysis it can 
be seen that mats TC-102 and TC-104 operate jointly, 
with TC-102 feeding TC-104. 
Those rules show to be coherent as there is a 
dependence relationship between them. For instance, 
rule 1 shows that conveyors TC-102, 401 and 104 
operate together which corresponds to the reception 
operational facts operating together with warehouse 
4. 
Similar tests were performed for the possible 
combinations of variables of the other three 

warehouses, the reception section and the patio; thus, 
covering the whole process. NESISES was able to 
learn the process operation in all the tests conducted. 
 
3.1 Analysis of traceability of tests 
to simulate industrial processes 
automated 
Traceability (ISO 8402) is defined as the ability to 
describe the history, application, processes or events 
and location of a product to a particular organization, 
through records and identification. In simpler track is 
to keep the records necessary to identify and report 
data on the origin and destination of a product or 
process.  
Initially, the starting point is a data structure that 
enables the traceability and was implemented in the 
software NESIS a tree structure that documents each 
of his decision making. For the simulation tests in 
itself, was executed the following procedure to ensure 
traceability:  
a) The events that would be implemented in the 
simulator were defined and recorded before its 
implementation language ladder inside the simulator.  
b) The application software developed in the creation 
of SSs RSView [7], this software donated to 
Covenant EPUSP-Rockwell Automation, is 
configured so as to acquire event and automatically 
store all the events that occurred, these events 
(recorded at base data) were stored in data files 
tipo.DBF, and these files have the following form:  
b.1) Two files for each day of data acquisition, for 
example: "2009 05 11 0000 (tagname). DBF" and 
"2009 05 11 0000 (Wide). DBF. Note that the actual 
file name is the date on which it was generated, in 
addition there are two types of files, whose names are 
generated automatically by RSView, and Wide 
tagname tagname is where are the variables that will 
be stored and wide data that are stored.  
b.2) The wide type files have internal structure in a 
tabular form, with the first and the second column to 
store date and hour / minute / second / millisecond in 
which the event occurred. The remaining columns are 
for storage of events in the sequence file specified by 
tagname.  
c) Each time the data mining algorithm was run it 
was noted and saved its parameterization is that the 
generated file has the extension. RES.  
d) All files generated by the simulation, periodically, 
were copied and stored on a different computer which 
was running the simulation to avoid the risk of any 
accidental envelope.  
The flowchart shown in Figure 10 describes the 
sequence of events that allow the traceability of 
software testing. 
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Figure 10 – flowchart of traceability of tests 
 
 
The data were evaluated on each item cited in 
traceability, followed by a white box-type method 
(Pressman, 2001), where each piece of software is 
evaluated in the sense of having to do it properly your 
specification. In simulation tests, the internal routine 
of the simulator generated events, arquivos.DBF were 
generated daily, the data from these files were 
checked in the sense of correctness, consistency, 
completeness and accuracy. 
At this stage they were also verified the results of 
step data mining where the data were analyzed in 
files.rar in what was a black box type approach [11], 
ie the focus is only on the results without going into 
merit of the intermediate steps.  
25 files were generated between 02/04/2009 to 
26/04/2009 totaling 594h and the failure rate in each 
of the requirements prescribed by the standard was 
zero. 
 
3.2 Generation of test plan and 
design of simulation tests of automated 
industrial process 
 
These steps in IEEE 1059 - 1993 were two distinct 
stages were grouped according to the needs of this 
research work. 
This step was performed according to the flowchart 
shown in Figure 11, note that the process is 
interactive. 
 

 
Figure 11 – Definition of the criteria for approval 
of field tests with NESISES 
 
 
3.3 Definition of the criteria for 
approval of field tests with NESISES 
 
To validate the tests, both the simulation as the field, 
we adopted the following criteria:  
1. Assertiveness learning: the NESIS must have 
learning assertive.  
2. Performance SS: SS should not suffer appreciable 
drop in performance.  
3. Runtime: NESIS the time to learn something from 
the SS cannot be an order of magnitude higher than 
the predetermined time that engineers have the 
knowledge to reach the same conclusions.  
4. Compatibility: the NESIS may not require as many 
features of the operating system (Windows) to impair 
their performance, or the functioning of NESIS not 
affect the normal operation of SS on their tasks. 
 
3.4 Analysis of results according to 
the criteria for approval of field tests 
with NESISES 
 
After you run the tests, they were analyzed according 
to the criteria set out in item 4.6. The results of this 
analysis were the following:  
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1. Assertiveness learning: the learning assertive 
NESIS have shown (see Section 4.5.3).  
2. Performance SS: SS suffered no appreciable drop 
in performance.  
3. Runtime: Time for NESIS learn something from 
the SS was a few minutes to 36 hours, which was not 
as deterrent for large volumes of information an 
knowledge engineer could take much longer time to 
reach a conclusion.  
4. Compatibility: the NESIS proved fully compatible 
with the operating system (Windows), and the only 
restriction is that the step of data mining to occur on a 
computer other than that is running the SS 
 
 

4   Conclusions 
The development of this study demanded a wide 
research of the Artificial Intelligence (AI) field in 
order to verify the possibilities offered by systems 
with learning capacity. Several AI techniques were 
studied, mainly the data mining (DM) technique 
which demanded a more deep study. While studying 
the DM technique, it was verified that due to its 
knowledge finding characteristics in large databases, 
it would be extremely useful to attend the objective of 
this research which was the learning ability with the 
experience of the automation system. Thus, this 
experience could be stored in a database and later 
used to elucidate the operation of a certain system or 
even propose operation rules whose weights can be 
modified along the time. 
The next step was the development of a 
computational tool that could interconnect an 
industrial automation supervisory system with an 
expert system. This tool should also have learning 
capacity, thus, it could be joined to the dynamic 
reality of the automation system (plant) by means of 
the SS acquired knowledge, so that it could teach the 
resulting system how to take inferences over the 
system and occasionally propose new rules. 
Such development required a thorough study of the 
existing computational tools to execute DM or even 
start directly from the concept of any DM algorithm. 
It was found a software implementation of the Tertius 
algorithm that satisfied the needs of the DM 
requirements linked to association rules which was 
flexible enough to incorporate it to SISES. So, it was 
chosen to develop the software termed NESISES, 
which is based on the original SISES, and further 
improve it and provide it a learning DM module.  
The NESISES software was experimented in several 
simulation tests which enabled its improvement. 
After the simulation tests, it went to a real world trial 
within an automated industrial plant, where it was 

checked its learning capacities. NESISES proved to 
be satisfactory in all the tests conducted.  
While developing this study, some other questions 
appeared which require futures improvements, 
namely: 

� Implementation of the NESISES decision 
module based on new artificial intelligence 
researches;  

� Researches of new AI techniques to improve 
the NESISES inclusion and effectiveness. 
Particularly, more efficient data mining 
algorithms than that of Tertius; 

� Research of new AI techniques to develop 
both methodologies and construction tools 
for NESISES and ES; 

� Inclusion of time control within the heuristics 
in order to better assess a certain action of 
NESISES; 

� Improvement of its interface with the user 
making the operation more user friendly; 

� Study the possibility of the NESISES 
interconnection with other business 
management software’s such as ERPs. 
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